Citation: Chen Liu, Tianqi Zhao, Jialing Zhou, Xiaoyun Hu, Dinghao Pan, Jinlong Li, Wei Li, Zhihui Dai. Optical lateral flow immune assay technology for body fluid sensing[J]. Chinese Chemical Letters, ;2026, 37(1): 110967. doi: 10.1016/j.cclet.2025.110967 shu

Optical lateral flow immune assay technology for body fluid sensing

    * Corresponding authors.
    E-mail addresses: liwei93@njtech.edu.cn (W. Li), dzh@njtech.edu.cn (Z. Dai).
  • Received Date: 13 November 2024
    Revised Date: 13 February 2025
    Accepted Date: 17 February 2025
    Available Online: 18 February 2025

Figures(10)

  • Detecting biomarkers in body fluids by optical lateral flow immune assay (LFIA) technology provides rapid access to disease information for early diagnosis. LFIA is based on an antigen-antibody reaction and is rapidly becoming the preferred choice of physicians and patients for point-of-care testing due to its simplicity, cost-effectiveness, and rapid detection. Observing the optical signal change from the colloidal gold of the traditional LFIA strip has been widely applied for various biomarkers detection in body fluids. Despite the significant progress, rapid real-time detection of color changes in the colloidal gold by the naked eye still faces many limitations, such as large errors and the inability to quantify and accurately detect. New optical LFIA strip technology has emerged in recent years to extend its application scenarios for achieving quantitative detection such as fluorescence, afterglow, and chemiluminescence. Herein, we summarized the development of optical LFIA technology from single to hyphenated optical signals for biomarkers detection in body fluids from invasive and non-invasive sources. Moreover, the challenge and outlook of optical LFIA strip technology are highlighted to inspire the designing of next-generation diagnostic platforms.
  • 加载中
    1. [1]

      J. Abbasi, JAMA 322 (2019) 918.

    2. [2]

      X. Ying, W. Fu, L. Zhu, et al., Anal. Chem. 96 (2024) 10630–10638.  doi: 10.1021/acs.analchem.4c01224

    3. [3]

      L. Zhang, S. Wan, Y. Jiang, et al., J. Am. Chem. Soc. 139 (2017) 2532–2540.  doi: 10.1021/jacs.6b10646

    4. [4]

      L. Zhang, K. Cao, Y. Su, et al., Biosens. Bioelectron. 222 (2023) 114935.

    5. [5]

      S. Peng, M. Fan, C. Xiao, et al., Sens. Actuators B: Chem. 401 (2024) 135012.

    6. [6]

      A.S. Lee, S.M. Kim, K.R. Kim, et al., Sens. Actuators B: Chem. 379 (2023) 133245.

    7. [7]

      K. Wang, X. Liu, X. Liang, et al., Anal. Chem. 96 (2024) 3208–3216.

    8. [8]

      B. Pulendran, M.M. Davis, Science 369 (2020) eaay4014.

    9. [9]

      H. Narasimhan, Y. Wu, N.P. Goplen, J. Sun, Sci. Immunol. 7 (2022) eabm7996.

    10. [10]

      A. Clifford, J. Das, H. Yousefi, et al., J. Am. Chem. Soc. 143 (2021) 5281–5294.  doi: 10.1021/jacs.0c13138

    11. [11]

      N. Yao, X. Li, Y. Tian, et al., Sens. Actuators B: Chem. 379 (2023) 133247.

    12. [12]

      W. Wang, L. Liu, J. Zhu, et al., ACS Nano 18 (2024) 6266–6275.  doi: 10.1021/acsnano.3c10543

    13. [13]

      J. Zhang, F. Chai, J. Li, et al., Sci. Adv. 10 (2024) eadn5698.

    14. [14]

      S. Schobesberger, H. Thumfart, F. Selinger, et al., Anal. Chem. 96 (2024) 2900–2907.

    15. [15]

