Nucleic acid delivery by lipid nanoparticles for organ targeting
-
* Corresponding authors.
E-mail addresses: chenxq@szu.edu.cn (X. Chen), pengxj@dlut.edu.cn (X. Peng).
Citation:
Jialin Guo, Mingrui Gu, Yahui Chen, Tao Xiong, Yiyang Zhang, Simin Chen, Mingle Li, Xiaoqiang Chen, Xiaojun Peng. Nucleic acid delivery by lipid nanoparticles for organ targeting[J]. Chinese Chemical Letters,
;2025, 36(11): 110849.
doi:
10.1016/j.cclet.2025.110849
M. Cobb, Curr. Biol. 25 (2015) R526–R532.
doi: 10.1016/j.cub.2015.05.032
D. Castanotto, J.J. Rossi, Nature 457 (2009) 426–433.
doi: 10.1038/nature07758
A.D. Judge, V. Sood, J.R. Shaw, et al., Nat. Biotechnol. 23 (2005) 457–462.
doi: 10.1038/nbt1081
S.R. Suter, A. Ball-Jones, M.M. Mumbleau, et al., Org. Biomol. Chem. 15 (2017) 10029–10036.
doi: 10.1039/C7OB02654D
A. Khvorova, M.F. Osborn, M.R. Hassler, Nat. Biotechnol. 32 (2014) 1197–1198.
doi: 10.1038/nbt.3091
S.M. Hammond, E. Bernstein, D. Beach, G.J. Hannon, Nature 404 (2000) 293–296.
doi: 10.1038/35005107
C. Xu, D. Li, Z. Cao, et al., Nano Lett. 19 (2019) 2688–2693.
doi: 10.1021/acs.nanolett.9b00657
R.M. David, A.T. Doherty, Toxicol. Sci. 155 (2017) 315–325.
doi: 10.1093/toxsci/kfw220
Y.G. Gao, Y.D. Shi, Y. Zhang, et al., Chem. Commun. 51 (2015) 16695–16698.
doi: 10.1039/C5CC06753G
K. Garber, Nat. Biotechnol. 36 (2018) 777–778.
doi: 10.1038/nbt0918-777
D. Loughrey, J.E. Dahlman, Acc. Chem. Res. 55 (2021) 13–23.
C. Lorenzer, M. Dirin, A.M. Winkler, V. Baumann, J. Winkler, J. Control. Release 203 (2015) 1–15.
doi: 10.1016/j.jconrel.2015.02.003
T.M. Allen, P.R. Cullis, Adv. Drug Deliv. Rev. 65 (2013) 36–48.
doi: 10.1016/j.addr.2012.09.037
C. Wang, Y. Zhang, Y. Dong, Acc. Chem. Res. 54 (2021) 4283–4293.
doi: 10.1021/acs.accounts.1c00550
C. Meng, Z. Chen, G. Li, T. Welte, H. Shen, Adv. Therapeutics 4 (2021) 2000099.
doi: 10.1002/adtp.202000099
K.A. Hajj, K.A. Whitehead, Nat. Rev. Mater. 2 (2017) 17056.
doi: 10.1038/natrevmats.2017.56
P.S. Kowalski, A. Rudra, L. Miao, D.G. Anderson, Mol. Ther. 27 (2019) 710–728.
doi: 10.1016/j.ymthe.2019.02.012
K. Ewert, H.M. Evans, A. Ahmad, et al., Adv. Genet. 53 (2005) 119–155.
A. Akinc, M.A. Maier, M. Manoharan, et al., Nat. Nanotechnol. 14 (2019) 1084–1087.
doi: 10.1038/s41565-019-0591-y
M. Jayaraman, S.M. Ansell, B.L. Mui, et al., Angew. Chem. Int. Ed. 51 (2012) 8529–8533.
doi: 10.1002/anie.201203263
H.Y. Cho, T.H. Chuang, S.N. Wu, Biomedicines 9 (2021) 1367.
doi: 10.3390/biomedicines9101367
J.C. Colas, W. Shi, V.S.N.M. Rao, et al., Micron 38 (2007) 841–847.
doi: 10.1016/j.micron.2007.06.013
I.F. Uchegbu, A.T. Florence, Adv. Colloid Interfac. 58 (1995) 1–55.
