Optical lateral flow immune assay technology for body fluid sensing
-
* Corresponding authors.
E-mail addresses: liwei93@njtech.edu.cn (W. Li), dzh@njtech.edu.cn (Z. Dai).
Citation:
Chen Liu, Tianqi Zhao, Jialing Zhou, Xiaoyun Hu, Dinghao Pan, Jinlong Li, Wei Li, Zhihui Dai. Optical lateral flow immune assay technology for body fluid sensing[J]. Chinese Chemical Letters,
;2026, 37(1): 110967.
doi:
10.1016/j.cclet.2025.110967
J. Abbasi, JAMA 322 (2019) 918.
X. Ying, W. Fu, L. Zhu, et al., Anal. Chem. 96 (2024) 10630–10638.
doi: 10.1021/acs.analchem.4c01224
L. Zhang, S. Wan, Y. Jiang, et al., J. Am. Chem. Soc. 139 (2017) 2532–2540.
doi: 10.1021/jacs.6b10646
L. Zhang, K. Cao, Y. Su, et al., Biosens. Bioelectron. 222 (2023) 114935.
S. Peng, M. Fan, C. Xiao, et al., Sens. Actuators B: Chem. 401 (2024) 135012.
A.S. Lee, S.M. Kim, K.R. Kim, et al., Sens. Actuators B: Chem. 379 (2023) 133245.
K. Wang, X. Liu, X. Liang, et al., Anal. Chem. 96 (2024) 3208–3216.
B. Pulendran, M.M. Davis, Science 369 (2020) eaay4014.
H. Narasimhan, Y. Wu, N.P. Goplen, J. Sun, Sci. Immunol. 7 (2022) eabm7996.
A. Clifford, J. Das, H. Yousefi, et al., J. Am. Chem. Soc. 143 (2021) 5281–5294.
doi: 10.1021/jacs.0c13138
N. Yao, X. Li, Y. Tian, et al., Sens. Actuators B: Chem. 379 (2023) 133247.
W. Wang, L. Liu, J. Zhu, et al., ACS Nano 18 (2024) 6266–6275.
doi: 10.1021/acsnano.3c10543
J. Zhang, F. Chai, J. Li, et al., Sci. Adv. 10 (2024) eadn5698.
S. Schobesberger, H. Thumfart, F. Selinger, et al., Anal. Chem. 96 (2024) 2900–2907.
T. Bai, L. Wang, M. Wang, et al., Biosens. Bioelectron. 208 (2022) 114218.
X. Gao, J. Boryczka, P. Zheng, et al., Biosens. Bioelectron. 177 (2021) 112967.
N. Suwantarat, J.B. Dalton, R. Lee, et al., Diagn. Microbiol. Infect. Dis. 82 (2015) 54–56.
A. Fleury, P. Sastre, E. Sciutto, et al., Exp. Parasitol. 171 (2016) 67–70.
M. Supianto, D.K. Yoo, H. Hwang, et al., ACS Sens. 9 (2024) 1321–1330.
doi: 10.1021/acssensors.3c02250
C. Wang, Q. Yu, S. Zheng, et al., ACS Nano 18 (2024) 16752–16765.
doi: 10.1021/acsnano.4c01824
Q. Chen, L. Yao, J. Xu, et al., Anal. Chim. Acta 1278 (2023) 341684.
J. Wang, C. Jiang, J. Jin, et al., Angew. Chem. Int. Ed. 60 (2021) 13042–13049.
doi: 10.1002/anie.202103458
H. Tong, C. Cao, M. You, et al., Biosens. Bioelectron. 213 (2022) 114449.
W. Jung, J. Han, J.W. Choi, C.H. Ahn, Microelectron. Eng. 132 (2015) 46–57.
R. Kuai, L.J. Ochyl, K.S. Bahjat, et al., Nat. Mater. 16 (2017) 489–496.
doi: 10.1038/nmat4822
S. Zhao, S. Wang, S. Zhang, et al., Chin. Chem. Lett. 29 (2018) 1567–1577.
F. Scholz, L. Rüttinger, T. Heckmann, et al., Biosens. Bioelectron. 164 (2020) 112324.
H.K. Oh, K. Kim, J. Park, et al., Biosens. Bioelectron. 205 (2022) 114094.