      T. Bai, L. Wang, M. Wang, et al., Biosens. Bioelectron. 208 (2022) 114218.

    16. [16]

      X. Gao, J. Boryczka, P. Zheng, et al., Biosens. Bioelectron. 177 (2021) 112967.

    17. [17]

      N. Suwantarat, J.B. Dalton, R. Lee, et al., Diagn. Microbiol. Infect. Dis. 82 (2015) 54–56.

    18. [18]

      A. Fleury, P. Sastre, E. Sciutto, et al., Exp. Parasitol. 171 (2016) 67–70.

    19. [19]

      M. Supianto, D.K. Yoo, H. Hwang, et al., ACS Sens. 9 (2024) 1321–1330.  doi: 10.1021/acssensors.3c02250

    20. [20]

      C. Wang, Q. Yu, S. Zheng, et al., ACS Nano 18 (2024) 16752–16765.  doi: 10.1021/acsnano.4c01824

    21. [21]

      Q. Chen, L. Yao, J. Xu, et al., Anal. Chim. Acta 1278 (2023) 341684.

    22. [22]

      J. Wang, C. Jiang, J. Jin, et al., Angew. Chem. Int. Ed. 60 (2021) 13042–13049.  doi: 10.1002/anie.202103458

    23. [23]

      H. Tong, C. Cao, M. You, et al., Biosens. Bioelectron. 213 (2022) 114449.

    24. [24]

      W. Jung, J. Han, J.W. Choi, C.H. Ahn, Microelectron. Eng. 132 (2015) 46–57.

    25. [25]

      R. Kuai, L.J. Ochyl, K.S. Bahjat, et al., Nat. Mater. 16 (2017) 489–496.  doi: 10.1038/nmat4822

    26. [26]

      S. Zhao, S. Wang, S. Zhang, et al., Chin. Chem. Lett. 29 (2018) 1567–1577.

    27. [27]

      F. Scholz, L. Rüttinger, T. Heckmann, et al., Biosens. Bioelectron. 164 (2020) 112324.

    28. [28]

      H.K. Oh, K. Kim, J. Park, et al., Biosens. Bioelectron. 205 (2022) 114094.

    29. [29]

      X. Gao, P. Zheng, S. Kasani, et al., Anal. Chem. 89 (2017) 10104–10110.  doi: 10.1021/acs.analchem.7b03015

    30. [30]

      E. Sheng, Y. Lu, Y. Xiao, et al., Biosens. Bioelectron. 181 (2021) 113149.

    31. [31]

      R. Chen, C. Ren, M. Liu, et al., ACS Nano 15 (2021) 8996–9004.  doi: 10.1021/acsnano.1c01932

    32. [32]

      B. Chovelon, V. Ranganathan, S. Srinivasan, et al., Anal. Chem. 96 (2024) 6875–6880.  doi: 10.1021/acs.analchem.3c05472

    33. [33]

      W. Li, S. Yin, Y. Shen, et al., J. Am. Chem. Soc. 145 (2023) 3736–3747.  doi: 10.1021/jacs.2c13222

    34. [34]

      Y. Shen, W. Li, Z. Zhou, et al., Angew. Chem. Int. Ed. 63 (2024) e202406332.

    35. [35]

      W. Li, Y. Shen, X. Gong, et al., Anal. Chem. 93 (2021) 16673–16682.  doi: 10.1021/acs.analchem.1c04246

    36. [36]

      D.Y. Kong, N.S. Heo, J.W. Kang, et al., Anal. Bioanal. Chem. 414 (2022) 3257–3265.  doi: 10.1007/s00216-022-03877-z

    37. [37]

      Z. Ren, L. Xu, L. Yang, Y. Cui, Anal. Chem. 95 (2023) 6646–6654.  doi: 10.1021/acs.analchem.3c00057

    38. [38]

      T. Zhao, R. Abdurahman, R. Aiwaili, et al., Coord. Chem. Rev. 488 (2023) 215171.

    39. [39]

