Citation: Xincheng Sun, Yuxin Wang, Changkang Li, Ridao Chen, Kebo Xie, Jimei Liu, Songyang Sui, Yaotian Han, Dawei Chen, Jungui Dai. Functional characterization of a glycoside hydrolase in the biosynthesis of camptothecin from Camptotheca acuminata[J]. Chinese Chemical Letters, ;2025, 36(12): 110895. doi: 10.1016/j.cclet.2025.110895 shu

Functional characterization of a glycoside hydrolase in the biosynthesis of camptothecin from Camptotheca acuminata

    * Corresponding authors.
    E-mail addresses: chendawei@imm.ac.cn (D. Chen), jgdai@imm.ac.cn (J. Dai).
    1 These authors contributed equally to this work.
  • Received Date: 21 November 2024
    Revised Date: 16 January 2025
    Accepted Date: 20 January 2025
    Available Online: 21 January 2025

Figures(4)

  • Camptothecin, a plant-derived pentacyclic pyrroloquinoline alkaloid, and its derivatives like topotecan and irinotecan have been used as clinical anticancer agents for decades. However, the complete biosynthetic pathway of camptothecin still remains unelucidated due to the unknown complex formation processes and corresponding enzymes for the downstream biosynthetic pathway including the committed hydrolysis of glycosides. Herein, a novel glycoside hydrolase (CaGH1) responsible for the deglycosylation of biosynthetic glycoside intermediates including both quinoline-type alkaloids pumiloside (1), (3S)-deoxypumiloside (2) and indole-type alkaloid strictosamide (3) has been functionally identified. Moreover, CaGH1 exhibits the highly strict stereoselectivity towards the substrates with 3S configuration. Furthermore, a combined strategy for the discovery of the unknown biosynthetic enzyme by employing activity-guided enzyme verification, transcriptome-based gene mining, biochemical assay in vitro, and structurally characterizing the unstable enzymatic products by derivatization, is reported. These findings not only provide a better understanding of the deglycosylation in camptothecin biosynthesis, also lay the foundation for the complete elucidation of camptothecin biosynthetic pathway and biological production of camptothecin.
  • 加载中
    1. [1]

      M.E. Wall, M.C. Wani, C.E. Cook, et al., J. Am. Chem. Soc. 88 (1966) 3888–3890.  doi: 10.1021/ja00968a057

    2. [2]

      Y.H. Hsiang, R. Hertzberg, S. Hecht, L.F. Liu, J. Biol. Chem. 260 (1985) 14873–14878.

    3. [3]

      E. Kjeldsen, J.Q. Svejstrup, I.I. Gromova, J. Alsner, O. Westergaard, J. Mol. Biol. 228 (1992) 1025–1030.

    4. [4]

      X. Wu, M. Liu, C. Zheng, et al., Chin. Chem. Lett. 34 (2023) 107590.

    5. [5]

      H. Li, M. Zhang, J. He, et al., Chin. Chem. Lett. 36 (2025) 110615.  doi: 10.1016/j.cclet.2024.110615

    6. [6]

      A.L. Demain, P. Vaishnav, Microb. Biotechnol. 4 (2011) 687–699.  doi: 10.1111/j.1751-7915.2010.00221.x

    7. [7]

      W. Du, Tetrahedron 59 (2003) 8649–8687.

    8. [8]

      L. Song, Z. Lv, K. Zhang, et al., Asian J. Org. Chem. 11 (2022) e202200515.

    9. [9]

      A. Lorence, C.L. Nessler, Phytochemistry 65 (2004) 2735–2749.

    10. [10]

      J. Zhang, L.G. Hansen, O. Gudich, et al., Nature 609 (2022) 341–347.  doi: 10.1038/s41586-022-05157-3

    11. [11]

      Y. Liu, X. Li, S. Sui, et al., Acta Pharm. Sin. B 13 (2023) 1771–1785.

    12. [12]