X. Gao, P. Zheng, S. Kasani, et al., Anal. Chem. 89 (2017) 10104–10110.
doi: 10.1021/acs.analchem.7b03015
E. Sheng, Y. Lu, Y. Xiao, et al., Biosens. Bioelectron. 181 (2021) 113149.
R. Chen, C. Ren, M. Liu, et al., ACS Nano 15 (2021) 8996–9004.
doi: 10.1021/acsnano.1c01932
B. Chovelon, V. Ranganathan, S. Srinivasan, et al., Anal. Chem. 96 (2024) 6875–6880.
doi: 10.1021/acs.analchem.3c05472
W. Li, S. Yin, Y. Shen, et al., J. Am. Chem. Soc. 145 (2023) 3736–3747.
doi: 10.1021/jacs.2c13222
Y. Shen, W. Li, Z. Zhou, et al., Angew. Chem. Int. Ed. 63 (2024) e202406332.
W. Li, Y. Shen, X. Gong, et al., Anal. Chem. 93 (2021) 16673–16682.
doi: 10.1021/acs.analchem.1c04246
D.Y. Kong, N.S. Heo, J.W. Kang, et al., Anal. Bioanal. Chem. 414 (2022) 3257–3265.
doi: 10.1007/s00216-022-03877-z
Z. Ren, L. Xu, L. Yang, Y. Cui, Anal. Chem. 95 (2023) 6646–6654.
doi: 10.1021/acs.analchem.3c00057
T. Zhao, R. Abdurahman, R. Aiwaili, et al., Coord. Chem. Rev. 488 (2023) 215171.
J. Liang, L. Wu, Y. Wang, et al., Sens. Actuators B: Chem. 389 (2023) 133875.
L. Fan, W. Yan, Q. Chen, et al., Anal. Chem. 96 (2024) 401–408.
doi: 10.1021/acs.analchem.3c04441
X. Yang, Y. Xu, X. Huang, et al., Anal. Chem. 95 (2023) 4543–4549.
doi: 10.1021/acs.analchem.2c05698
X. Yang, J. Hang, W. Qu, et al., J. Am. Chem. Soc. 145 (2023) 16026–16036.
doi: 10.1021/jacs.3c04250
M. Xu, C. Zhang, S. He, et al., ACS Nano 17 (2023) 8183–8194.
doi: 10.1021/acsnano.2c12066
S. Atta, Y. Zhao, J.Q. Li, T. Vo-Dinh, Anal. Chem. 96 (2024) 4783–4790.
doi: 10.1021/acs.analchem.3c04361
P. Liang, Q. Guo, T. Zhao, et al., Anal. Chem. 94 (2022) 8466–8473.
doi: 10.1021/acs.analchem.2c01286
Z. Xie, S. Feng, F. Pei, et al., Anal. Chim. Acta 1233 (2022) 340486.
C. Wang, X. Cheng, L. Liu, et al., ACS Appl. Mater. Interfaces 13 (2021) 40342–40353.
doi: 10.1021/acsami.1c11461
M. Yang, Y. Tang, L. Qi, et al., Anal. Chem. 93 (2021) 11956–11964.
doi: 10.1021/acs.analchem.1c01829