      J. Liang, L. Wu, Y. Wang, et al., Sens. Actuators B: Chem. 389 (2023) 133875.

    40. [40]

      L. Fan, W. Yan, Q. Chen, et al., Anal. Chem. 96 (2024) 401–408.  doi: 10.1021/acs.analchem.3c04441

    41. [41]

      X. Yang, Y. Xu, X. Huang, et al., Anal. Chem. 95 (2023) 4543–4549.  doi: 10.1021/acs.analchem.2c05698

    42. [42]

      X. Yang, J. Hang, W. Qu, et al., J. Am. Chem. Soc. 145 (2023) 16026–16036.  doi: 10.1021/jacs.3c04250

    43. [43]

      M. Xu, C. Zhang, S. He, et al., ACS Nano 17 (2023) 8183–8194.  doi: 10.1021/acsnano.2c12066

    44. [44]

      S. Atta, Y. Zhao, J.Q. Li, T. Vo-Dinh, Anal. Chem. 96 (2024) 4783–4790.  doi: 10.1021/acs.analchem.3c04361

    45. [45]

      P. Liang, Q. Guo, T. Zhao, et al., Anal. Chem. 94 (2022) 8466–8473.  doi: 10.1021/acs.analchem.2c01286

    46. [46]

      Z. Xie, S. Feng, F. Pei, et al., Anal. Chim. Acta 1233 (2022) 340486.

    47. [47]

      C. Wang, X. Cheng, L. Liu, et al., ACS Appl. Mater. Interfaces 13 (2021) 40342–40353.  doi: 10.1021/acsami.1c11461

    48. [48]

      M. Yang, Y. Tang, L. Qi, et al., Anal. Chem. 93 (2021) 11956–11964.  doi: 10.1021/acs.analchem.1c01829

    49. [49]

      D. Zhu, S. Fu, X. Zhang, et al., Trends Food Sci. Technol. 148 (2024) 104485.

    50. [50]

      B. İnce, İ. Uludağ, B. Demirbakan, et al., TrAC Trends Anal. Chem. 169 (2023) 117418.

    51. [51]

      P. Chowdhury, R. Lawrance, Z.Y. Lu, et al., TrAC Trends Anal. Chem. 177 (2024) 117798.

    52. [52]

      B. Ince, M.K. Sezgintürk, TrAC, Trends Anal. Chem. 157 (2022) 116725.

    53. [53]

      X. Nan, X. Yao, L. Yang, Y. Cui, Analyst 148 (2023) 4573–4590.  doi: 10.1039/d3an00719g

    54. [54]

      Y. Ji, Y. Huang, Z. Cheng, et al., J. Agric. Food. Chem. 71 (2023) 10250–10268.  doi: 10.1021/acs.jafc.3c02094

    55. [55]

      P. Sadeghi, H. Sohrabi, M.R. Majidi, et al., TrAC, Trends Anal. Chem. 176 (2024) 117722.

    56. [56]

      M. Chao, Q. Pan, G. Li, et al., Anal. Chem. 96 (2024) 7714–7722.  doi: 10.1021/acs.analchem.4c00956

    57. [57]

      Y. Matsumura, Y. Enomoto, M. Takahashi, S. Maenosono, ACS Appl. Mater. Interfaces 10 (2018) 31977–31987.  doi: 10.1021/acsami.8b11745

    58. [58]

      O.A. Goryacheva, C. Guhrenz, K. Schneider, et al., ACS Appl. Mater. Interfaces 12 (2020) 24575–24584.  doi: 10.1021/acsami.0c05099

    59. [59]

      T. Ji, X. Xu, X. Wang, et al., ACS Nano 14 (2020) 16864–16874.  doi: 10.1021/acsnano.0c05700

    60. [60]

      W.Page Faulk, G.Malcolm Taylor, Immunochemistry 8 (1971) 1081–1083.