      R. Yan, B. Xie, K. Xie, et al., Nat. Commun. 15 (2024) 3539.

    13. [13]

      M. López-Meyer, C.L. Nessler, Plant J. 11 (1997) 1167–1175.  doi: 10.1046/j.1365-313x.1997.11061167.x

    14. [14]

      F. Chen, W. Li, L. Jiang, et al., J. Ind. Microbiol. Biotechnol. 43 (2016) 1281–1292.  doi: 10.1007/s10295-016-1802-2

    15. [15]

      G. Collu, N. Unver, A.M.G. Peltenburg-Looman, et al., FEBS Lett. 508 (2001) 215–220.

    16. [16]

      Y. Sun, H. Luo, Y. Li, et al., BMC Genom. 12 (2011) 533.

    17. [17]

      A. Awadasseid, W. Li, Z. Liu, et al., Int. J. Biol. Macromol. 162 (2020) 1076–1085.

    18. [18]

      R. Sadre, M. Magallanes-Lundback, S. Pradhan, et al., Plant Cell 28 (2016) 1926–1944.  doi: 10.1105/tpc.16.00193

    19. [19]

      V. Salim, B. Wiens, S. Masada-Atsumi, F. Yu, V. De Luca. Phytochemistry 101 (2014) 23–31.

    20. [20]

      K. Asada, V. Salim, S. Masada-Atsumi, et al., Plant Cell 25 (2013) 4123–4134.  doi: 10.1105/tpc.113.115154

    21. [21]

      Y. Yang, W. Li, J. Pang, et al., ACS Chem. Biol. 14 (2019) 1091–1096.  doi: 10.1021/acschembio.8b01124

    22. [22]

      M. Kang, R. Fu, P. Zhang, et al., Nat. Commun. 12 (2021) 3531.

    23. [23]

      M. Yang, Q. Wang, Y. Liu, et al., BMC Biol. 19 (2021) 122.

    24. [24]

      J.C. Miller, A.J. Hollatz, M.A. Schuler, Phytochemistry 183 (2021) 112626.

    25. [25]

      Y. Yamazaki, H. Sudo, M. Yamazaki, N. Aimi, K. Saito, Plant Cell Physiol. 44 (2003) 395–403.

    26. [26]

      X. Pu, C. Zhang, H. Gao, et al., J. Chromatogr. A 11 (2020) 41.

    27. [27]

      N. Aimi, M. Nishimura, A. Miwa, et al., Tetrahedron Lett. 30 (1989) 4991–4994.

    28. [28]

      B.K. Carte, C. DeBrosse, D. Eggleston, et al., Tetrahedron 46 (1990) 2747–2760.

    29. [29]

      X. Pu, M. Wang, M. Chen, et al., ACS Chem. Biol. 18 (2023) 1772–1785.  doi: 10.1021/acschembio.3c00222

    30. [30]

      T. Zhang, Y. Wang, S. Wu, et al., J. Integr. Plant Biol. 66 (2024) 1044–1047.  doi: 10.1111/jipb.13594

    31. [31]

      V. Salim, A.D. Jones, D. DellaPenna, Plant J. 95 (2018) 112–125.  doi: 10.1111/tpj.13936

    32. [32]

      T.M. Nguyen, T. Nguyen, Y.Y. Leung, et al., Commun. Chem. 4 (2021) 177.