doi: 10.1016/0001-8686(95)00242-I
A. Samad, Y. Sultana, M. Aqil, Curr. Drug Deliv. 4 (2007) 297–305.
doi: 10.2174/156720107782151269
S.M. Hoy, Drugs 78 (2018) 1625–1631.
doi: 10.1007/s40265-018-0983-6
F. Sebastiani, M. Yanez Arteta, M. Lerche, et al., ACS Nano 15 (2021) 6709–6722.
doi: 10.1021/acsnano.0c10064
D. Papahadjopoulos, S. Nir, S. Ohki, Biochim. Biophys. Acta 266 (1972) 561–583.
doi: 10.1016/0005-2736(72)90354-9
A. Nagumo, Y. Sato, Y. Suzuki, Chem. Pharm. Bull. 39 (1991) 3071–3074.
doi: 10.1248/cpb.39.3071
L. Coderch, J. Fonollosa, M. De Pera, et al., J. Control. Release 68 (2000) 85–95.
doi: 10.1016/S0168-3659(00)00240-6
J. Kim, Y. Eygeris, M. Gupta, G. Sahay, Adv. Drug Deliv. Rev.. 170 (2021) 83–112.
doi: 10.1016/j.addr.2020.12.014
K. Knop, R. Hoogenboom, D. Fischer, U.S. Schubert, Angew. Chem. Int. Ed. 49 (2010) 6288–6308.
doi: 10.1002/anie.200902672
A.S. Lewin, R.C. Ryals, S. Patel, et al., Plos One 15 (2020) e0241006.
doi: 10.1371/journal.pone.0241006
Y. Bao, Y. Jin, P. Chivukula, et al., Pharmcol. Res. 30 (2012) 342–351.
S. Schöttler, G. Becker, S. Winzen, et al., Nat. Nanotechnol. 11 (2016) 372–377.
doi: 10.1038/nnano.2015.330
B.M. Chen, T.L. Cheng, S.R. Roffler, ACS Nano 15 (2021) 14022–14048.
doi: 10.1021/acsnano.1c05922
Q. Yang, S.K. Lai, WIREs Nanomed. Nanobi. 7 (2015) 655–677.
doi: 10.1002/wnan.1339
D. Shi, D. Beasock, A. Fessler, et al., Adv. Drug Deliv. Rev. 180 (2022) 114079.
doi: 10.1016/j.addr.2021.114079
A. Judge, K. McClintock, J.R. Phelps, I. MacLachlan, Mol. Ther. 13 (2006) 328–337.
doi: 10.1016/j.ymthe.2005.09.014
M. Ibrahim, E. Ramadan, N.E. Elsadek, et al., J. Control. Release 351 (2022) 215–230.
doi: 10.1016/j.jconrel.2022.09.031
E. Chen, B.M. Chen, Y.C. Su, et al., ACS Nano 14 (2020) 7808–7822.
doi: 10.1021/acsnano.9b07218
J. Szebeni, D. Simberg, Á. GonzálezFernández, Y. Barenholz, M.A. Dobrovolskaia, Nat. Nanotechnol. 13 (2018) 1100–1108.
doi: 10.1038/s41565-018-0273-1
E. Trefts, M. Gannon, D.H. Wasserman, Curr. Biol. 27 (2017) R1147–R1151.
doi: 10.1016/j.cub.2017.09.019
M. Krawczyk, R. Müllenbach, S.N. Weber, V. Zimmer, F. Lammert, Nat. Rev. Gastro. Hepat. 7 (2010) 669–681.
doi: 10.1038/nrgastro.2010.170
Z. Zhang, C. Wang, Y. Zha, et al., ACS Nano 9 (2015) 2405–2419.
doi: 10.1021/nn505166x
R. Li, A. Oteiza, K.K. Sørensen, et al., Am. J. Physiol-Gastrl. 300 (2011) G71–G81.
doi: 10.1152/ajpgi.00215.2010
J. Poisson, S. Lemoinne, C. Boulanger, et al., J. Hepatol. 66 (2017) 212–227.
doi: 10.1016/j.jhep.2016.07.009
T.S. Zimmermann, A.C.H. Lee, A. Akinc, et al., Nature 441 (2006) 111–114.