    61. [61]

      S.K. Bikkarolla, S.E. McNamee, P. Vance, J. McLaughlin, Biosensors 12 (2022) 182.  doi: 10.3390/bios12030182

    62. [62]

      Y. Liu, W. Wang, X. Feng, et al., Analyst 148 (2023) 1246–1252.  doi: 10.1039/d3an00012e

    63. [63]

      M. Lin, H. Yang, Q. Li, et al., J. Colloid Interface Sci. 673 (2024) 893–900.

    64. [64]

      H. Wang, M. Jian, J. Fan, et al., Talanta 273 (2024) 125852.

    65. [65]

      J. Sun, F. Gao, Y. Song, et al., ACS Appl. Nano Mater. 6 (2023) 18729–18738.  doi: 10.1021/acsanm.3c00178

    66. [66]

      B. Gosselin, G. Bruylants, I. Jabin, ACS Appl. Nano Mater. 7 (2024) 6169–6177.  doi: 10.1021/acsanm.3c06070

    67. [67]

      X. Chen, S. Kang, M.A. Ikbal, et al., Biosens. Bioelectron. 202 (2022) 113971.

    68. [68]

      A. Sena-Torralba, D.B. Ngo, C. Parolo, et al., Biosens. Bioelectron. 168 (2020) 112559.

    69. [69]

      J.R. Choi, Z. Liu, J. Hu, et al., Anal. Chem. 88 (2016) 6254–6264.  doi: 10.1021/acs.analchem.6b00195

    70. [70]

      K. Kim, D.K. Han, N. Choi, et al., Anal. Chem. 93 (2021) 6673–6681.  doi: 10.1021/acs.analchem.0c05336

    71. [71]

      C. Lin, Z. Liu, F. Fang, et al., ACS Sens. 8 (2023) 3733–3743.  doi: 10.1021/acssensors.3c01019

    72. [72]

      Y. Li, J. Ke, Q. Liu, et al., Sens. Actuators B: Chem. 345 (2021) 130380.

    73. [73]

      W. Li, X. Gong, X. Fan, et al., Chin. Chem. Lett. 30 (2019) 1775–1790.

    74. [74]

      Z. Chen, Z. Zhang, X. Zhai, et al., Anal. Chem. 92 (2020) 7226–7231.  doi: 10.1021/acs.analchem.0c00784

    75. [75]

      Y. Pang, M. Lu, H. Rha, et al., Sci. China Chem. 67 (2024) 774–787.  doi: 10.1007/s11426-023-1815-9

    76. [76]

      Y. Hang, J. Boryczka, N. Wu, Chem. Soc. Rev. 51 (2022) 329–375.  doi: 10.1039/c9cs00621d

    77. [77]

      L. Bian, Z. Li, A. He, et al., Biomaterials 288 (2022) 121694.

    78. [78]

      L. Hao, W. Yang, Y. Xu, et al., Biosens. Bioelectron. 212 (2022) 114411.

    79. [79]

      T. Wang, M. Liu, J. Mao, et al., Chin. Chem. Lett. 35 (2024) 108385.

    80. [80]

      Y. Gao, J. Shi, C. Wu, et al., Anal. Chem. 96 (2024) 5694–5701.  doi: 10.1021/acs.analchem.4c00716

    81. [81]

      J. Guo, Y. Zhou, J. Cheng, et al., Anal. Chem. 96 (2024) 4891–4900.  doi: 10.1021/acs.analchem.3c05448

    82. [82]

      X. Su, X. Kong, K. Sun, et al., Angew. Chem. Int. Ed. 61 (2022) e202201630.

    83. [83]

      D. Liu, C. Ju, C. Han, et al., Biosens. Bioelectron. 173 (2021) 112817.

    84. [84]

      A. Roda, S. Cavalera, F. Di Nardo, et al., Biosens. Bioelectron. 172 (2021) 112765.

    85. [85]

      F. Chai, D. Wang, L. Zhu, et al., Anal. Chem. 94 (2022) 6628–6634.  doi: 10.1021/acs.analchem.2c01177

    86. [86]