    33. [33]

      Y. Chen, J.P. Huang, Y.J. Wang, et al., J. Integr. Plant Biol. 66 (2024) 1158–1169.  doi: 10.1111/jipb.13649

    34. [34]

      L. Gao, C. Su, X. Du, et al., Nat. Chem. 12 (2020) 620–628.  doi: 10.1038/s41557-020-0467-7

    35. [35]

      Z. Fan, A. Jaisi, Y. Chen, et al., ACS Catal. 11 (2021) 8818–8828.  doi: 10.1021/acscatal.1c01514

    36. [36]

      R.S. Nett, E.S. Sattely, J. Am. Chem. Soc. 143 (2021) 19454–19465.  doi: 10.1021/jacs.1c08659

    37. [37]

      A. Geerlings, M.M. Ibañez, J. Memelink, R. van Der Heijden, R. Verpoorte, J. Biol. Chem. 275 (2000) 3051–3056.

    38. [38]

      H. Warzecha, I. Gerasimenko, T.M. Kutchan, J. Stöckigt, Phytochemistry 54 (2000) 657–666.

    39. [39]

      I. Gerasimenko, Y. Sheludko, X. Ma, J. Stöckigt, Eur J Biochem 269 (2002) 2204–2213.

    40. [40]

      Y. Wu, C. Liu, A. Koganitsky, F.L. Gong, S. Li, Angew. Chem. Int. Ed. 62 (2023) e202307995.

    41. [41]

      M. Kitajima, S. Yoshida, K. Yamagata, et al., Tetrahedron 58 (2002) 9169–9178.

    42. [42]

      C.R. Hutchinson, A.H. Heckendorf, J.L. Straughn, P.E. Daddona, D.E. Cane, J. Am. Chem. Soc. 101 (1979) 3358–3369.  doi: 10.1021/ja00506a037

    43. [43]

      R.S. Nett, Y. Dho, C. Tsai, et al., Nature 624 (2023) 182–191.  doi: 10.1038/s41586-023-06716-y

    44. [44]

      C. Li, X. Yin, S. Wang, et al., Angew. Chem. Int. Ed. 63 (2024) e202407070.

    45. [45]

      J.C. Liu, R.D.L. Peña, C. Tocol, E.S. Sattely, Nat. Commun. 15 (2024) 1419.

  • 加载中
    1. [1]

      Fenglin JiangAnan LiuQian WeiYoucai Hu . Editing function of type Ⅱ thioesterases in the biosynthesis of fungal polyketides. Chinese Chemical Letters, 2024, 35(10): 109504-. doi: 10.1016/j.cclet.2024.109504

    2. [2]

      Yun-Hong YuYu PengWei-Dong Z. Li . Highly fused tetracyclic diterpenoid natural products: Diverse biosynthesis and total synthesis. Chinese Chemical Letters, 2025, 36(10): 111137-. doi: 10.1016/j.cclet.2025.111137

    3. [3]

      Jia-Jing ZhouZi-Long WangMeng ZhangYang-Oujie BaoGuo-Wei ChangYun-Gang TianMin Ye . Characterization of two highly specific O-rhamnosyltransferases involved in the biosynthesis of steroidal saponins from Paris polyphylla var. yunnanensis. Chinese Chemical Letters, 2025, 36(11): 110805-. doi: 10.1016/j.cclet.2024.110805

    4. [4]

      Haijiao LiMingzu ZhangJinlin HeJian LiuXingwei SunPeihong Ni . Synthesis of curcumin polyprodrug via click chemistry and construction of dual-drug-loaded nano platform for highly efficient tumor treatment. Chinese Chemical Letters, 2025, 36(8): 110615-. doi: 10.1016/j.cclet.2024.110615

    5. [5]

      Kunya WangBingyu LiuDaojiang YanJian BaiHaibo YuYoucai Hu . Full biosynthetic pathway of pyrrolobenzoxazines. Chinese Chemical Letters, 2025, 36(1): 109811-. doi: 10.1016/j.cclet.2024.109811

    6. [6]

      Zimo Shen Tongwei Zhang Zhiyi Zhu Zonghao Gong Qing Feng Jinyi Yang Zhen Li Min Liu Wei Qi . From Alkaloid to Anticancer Agent: The Transformative Journey of Camptothecin. University Chemistry, 2025, 40(10): 161-165. doi: 10.12461/PKU.DXHX202411027

    7. [7]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

Metrics
  • PDF Downloads(0)
  • Abstract views(17)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return