doi: 10.1038/nature04688
C. Wolfrum, S. Shi, K.N. Jayaprakash, et al., Nat. Biotechnol. 25 (2007) 1149–1157.
doi: 10.1038/nbt1339
A. Akinc, W. Querbes, S. De, et al., Mol. Ther. 18 (2010) 1357–1364.
doi: 10.1038/mt.2010.85
X. Han, N. Gong, L. Xue, et al., Nat. Commun. 14 (2023) 75.
doi: 10.1038/s41467-022-35637-z
M. Kim, M. Jeong, S. Hur, et al., Sci. Adv. 7 (2021) eabf4398.
doi: 10.1126/sciadv.abf4398
Q. Wang, Q. Jiang, D. Li, et al., Chin. Chem. Lett. 35 (2024) 108683.
doi: 10.1016/j.cclet.2023.108683
Q. Liu, X. Wang, X. Liu, et al., ACS Nano 13 (2019) 4778–4794.
doi: 10.1021/acsnano.9b01444
Q. Liu, X. Wang, X. Liu, et al., ACS Nano 15 (2020) 1608–1626.
Q. Liu, X. Wang, Y.P. Liao, et al., Nano Today 42 (2022) 101370.
doi: 10.1016/j.nantod.2021.101370
X. Xu, X. Wang, Y.P. Liao, et al., ACS Nano 17 (2023) 4942–4957.
doi: 10.1021/acsnano.2c12420
F. Ferraresso, A.W. Strilchuk, L.J. Juang, et al., Mol. Pharm. 19 (2022) 2175–2182.
doi: 10.1021/acs.molpharmaceut.2c00033
Y.N. Zhang, W. Poon, A.J. Tavares, I.D. McGilvray, W.C.W. Chan, J. Control. Release 240 (2016) 332–348.
doi: 10.1016/j.jconrel.2016.01.020
C.D. Sago, M.P. Lokugamage, G.N. Lando, et al., Nano Lett. 18 (2018) 7590–7600.
doi: 10.1021/acs.nanolett.8b03149
Q. Cheng, T. Wei, L. Farbiak, et al., Nat. Nanotechnol. 15 (2020) 313–320.
doi: 10.1038/s41565-020-0669-6
S.A. Dilliard, Q. Cheng, D.J. Siegwart, Proc. Natl. Acad. Sci. U. S. A. 118 (2021) e2109256118.
doi: 10.1073/pnas.2109256118
T. Wei, Y. Sun, Q. Cheng, et al., Nat. Commun. 14 (2023) 7322.
doi: 10.1038/s41467-023-42948-2
X. Wang, S. Liu, Y. Sun, et al., Nat. Protoc. 18 (2022) 265–291.
doi: 10.1504/ijmpt.2022.122896
A. Vaidya, S. Moore, S. Chatterjee, et al., Adv. Mater. 36 (2024) 2313791.
doi: 10.1002/adma.202313791
A.Y. Jiang, J. Witten, I.O. Raji, et al., Nat. Nanotechnol. 19 (2023) 364–375.
M.P. Lokugamage, D. Vanover, J. Beyersdorf, et al., Nat. Biomed. Eng. 5 (2021) 1059–1068.
doi: 10.1038/s41551-021-00786-x
Y. Qiu, R.C.H. Man, Q. Liao, et al., J. Control. Release 314 (2019) 102–115.
doi: 10.1016/j.jconrel.2019.10.026
C.M. Zimmermann, D. Baldassi, K. Chan, et al., J. Control. Release 351 (2022) 137–150.
doi: 10.1016/j.jconrel.2022.09.021
H. Ameri, J. Curr. Ophthalmol. 30 (2018) 1–2.
doi: 10.1016/j.joco.2018.01.006
R. Zhou, R. Rigden, R. Horai, R. Villasmil, R. Caspi, Invest. Ophth. Vis. Sci. 51 (2010) 1170.
M. Wels, D. Roels, K. Raemdonck, S.C. De Smedt, F. Sauvage, J. Control. Release 333 (2021) 560–578.
doi: 10.1016/j.jconrel.2021.04.008
P. Gain, R. Jullienne, Z. He, et al., JAMA Ophthalmol. 134 (2016) 167–173.
doi: 10.1001/jamaophthalmol.2015.4776
W. Kah Hie, K. Ka Wai, C. Li Jia, L.Y. Alvin, Int. J. Ophthalmol. 10 (2017) 1154–1162.
J.S. Weiss, H.U. Moller, W. Lisch, et al., Cornae 27 (2008) S1–S42.