      D. Hong, K. Kim, E.J. Jo, M.G. Kim, Anal. Chem. 93 (2021) 7925–7932.  doi: 10.1021/acs.analchem.1c00623

    87. [87]

      D. Hong, E.J. Jo, K. Kim, et al., Small 16 (2020) 2004535.

    88. [88]

      Y. Huang, Y. Ji, M. Zheng, et al., ACS Sens. 9 (2024) 2815–2825.  doi: 10.1021/acssensors.3c02329

    89. [89]

      Y. Zhao, L. Shi, H. Miao, X. Jing, Anal. Chem. 93 (2021) 3250–3257.  doi: 10.1021/acs.analchem.0c04856

    90. [90]

      C. Wang, C. Wang, X. Wang, et al., ACS Appl. Mater. Interfaces 11 (2019) 19495–19505.  doi: 10.1021/acsami.9b03920

    91. [91]

      P. Wu, W. Zuo, Y. Wang, et al., Chem. Eng. J. 451 (2023) 139021.

    92. [92]

      D. Chen, C. Wu, H. Li, et al., J. Mater. Chem. C 11 (2023) 12649–12657.  doi: 10.1039/d3tc02410e

    93. [93]

      Z. Wang, R. Zou, J. Yi, et al., Small 20 (2024) 2310869.

    94. [94]

      Q. Yu, J. Li, S. Zheng, et al., J. Hazard. Mater. 459 (2023) 132136.

    95. [95]

      L. Shi, Z. Wang, Y. Li, et al., J. Agric. Food Chem. 72 (2024) 4405–4414.  doi: 10.1021/acs.jafc.3c09597

    96. [96]

      X. Li, D. Yu, H. Li, et al., Biosens. Bioelectron. 241 (2023) 115688.

    97. [97]

      N.P. Damayanti, L.L. Parker, J.M.K. Irudayaraj, Angew. Chem. Int. Ed. 52 (2013) 3931–3934.  doi: 10.1002/anie.201209303

    98. [98]

      Y. Zhao, C. Xu, Adv. Mater. 32 (2020) 1907880.

    99. [99]

      M. Li, H. Lin, S.K. Paidi, et al., ACS Sens. 5 (2020) 1419–1426.  doi: 10.1021/acssensors.0c00307

    100. [100]

      M. Zhao, Y. Yang, N. Li, et al., Langmuir 40 (2024) 4447–4459.  doi: 10.1021/acs.langmuir.3c03772

    101. [101]

      Y. Shang, J. Wang, H. Xia, et al., Anal. Chem. 96 (2024) 6065–6071.  doi: 10.1021/acs.analchem.4c00648

    102. [102]

      Z. Li, W. Zhang, Q. Zhang, et al., ACS Nano 17 (2023) 19359–19371.  doi: 10.1021/acsnano.3c06930

    103. [103]

      X. Lin, P. Zhou, Q. Li, Y. Pang, Anal. Chem. 96 (2024) 10686–10695.  doi: 10.1021/acs.analchem.4c01580

    104. [104]

      J. Hu, Y.Z. Jiang, M. Tang, et al., Anal. Chem. 91 (2019) 1178–1184.  doi: 10.1021/acs.analchem.8b05154

    105. [105]

      Y.Y. Broza, X. Zhou, M. Yuan, et al., Chem. Rev. 119 (2019) 11761–11817.  doi: 10.1021/acs.chemrev.9b00437

    106. [106]

      C.E. Teunissen, I.M.W. Verberk, E.H. Thijssen, et al., Lancet Neurol. 21 (2022) 66–77.