D. Zhu, S. Fu, X. Zhang, et al., Trends Food Sci. Technol. 148 (2024) 104485.
B. İnce, İ. Uludağ, B. Demirbakan, et al., TrAC Trends Anal. Chem. 169 (2023) 117418.
P. Chowdhury, R. Lawrance, Z.Y. Lu, et al., TrAC Trends Anal. Chem. 177 (2024) 117798.
B. Ince, M.K. Sezgintürk, TrAC, Trends Anal. Chem. 157 (2022) 116725.
X. Nan, X. Yao, L. Yang, Y. Cui, Analyst 148 (2023) 4573–4590.
doi: 10.1039/d3an00719g
Y. Ji, Y. Huang, Z. Cheng, et al., J. Agric. Food. Chem. 71 (2023) 10250–10268.
doi: 10.1021/acs.jafc.3c02094
P. Sadeghi, H. Sohrabi, M.R. Majidi, et al., TrAC, Trends Anal. Chem. 176 (2024) 117722.
M. Chao, Q. Pan, G. Li, et al., Anal. Chem. 96 (2024) 7714–7722.
doi: 10.1021/acs.analchem.4c00956
Y. Matsumura, Y. Enomoto, M. Takahashi, S. Maenosono, ACS Appl. Mater. Interfaces 10 (2018) 31977–31987.
doi: 10.1021/acsami.8b11745
O.A. Goryacheva, C. Guhrenz, K. Schneider, et al., ACS Appl. Mater. Interfaces 12 (2020) 24575–24584.
doi: 10.1021/acsami.0c05099
T. Ji, X. Xu, X. Wang, et al., ACS Nano 14 (2020) 16864–16874.
doi: 10.1021/acsnano.0c05700
W.Page Faulk, G.Malcolm Taylor, Immunochemistry 8 (1971) 1081–1083.
S.K. Bikkarolla, S.E. McNamee, P. Vance, J. McLaughlin, Biosensors 12 (2022) 182.
doi: 10.3390/bios12030182
Y. Liu, W. Wang, X. Feng, et al., Analyst 148 (2023) 1246–1252.
doi: 10.1039/d3an00012e
M. Lin, H. Yang, Q. Li, et al., J. Colloid Interface Sci. 673 (2024) 893–900.
H. Wang, M. Jian, J. Fan, et al., Talanta 273 (2024) 125852.
J. Sun, F. Gao, Y. Song, et al., ACS Appl. Nano Mater. 6 (2023) 18729–18738.
doi: 10.1021/acsanm.3c00178
B. Gosselin, G. Bruylants, I. Jabin, ACS Appl. Nano Mater. 7 (2024) 6169–6177.
doi: 10.1021/acsanm.3c06070
X. Chen, S. Kang, M.A. Ikbal, et al., Biosens. Bioelectron. 202 (2022) 113971.
A. Sena-Torralba, D.B. Ngo, C. Parolo, et al., Biosens. Bioelectron. 168 (2020) 112559.
J.R. Choi, Z. Liu, J. Hu, et al., Anal. Chem. 88 (2016) 6254–6264.