V.F. Oliver, K.A. van Bysterveldt, M. Cadzow, et al., Ophthalmology 123 (2016) 709–722.
doi: 10.1016/j.ophtha.2015.12.008
M.E. Fini, B.M. Stramer, Cornea 24 (2005) S2–S11.
doi: 10.1097/01.ico.0000178743.06340.2c
R.R. Mohan, Acta Ophthalmol. 97 (2019) 343.
doi: 10.1109/iciip47207.2019.8985692
S.Z. Mirjalili Mohanna, D. Djaksigulova, A.M. Hill, et al., J. Control. Release 350 (2022) 401–413.
doi: 10.1016/j.jconrel.2022.08.042
S. Veleri, C.H. Lazar, B. Chang, et al., Dis. Model. Mech. 8 (2015) 109–129.
doi: 10.1242/dmm.017913
A. Auricchio, A.J. Smith, R.R. Ali, Hum. Gene Ther. 28 (2017) 982–987.
doi: 10.1089/hum.2017.164
M. Tolentino, Surv. Ophthalmol. 56 (2011) 95–113.
doi: 10.1016/j.survophthal.2010.08.006
K. Ghasemi Falavarjani, Q.D. Nguyen, Eye 27 (2013) 787–794.
doi: 10.1038/eye.2013.107
S. Patel, R.C. Ryals, K.K. Weller, M.E. Pennesi, G. Sahay, et al., J. Control. Release 303 (2019) 91–100.
doi: 10.1016/j.jconrel.2019.04.015
M. Gautam, A. Jozic, G.L.N. Su, et al., Nat. Commun. 14 (2023) 6468.
doi: 10.1038/s41467-023-42189-3
M. HerreraBarrera, R.C. Ryals, M. Gautam, et al., Sci. Adv. 9 (2023) eadd4623.
doi: 10.1126/sciadv.add4623
M.J.W. Evers, W. Du, Q. Yang, et al., J. Control. Release 343 (2022) 207–216.
doi: 10.1016/j.jconrel.2022.01.027
E. Belykh, K.V. Shaffer, C. Lin, et al., Front. Oncol. 10 (2020) 739.
doi: 10.3389/fonc.2020.00739
R. Palanki, S.K. Bose, A. Dave, et al., ACS Nano 17 (2023) 13594–13610.
doi: 10.1021/acsnano.3c02268
S. Liu, J. Liu, H. Li, et al., Biomaterials 287 (2022) 121645.
doi: 10.1016/j.biomaterials.2022.121645
M. Gao, Y. Li, W. Ho, et al., ACS Nano 18 (2024) 3260–3275.
doi: 10.1021/acsnano.3c09817
A. Omuro, L.M. DeAngelis, JAMA-J. Am. Med. Assoc. 310 (2013) 1842–1850.
doi: 10.1001/jama.2013.280319
R. Stupp, W.P. Mason, M.J. van den Bent, et al., N. Engl. J. Med. 352 (2005) 987–996.
doi: 10.1056/NEJMoa043330
A. Schäfer, L. Evers, L. Meier, et al., Front. Oncol. 12 (2022) 826273.
doi: 10.3389/fonc.2022.826273
T. Rezaei, M. Hejazi, B. Mansoori, et al., Eur. J. Pharmacol. 888 (2020) 173483.
doi: 10.1016/j.ejphar.2020.173483
P. Zhang, J. Miska, C. Lee-Chang, et al., Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 23714–23723.
doi: 10.1073/pnas.1906346116
G.N. Barber, Nat. Rev. Immunol. 15 (2015) 760–770.
doi: 10.1038/nri3921
J. Ahn, T. Xia, A. Rabasa Capote, D. Betancourt, G.N. Barber, Cancer Cell 33 (2018) 862–873.
doi: 10.1016/j.ccell.2018.03.027
Y. Zhu, X. An, X. Zhang, et al., Mol. Cancer 18 (2019) 1–15.
doi: 10.1186/s12943-018-0930-x
P. Zhang, A. Rashidi, J. Zhao, et al., Nat. Commun. 14 (2023) 1610.
doi: 10.1038/s41467-023-37328-9
K. Ogawa, N. Kato, S. Kawakami, Chem. Pharm. Bull. 68 (2020) 567–582.
doi: 10.1248/cpb.c20-00041
K. Ogawa, N. Kato, M. Yoshida, et al., J. Control. Release 348 (2022) 34–41.
doi: 10.1016/j.jconrel.2022.05.042
E. Blanco, H. Shen, M. Ferrari, Nat. Biotechnol. 33 (2015) 941–951.
doi: 10.1038/nbt.3330
H. Ni, M.Z.C. Hatit, K. Zhao, et al., Nat. Commun. 13 (2022) 4766.
doi: 10.1038/s41467-022-32281-5
O.S. Fenton, K.J. Kauffman, R.L. McClellan, et al., Angew. Chem. Int. Ed. 57 (2018) 13582–13586.