    107. [107]

      L. Zhang, X. Du, Y. Su, et al., J. Nanobiotechnol. 19 (2021) 366.  doi: 10.3390/s21020366

    108. [108]

      Y. Liang, K. Xue, Y. Shi, et al., Anal. Chem. 95 (2023) 3434–3441.  doi: 10.1021/acs.analchem.2c05164

    109. [109]

      C. Tlili, N.V. Myung, V. Shetty, A. Mulchandani, Biosens. Bioelectron. 26 (2011) 4382–4386.

    110. [110]

      T. Saleh, C.G. Kalodimos, Science 355 (2017) 247–248.  doi: 10.1126/science.aal4632

    111. [111]

      J.L. Shifren, C.J. Crandall, J.E. Manson, JAMA 321 (2019) 2458–2459.  doi: 10.1001/jama.2019.5346

    112. [112]

      I. Visan, Nat. Immunol. 19 (2018) 1148.  doi: 10.1038/s41590-018-0244-6

    113. [113]

      V.G. Panferov, N.A. Ivanov, T. Mazzulli, et al., Angew. Chem. Int. Ed. 62 (2023) e202215548.

    114. [114]

      Z. Song, Y. Suo, S. Duan, et al., Biosens. Bioelectron. 224 (2023) 115063.

    115. [115]

      R. Xiao, L. Lu, Z. Rong, et al., Biosens. Bioelectron. 168 (2020) 112524.

    116. [116]

      Y. Cai, S. Zhang, C. Dong, et al., Anal. Biochem. 627 (2021) 114265.

    117. [117]

      C. Fang, J. Li, B. Lin, et al., Anal. Chem. 96 (2024) 721–729.  doi: 10.1021/acs.analchem.3c03704

    118. [118]

      K. Shen, O. Chen, J.L. Edmunds, et al., Nat. Biomed. Eng. 7 (2023) 424–442.  doi: 10.1038/s41551-023-01021-5

    119. [119]

      L. Sun, Y. Lei, Y. Wang, D. Liu, Chin. Chem. Lett. 33 (2022) 1946–1950.

    120. [120]

      P.J. Xie, M.L. Ye, Z.Y. Hu, et al., Chin. Chem. Lett. 22 (2011) 1485–1488.

    121. [121]

      J. Zhong, X. Chen, M. Zhang, et al., Chin. Chem. Lett. 31 (2020) 769–773.

    122. [122]

      D. Yates, Nat. Rev. Neurosci. 23 (2022) 393.  doi: 10.1038/s41583-022-00610-8

    123. [123]

      Y. Du, S. Dong, Anal. Chem. 89 (2017) 189–215.  doi: 10.1021/acs.analchem.6b04190

    124. [124]

      J. Ye, F. Li, T. Hua, et al., Nat. Commun. 15 (2024) 8375.

    125. [125]

      J. Yu, J. Liu, C.B. Ma, et al., Anal. Chem. 94 (2022) 600–605.  doi: 10.1021/acs.analchem.1c03451

    126. [126]

      M. Nooruzzaman, K.E.E. Johnson, R. Rani, et al., Nat. Commun. 15 (2024) 7999.

    127. [127]

      G. Guo, T. Zhao, R. Sun, et al., Chin. Chem. Lett. 35 (2024) 109198.

    128. [128]

      Z. Rong, Z. Bai, J. Li, et al., Biosens. Bioelectron. 145 (2019) 111719.

    129. [129]

      R.W. Smithells, Lancet 315 (1980) 772–773.

    130. [130]

      D. Gao, J. Gao, F. Gao, et al., J. Mater. Chem. C 9 (2021) 16634–16644.  doi: 10.1039/d1tc04568g

    131. [131]

      H. Zhao, E. Su, L. Huang, et al., Chin. Chem. Lett. 33 (2022) 743–746.  doi: 10.3390/ijerph20010743

    132. [132]

      X. Wang, J. Zhao, W. Wang, et al., Sci. China Chem. 65 (2022) 1911–1920.

    133. [133]

      C.H. Chou, T.H. Huang, P.C. Hsieh, et al., Anal. Chim. Acta 1196 (2022) 339544.

    134. [134]

      G.S. Green, M. Fujita, H.S. Yang, et al., Nature 633 (2024) 634–645.