doi: 10.1021/acs.analchem.6b00195
K. Kim, D.K. Han, N. Choi, et al., Anal. Chem. 93 (2021) 6673–6681.
doi: 10.1021/acs.analchem.0c05336
C. Lin, Z. Liu, F. Fang, et al., ACS Sens. 8 (2023) 3733–3743.
doi: 10.1021/acssensors.3c01019
Y. Li, J. Ke, Q. Liu, et al., Sens. Actuators B: Chem. 345 (2021) 130380.
W. Li, X. Gong, X. Fan, et al., Chin. Chem. Lett. 30 (2019) 1775–1790.
Z. Chen, Z. Zhang, X. Zhai, et al., Anal. Chem. 92 (2020) 7226–7231.
doi: 10.1021/acs.analchem.0c00784
Y. Pang, M. Lu, H. Rha, et al., Sci. China Chem. 67 (2024) 774–787.
doi: 10.1007/s11426-023-1815-9
Y. Hang, J. Boryczka, N. Wu, Chem. Soc. Rev. 51 (2022) 329–375.
doi: 10.1039/c9cs00621d
L. Bian, Z. Li, A. He, et al., Biomaterials 288 (2022) 121694.
L. Hao, W. Yang, Y. Xu, et al., Biosens. Bioelectron. 212 (2022) 114411.
T. Wang, M. Liu, J. Mao, et al., Chin. Chem. Lett. 35 (2024) 108385.
Y. Gao, J. Shi, C. Wu, et al., Anal. Chem. 96 (2024) 5694–5701.
doi: 10.1021/acs.analchem.4c00716
J. Guo, Y. Zhou, J. Cheng, et al., Anal. Chem. 96 (2024) 4891–4900.
doi: 10.1021/acs.analchem.3c05448
X. Su, X. Kong, K. Sun, et al., Angew. Chem. Int. Ed. 61 (2022) e202201630.
D. Liu, C. Ju, C. Han, et al., Biosens. Bioelectron. 173 (2021) 112817.
A. Roda, S. Cavalera, F. Di Nardo, et al., Biosens. Bioelectron. 172 (2021) 112765.
F. Chai, D. Wang, L. Zhu, et al., Anal. Chem. 94 (2022) 6628–6634.
doi: 10.1021/acs.analchem.2c01177
D. Hong, K. Kim, E.J. Jo, M.G. Kim, Anal. Chem. 93 (2021) 7925–7932.
doi: 10.1021/acs.analchem.1c00623
D. Hong, E.J. Jo, K. Kim, et al., Small 16 (2020) 2004535.
Y. Huang, Y. Ji, M. Zheng, et al., ACS Sens. 9 (2024) 2815–2825.
doi: 10.1021/acssensors.3c02329
Y. Zhao, L. Shi, H. Miao, X. Jing, Anal. Chem. 93 (2021) 3250–3257.
doi: 10.1021/acs.analchem.0c04856
C. Wang, C. Wang, X. Wang, et al., ACS Appl. Mater. Interfaces 11 (2019) 19495–19505.
doi: 10.1021/acsami.9b03920
P. Wu, W. Zuo, Y. Wang, et al., Chem. Eng. J. 451 (2023) 139021.
D. Chen, C. Wu, H. Li, et al., J. Mater. Chem. C 11 (2023) 12649–12657.
doi: 10.1039/d3tc02410e
Z. Wang, R. Zou, J. Yi, et al., Small 20 (2024) 2310869.
Q. Yu, J. Li, S. Zheng, et al., J. Hazard. Mater. 459 (2023) 132136.
L. Shi, Z. Wang, Y. Li, et al., J. Agric. Food Chem. 72 (2024) 4405–4414.
doi: 10.1021/acs.jafc.3c09597
X. Li, D. Yu, H. Li, et al., Biosens. Bioelectron. 241 (2023) 115688.
N.P. Damayanti, L.L. Parker, J.M.K. Irudayaraj, Angew. Chem. Int. Ed. 52 (2013) 3931–3934.
doi: 10.1002/anie.201209303
Y. Zhao, C. Xu, Adv. Mater. 32 (2020) 1907880.
M. Li, H. Lin, S.K. Paidi, et al., ACS Sens. 5 (2020) 1419–1426.
doi: 10.1021/acssensors.0c00307
M. Zhao, Y. Yang, N. Li, et al., Langmuir 40 (2024) 4447–4459.
doi: 10.1021/acs.langmuir.3c03772
Y. Shang, J. Wang, H. Xia, et al., Anal. Chem. 96 (2024) 6065–6071.
doi: 10.1021/acs.analchem.4c00648
Z. Li, W. Zhang, Q. Zhang, et al., ACS Nano 17 (2023) 19359–19371.
doi: 10.1021/acsnano.3c06930
X. Lin, P. Zhou, Q. Li, Y. Pang, Anal. Chem. 96 (2024) 10686–10695.
doi: 10.1021/acs.analchem.4c01580
J. Hu, Y.Z. Jiang, M. Tang, et al., Anal. Chem. 91 (2019) 1178–1184.
doi: 10.1021/acs.analchem.8b05154
Y.Y. Broza, X. Zhou, M. Yuan, et al., Chem. Rev. 119 (2019) 11761–11817.
doi: 10.1021/acs.chemrev.9b00437
C.E. Teunissen, I.M.W. Verberk, E.H. Thijssen, et al., Lancet Neurol. 21 (2022) 66–77.