doi: 10.1002/anie.201809056
X. Zhao, J. Chen, M. Qiu, et al., Angew. Chem. Int. Ed. 59 (2020) 20083–20089.
doi: 10.1002/anie.202008082
C. Wang, C. Zhao, W. Wang, X. Liu, H. Deng, Proc. Natl. Acad. Sci. U. S. A. 120 (2023) e2311276120.
doi: 10.1073/pnas.2311276120
X. Zhang, K. Su, S. Wu, et al., Angew. Chem. Int. Ed. 63 (2024) e202405444.
doi: 10.1002/anie.202405444
J.E. Dahlman, K.J. Kauffman, Y. Xing, et al., Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 2060–2065.
doi: 10.1073/pnas.1620874114
E. Álvarez-Benedicto, Z. Tian, S. Chatterjee, et al., Angew. Chem. Int. Ed. 62 (2023) e202310395.
doi: 10.1002/anie.202310395
C.L. WillardMack, Toxicol. Pathol. 34 (2006) 409–424.
doi: 10.1080/01926230600867727
O. Ohtani, Y. Ohtani, Arch. Histol. Cytol. 71 (2008) 69–76.
doi: 10.1679/aohc.71.69
S. Luozhong, Z. Yuan, T. Sarmiento, et al., Nano Lett. 22 (2022) 8304–8311.
doi: 10.1021/acs.nanolett.2c03234
T. Nakamura, M. Kawai, Y. Sato, et al., Mol. Pharm. 17 (2020) 944–953.
doi: 10.1021/acs.molpharmaceut.9b01182
S.M. Moghimi, Biomaterials 27 (2006) 136–144.
doi: 10.1016/j.biomaterials.2005.05.082
Y. Zhuang, Y. Ma, C. Wang, et al., J. Control. Release 159 (2012) 135–142.
doi: 10.1016/j.jconrel.2011.12.017
M. Arnold, C.C. Abnet, R.E. Neale, et al., Gastroenterology 159 (2020) 335–349.
doi: 10.1053/j.gastro.2020.02.068
A. McGuigan, P. Kelly, R.C. Turkington, et al., World J. Gastroenterol. 24 (2018) 4846–4861.
doi: 10.3748/wjg.v24.i43.4846
W.R. Rowley, C. Bezold, Y. Arikan, E. Byrne, S. Krohe, Popul. Health Manag. 20 (2016) 6–12.
K.J. Tien, Y.J. Hung, J.F. Chen, et al., J. Diabetes Invest. 10 (2019) 560–570.
doi: 10.1111/jdi.12984
T. Sawatani, Y.K. Kaneko, T. Ishikawa, J. Pharmacol. Sci. 140 (2019) 178–186.
doi: 10.1016/j.jphs.2019.06.001
T. Sato, C. Ishiwatari, Y.K. Kaneko, et al., FASEB J. 35 (2021) e21420.
doi: 10.1096/fj.202001279RR
X. Xiao, P. Guo, C. Shiota, et al., Cell Stem Cell 22 (2018) 78–90.
doi: 10.1016/j.stem.2017.11.020
T. Oguma, T. Kanazawa, Y.K. Kaneko, et al., J. Control. Release 373 (2024) 917–928.
doi: 10.1016/j.jconrel.2024.07.059
S. Dadashzadeh, N. Mirahmadi, M.H. Babaei, A.M. Vali, J. Control. Release 148 (2010) 177–186.
doi: 10.1016/j.jconrel.2010.08.026
N. Mirahmadi, M.H. Babaei, A.M. Vali, S. Dadashzadeh, Int. J. Pharm. 383 (2010) 7–13.
doi: 10.1016/j.ijpharm.2009.08.034
J.R. Melamed, S.S. Yerneni, M.L. Arral, et al., Sci. Adv. 9 (2023) eade1444.
doi: 10.1126/sciadv.ade1444
K.E. Shields, A.D. Lyerly, Obstet. Gynecol. 122 (2013) 1077–1081.
doi: 10.1097/AOG.0b013e3182a9ca67
H. Zeisler, E. Llurba, F. Chantraine, et al., N. Engl. J. Med. 374 (2016) 13–22.
doi: 10.1056/NEJMoa1414838
R.E. Young, K.M. Nelson, S.I. Hofbauer, et al., Bioact. Mater. 34 (2024) 125–137.