    135. [135]

      T. Zhu, H. Wang, Z. Jing, et al., Bioact. Mater. 8 (2022) 12–19.  doi: 10.1167/tvst.11.5.12

    136. [136]

      J. Zhao, H.Y.Y. Nyein, L. Hou, et al., Adv. Mater. 33 (2021) 2006444.

    137. [137]

      H. Lee, Y.J. Hong, S. Baik, et al., Adv. Healthc. Mater. 7 (2018) 1701150.

    138. [138]

      R.R. Nair, J.M. An, J. Kim, D. Kim, Coord. Chem. Rev. 494 (2023) 215336.

    139. [139]

      C. Guo, X. Zhang, X. Hong, et al., Chin. Chem. Lett. 35 (2024) 108867.

    140. [140]

      Y. Sun, Y. Tang, L. Yu, et al., Sci. China Chem. 66 (2023) 3006–3023.  doi: 10.1007/s11426-023-1727-9

    141. [141]

      Y. Mao, Y. Sun, J. Xue, et al., Anal. Chim. Acta 1178 (2021) 338800.

    142. [142]

      E. Lamprou, M. Sotiriou, P.M. Kalligosfyri, et al., Talanta 262 (2023) 124682.

    143. [143]

      G. Källenius, S.B. Svenson, H. Hultberg, et al., Lancet 318 (1981) 1369–1372.

    144. [144]

      S. Ghosh, M. Kumar, M. Santiana, et al., Nature 607 (2022) 345–350.  doi: 10.1038/s41586-022-04895-8

    145. [145]

      M.D. Nguyen, K.N. Nguyen, S. Malo, et al., ACS Sens. 8 (2023) 4625–4635.  doi: 10.1021/acssensors.3c01624

    146. [146]

      S. Song, S. Choi, S. Ryu, et al., Biosens. Bioelectron. 117 (2018) 385–391.

    147. [147]

      X. Su, X. Liu, Y. Ouyang, et al., Chem. Eng. J. 485 (2024) 149833.

    148. [148]

      F. Di Nardo, S. Cavalera, C. Baggiani, et al., ACS Appl. Mater. Interfaces 11 (2019) 32758–32768.  doi: 10.1021/acsami.9b11559

    149. [149]

      G.L. Sorem, G. Terres, Nature 209 (1966) 1254–1255.  doi: 10.1038/2091254a0

    150. [150]

      N. Davis, J. Heikenfeld, C. Milla, A. Javey, Nat. Biotechnol. 42 (2024) 860–871.  doi: 10.1038/s41587-023-02059-1

    151. [151]

      Q. Chen, Y. Zhao, Y. Liu, Chin. Chem. Lett. 32 (2021) 3705–3717.

    152. [152]

      D. Han, X. Li, Z. Liang, et al., Chin. Chem. Lett. 34 (2023) 107722.

    153. [153]

      S. Dalirirad, A.J. Steckl, Sens. Actuators B: Chem. 283 (2019) 79–86.

  • 加载中
    1. [1]

      Panpan SunQian LiNingshuang GaoMingyue LuoWenzhuo ChangBaodui WangXiaoquan LuZhonghua Xue . Solid state luminescent-enabled lateral flow immunoassay with highly fluorescence performance for rapid and quantitative detection of C-reactive protein. Chinese Chemical Letters, 2025, 36(10): 110801-. doi: 10.1016/j.cclet.2024.110801

    2. [2]

      Zhaorui SongQiulian HaoBing LiYuwei YuanShanshan ZhangYongkuan SuoHai-Hao HanZhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834

    3. [3]

      Yanqi WuYuhong GuanPeilin HuangHui ChenLiping BaiZhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308

    4. [4]

      Haijiang GongQingtan ZengShili GaiYaqian DuJing ZhangQingyu WangHe DingLichun WuAnees Ahmad AnsariPiaoping Yang . Enzyme-based colorimetric signal amplification strategy in lateral flow immunoassay. Chinese Chemical Letters, 2025, 36(5): 110059-. doi: 10.1016/j.cclet.2024.110059