L. Zhang, X. Du, Y. Su, et al., J. Nanobiotechnol. 19 (2021) 366.
doi: 10.3390/s21020366
Y. Liang, K. Xue, Y. Shi, et al., Anal. Chem. 95 (2023) 3434–3441.
doi: 10.1021/acs.analchem.2c05164
C. Tlili, N.V. Myung, V. Shetty, A. Mulchandani, Biosens. Bioelectron. 26 (2011) 4382–4386.
T. Saleh, C.G. Kalodimos, Science 355 (2017) 247–248.
doi: 10.1126/science.aal4632
J.L. Shifren, C.J. Crandall, J.E. Manson, JAMA 321 (2019) 2458–2459.
doi: 10.1001/jama.2019.5346
I. Visan, Nat. Immunol. 19 (2018) 1148.
doi: 10.1038/s41590-018-0244-6
V.G. Panferov, N.A. Ivanov, T. Mazzulli, et al., Angew. Chem. Int. Ed. 62 (2023) e202215548.
Z. Song, Y. Suo, S. Duan, et al., Biosens. Bioelectron. 224 (2023) 115063.
R. Xiao, L. Lu, Z. Rong, et al., Biosens. Bioelectron. 168 (2020) 112524.
Y. Cai, S. Zhang, C. Dong, et al., Anal. Biochem. 627 (2021) 114265.
C. Fang, J. Li, B. Lin, et al., Anal. Chem. 96 (2024) 721–729.
doi: 10.1021/acs.analchem.3c03704
K. Shen, O. Chen, J.L. Edmunds, et al., Nat. Biomed. Eng. 7 (2023) 424–442.
doi: 10.1038/s41551-023-01021-5
L. Sun, Y. Lei, Y. Wang, D. Liu, Chin. Chem. Lett. 33 (2022) 1946–1950.
P.J. Xie, M.L. Ye, Z.Y. Hu, et al., Chin. Chem. Lett. 22 (2011) 1485–1488.
J. Zhong, X. Chen, M. Zhang, et al., Chin. Chem. Lett. 31 (2020) 769–773.
D. Yates, Nat. Rev. Neurosci. 23 (2022) 393.
doi: 10.1038/s41583-022-00610-8
Y. Du, S. Dong, Anal. Chem. 89 (2017) 189–215.
doi: 10.1021/acs.analchem.6b04190
J. Ye, F. Li, T. Hua, et al., Nat. Commun. 15 (2024) 8375.
J. Yu, J. Liu, C.B. Ma, et al., Anal. Chem. 94 (2022) 600–605.
doi: 10.1021/acs.analchem.1c03451
M. Nooruzzaman, K.E.E. Johnson, R. Rani, et al., Nat. Commun. 15 (2024) 7999.
G. Guo, T. Zhao, R. Sun, et al., Chin. Chem. Lett. 35 (2024) 109198.
Z. Rong, Z. Bai, J. Li, et al., Biosens. Bioelectron. 145 (2019) 111719.
R.W. Smithells, Lancet 315 (1980) 772–773.
D. Gao, J. Gao, F. Gao, et al., J. Mater. Chem. C 9 (2021) 16634–16644.
doi: 10.1039/d1tc04568g
H. Zhao, E. Su, L. Huang, et al., Chin. Chem. Lett. 33 (2022) 743–746.
doi: 10.3390/ijerph20010743
X. Wang, J. Zhao, W. Wang, et al., Sci. China Chem. 65 (2022) 1911–1920.
C.H. Chou, T.H. Huang, P.C. Hsieh, et al., Anal. Chim. Acta 1196 (2022) 339544.
G.S. Green, M. Fujita, H.S. Yang, et al., Nature 633 (2024) 634–645.