    5. [5]

      Can WangZhe SunDonghan Ma . Review of imaging buffers used in stochastic optical reconstruction microscopy. Chinese Chemical Letters, 2025, 36(9): 110677-. doi: 10.1016/j.cclet.2024.110677

    6. [6]

      Weinan HuLi LiXinyu WangYongqiang ZhangMaoping SongLinlin ShiXinqi HaoSiyu Lu . Carbonized polymer dots: Illuminating synthesis pathways, optical frontiers, and photoelectronic breakthroughs. Chinese Chemical Letters, 2025, 36(11): 111612-. doi: 10.1016/j.cclet.2025.111612

    7. [7]

      Haozhi LeiQian XiaXiqiu WangYang SunWeihong Tan . Simulation of immune signal transduction through DNA strand displacement. Chinese Chemical Letters, 2025, 36(12): 110941-. doi: 10.1016/j.cclet.2025.110941

    8. [8]

      Yating ZhengYulan HuangJing LuoXuqi PengXiran GuiGang LiuYang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169

    9. [9]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    10. [10]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    11. [11]

      Lihua GaoYinglei HanChensheng LinHuikang JiangGuang PengGuangsai YangJindong ChenNing Ye . Halogen-assisted octet binding electrons construction of pnictogens towards wide-bandgap nonlinear optical pnictides. Chinese Chemical Letters, 2024, 35(12): 109529-. doi: 10.1016/j.cclet.2024.109529

    12. [12]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    13. [13]

      Hongyuan ShaDongling YangYanran ShangZujian WangRongbing SuChao HeXiaoming YangXifa Long . Trithionic guanidine: A novel semi-organic short-wave ultraviolet nonlinear optical sulfate with dimeric heteroleptic tetrahedra. Chinese Chemical Letters, 2025, 36(4): 109730-. doi: 10.1016/j.cclet.2024.109730

    14. [14]

      Guoyin ChenSiming XuZeqi ZhangYing GuoJiahao ZhengJialei YangJie PanKai HouMeifang Zhu . Modulus self-adaptive hydrogel optical fiber for long-term modulation of neural activity. Chinese Chemical Letters, 2025, 36(7): 110440-. doi: 10.1016/j.cclet.2024.110440

    15. [15]

      Yinghao ZhangKe ShaoYihang ZhuHaokun ZhangYinuo ZhuoHuihui BaoYeye AiYongguang Li . Unanticipated optical properties of π-conjugated cyclometalated Pt(Ⅱ) complexes for advanced information storage and anti-counterfeiting materials. Chinese Chemical Letters, 2025, 36(9): 110735-. doi: 10.1016/j.cclet.2024.110735

    16. [16]

      Yongyi LiJin HanXiangyu WangZhenwei WeiIn-situ reaction monitoring and kinetics study of photochemical reactions by optical focusing inductive electrospray mass spectrometry. Chinese Chemical Letters, 2025, 36(9): 110708-. doi: 10.1016/j.cclet.2024.110708

    17. [17]

      Meiling ZhaoYao LuYutao ZhangHaoyun XueZhiqian Guo . Ultra-high signal-to-noise ratio near-infrared chemiluminescent probe for in vivo sensing singlet oxygen. Chinese Chemical Letters, 2025, 36(5): 110105-. doi: 10.1016/j.cclet.2024.110105

    18. [18]

      Yuxin XiaoXiaowei WangYutong YinFangchao YinJinchao LiZhiyuan HouMashooq KhanRusong ZhaoWenli WuQiongzheng Hu . Distance-based lateral flow biosensor for the quantitative detection of bacterial endotoxin. Chinese Chemical Letters, 2024, 35(12): 109718-. doi: 10.1016/j.cclet.2024.109718

    19. [19]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    20. [20]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

Metrics
  • PDF Downloads(0)
  • Abstract views(6)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return