T. Zhu, H. Wang, Z. Jing, et al., Bioact. Mater. 8 (2022) 12–19.
doi: 10.1167/tvst.11.5.12
J. Zhao, H.Y.Y. Nyein, L. Hou, et al., Adv. Mater. 33 (2021) 2006444.
H. Lee, Y.J. Hong, S. Baik, et al., Adv. Healthc. Mater. 7 (2018) 1701150.
R.R. Nair, J.M. An, J. Kim, D. Kim, Coord. Chem. Rev. 494 (2023) 215336.
C. Guo, X. Zhang, X. Hong, et al., Chin. Chem. Lett. 35 (2024) 108867.
Y. Sun, Y. Tang, L. Yu, et al., Sci. China Chem. 66 (2023) 3006–3023.
doi: 10.1007/s11426-023-1727-9
Y. Mao, Y. Sun, J. Xue, et al., Anal. Chim. Acta 1178 (2021) 338800.
E. Lamprou, M. Sotiriou, P.M. Kalligosfyri, et al., Talanta 262 (2023) 124682.
G. Källenius, S.B. Svenson, H. Hultberg, et al., Lancet 318 (1981) 1369–1372.
S. Ghosh, M. Kumar, M. Santiana, et al., Nature 607 (2022) 345–350.
doi: 10.1038/s41586-022-04895-8
M.D. Nguyen, K.N. Nguyen, S. Malo, et al., ACS Sens. 8 (2023) 4625–4635.
doi: 10.1021/acssensors.3c01624
S. Song, S. Choi, S. Ryu, et al., Biosens. Bioelectron. 117 (2018) 385–391.
X. Su, X. Liu, Y. Ouyang, et al., Chem. Eng. J. 485 (2024) 149833.
F. Di Nardo, S. Cavalera, C. Baggiani, et al., ACS Appl. Mater. Interfaces 11 (2019) 32758–32768.
doi: 10.1021/acsami.9b11559
G.L. Sorem, G. Terres, Nature 209 (1966) 1254–1255.
doi: 10.1038/2091254a0
N. Davis, J. Heikenfeld, C. Milla, A. Javey, Nat. Biotechnol. 42 (2024) 860–871.
doi: 10.1038/s41587-023-02059-1
Q. Chen, Y. Zhao, Y. Liu, Chin. Chem. Lett. 32 (2021) 3705–3717.
D. Han, X. Li, Z. Liang, et al., Chin. Chem. Lett. 34 (2023) 107722.
S. Dalirirad, A.J. Steckl, Sens. Actuators B: Chem. 283 (2019) 79–86.
Panpan Sun , Qian Li , Ningshuang Gao , Mingyue Luo , Wenzhuo Chang , Baodui Wang , Xiaoquan Lu , Zhonghua Xue . Solid state luminescent-enabled lateral flow immunoassay with highly fluorescence performance for rapid and quantitative detection of C-reactive protein. Chinese Chemical Letters, 2025, 36(10): 110801-. doi: 10.1016/j.cclet.2024.110801
Zhaorui Song , Qiulian Hao , Bing Li , Yuwei Yuan , Shanshan Zhang , Yongkuan Suo , Hai-Hao Han , Zhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834
Yanqi Wu , Yuhong Guan , Peilin Huang , Hui Chen , Liping Bai , Zhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308
Haijiang Gong , Qingtan Zeng , Shili Gai , Yaqian Du , Jing Zhang , Qingyu Wang , He Ding , Lichun Wu , Anees Ahmad Ansari , Piaoping Yang . Enzyme-based colorimetric signal amplification strategy in lateral flow immunoassay. Chinese Chemical Letters, 2025, 36(5): 110059-. doi: 10.1016/j.cclet.2024.110059
Can Wang , Zhe Sun , Donghan Ma . Review of imaging buffers used in stochastic optical reconstruction microscopy. Chinese Chemical Letters, 2025, 36(9): 110677-. doi: 10.1016/j.cclet.2024.110677
Weinan Hu , Li Li , Xinyu Wang , Yongqiang Zhang , Maoping Song , Linlin Shi , Xinqi Hao , Siyu Lu . Carbonized polymer dots: Illuminating synthesis pathways, optical frontiers, and photoelectronic breakthroughs. Chinese Chemical Letters, 2025, 36(11): 111612-. doi: 10.1016/j.cclet.2025.111612
Haozhi Lei , Qian Xia , Xiqiu Wang , Yang Sun , Weihong Tan . Simulation of immune signal transduction through DNA strand displacement. Chinese Chemical Letters, 2025, 36(12): 110941-. doi: 10.1016/j.cclet.2025.110941
Yating Zheng , Yulan Huang , Jing Luo , Xuqi Peng , Xiran Gui , Gang Liu , Yang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169
Jiajing Wu , Ru-Ling Tang , Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291
Yan Wang , Si-Meng Zhai , Peng Luo , Xi-Yan Dong , Jia-Yin Wang , Zhen Han , Shuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493
Lihua Gao , Yinglei Han , Chensheng Lin , Huikang Jiang , Guang Peng , Guangsai Yang , Jindong Chen , Ning Ye . Halogen-assisted octet binding electrons construction of pnictogens towards wide-bandgap nonlinear optical pnictides. Chinese Chemical Letters, 2024, 35(12): 109529-. doi: 10.1016/j.cclet.2024.109529
Weiping Guo , Ying Zhu , Hong-Hua Cui , Lingyun Li , Yan Yu , Zhong-Zhen Luo , Zhigang Zou . β-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256
Hongyuan Sha , Dongling Yang , Yanran Shang , Zujian Wang , Rongbing Su , Chao He , Xiaoming Yang , Xifa Long . Trithionic guanidine: A novel semi-organic short-wave ultraviolet nonlinear optical sulfate with dimeric heteroleptic tetrahedra. Chinese Chemical Letters, 2025, 36(4): 109730-. doi: 10.1016/j.cclet.2024.109730
Guoyin Chen , Siming Xu , Zeqi Zhang , Ying Guo , Jiahao Zheng , Jialei Yang , Jie Pan , Kai Hou , Meifang Zhu . Modulus self-adaptive hydrogel optical fiber for long-term modulation of neural activity. Chinese Chemical Letters, 2025, 36(7): 110440-. doi: 10.1016/j.cclet.2024.110440
Yinghao Zhang , Ke Shao , Yihang Zhu , Haokun Zhang , Yinuo Zhuo , Huihui Bao , Yeye Ai , Yongguang Li . Unanticipated optical properties of π-conjugated cyclometalated Pt(Ⅱ) complexes for advanced information storage and anti-counterfeiting materials. Chinese Chemical Letters, 2025, 36(9): 110735-. doi: 10.1016/j.cclet.2024.110735
Yongyi Li , Jin Han , Xiangyu Wang , Zhenwei Wei . In-situ reaction monitoring and kinetics study of photochemical reactions by optical focusing inductive electrospray mass spectrometry. Chinese Chemical Letters, 2025, 36(9): 110708-. doi: 10.1016/j.cclet.2024.110708
Meiling Zhao , Yao Lu , Yutao Zhang , Haoyun Xue , Zhiqian Guo . Ultra-high signal-to-noise ratio near-infrared chemiluminescent probe for in vivo sensing singlet oxygen. Chinese Chemical Letters, 2025, 36(5): 110105-. doi: 10.1016/j.cclet.2024.110105
Yuxin Xiao , Xiaowei Wang , Yutong Yin , Fangchao Yin , Jinchao Li , Zhiyuan Hou , Mashooq Khan , Rusong Zhao , Wenli Wu , Qiongzheng Hu . Distance-based lateral flow biosensor for the quantitative detection of bacterial endotoxin. Chinese Chemical Letters, 2024, 35(12): 109718-. doi: 10.1016/j.cclet.2024.109718
Rongliang Deng , Yihang Chen , Xiaotong Fan , Guolong Chen , Shuli Wang , Changzhi Yu , Xiao Yang , Tingzhu Wu , Zhong Chen , Yue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346
Pu Zhang , Xiang Mao , Xuehua Dong , Ling Huang , Liling Cao , Daojiang Gao , Guohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235