K.L. Swingle, H.C. Safford, H.C. Geisler, et al., J. Am. Chem. Soc. 145 (2023) 4691–4706.
doi: 10.1021/jacs.2c12893
Z. Luyu, D. Zirong, Y. Shuai, et al., Chin. Chem. Lett. 35 (2024) 109101.
doi: 10.1016/j.cclet.2023.109101
S.A. Dilliard, D.J. Siegwart, Nat. Rev. Mater. 8 (2023) 282–300.
doi: 10.1038/s41578-022-00529-7
X. Li, X. Guo, M. Hu, R. Cai, C. Chen, J. Mater. Chem. B 11 (2023) 2063–2077.
doi: 10.1039/D2TB02455A
P.S. Apaolaza, A. del PozoRodríguez, M.A. Solinís, et al., Biomaterials 90 (2016) 40–49.
doi: 10.1016/j.biomaterials.2016.03.004
H. Tanaka, T. Nakatani, T. Furihata, et al., Mol. Pharm. 15 (2018) 2060–2067.
doi: 10.1021/acs.molpharmaceut.7b01084
Z. Yang, W. Fazhan, Y. Ting, et al., Chin. Chem. Lett. 31 (2020) 1147–1152.
doi: 10.1016/j.cclet.2019.07.009
Quan Lu , Lulu Zhang , Zihan Chen , Jiajia Lv , Jie Gao , Xinmin Li , Hongyu Li , Wen Shi , Xiaohua Li , Huimin Ma , Zeli Yuan . A lipid droplet-targeting fluorescence probe for monitoring of lipid peroxidation in ferroptosis and non-alcoholic fatty liver disease. Chinese Chemical Letters, 2025, 36(8): 110620-. doi: 10.1016/j.cclet.2024.110620
Xinran Xi , Xiyu Wang , Ziyue Xi , Chuanyong Fan , Yingying Jiang , Zhenhua Li , Lu Xu . Facile GSH responsive glycyrrhetinic acid conjunction for liver targeting therapy. Chinese Chemical Letters, 2025, 36(10): 110773-. doi: 10.1016/j.cclet.2024.110773
Qiang Li , Jiangbo Fan , Hongkai Mu , Lin Chen , Yongzhen Yang , Shiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947
Ziqin Li , Kai Hao , Longwei Xiang , Huayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943
Kai Wang , Yun Wang , Lihang Wang , Zhuhai Li , Xi Yu , Xuanhe You , Diwei Wu , Yueming Song , Jiancheng Zeng , Zongke Zhou , Shishu Huang , Yunfeng Lin . Therapeutic siRNA targeting CC chemokine receptor 2 loaded with tetrahedral framework nucleic acid alleviates neuropathic pain by regulating microglial polarization. Chinese Chemical Letters, 2025, 36(3): 109868-. doi: 10.1016/j.cclet.2024.109868
Liqing Chen , Zheming Zhang , Yanhong Liu , Chenfei Liu , Congcong Xiao , Liming Gong , Mingji Jin , Zhonggao Gao , Wei Huang . Systemically intravenous siRNA delivery into brain with a targeting and efficient polypeptide carrier and its evaluation on anti-glioma efficacy. Chinese Chemical Letters, 2025, 36(3): 110228-. doi: 10.1016/j.cclet.2024.110228
Yujie Zhu , Ruijianghan Shi , Weitong Lu , Yang Chen , Yunfeng Lin , Sirong Shi . Tetrahedral framework nucleic acids prevent epithelial-mesenchymal transition-mediated diabetic fibrosis by targeting the Wnt/β-catenin signaling pathway. Chinese Chemical Letters, 2025, 36(5): 110140-. doi: 10.1016/j.cclet.2024.110140
Weijian Zhang , Xianyu Deng , Liying Wang , Jian Wang , Xiuting Guo , Lianggui Huang , Xinyi Wang , Jun Wu , Linjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422
Han Han , Bi-Te Chen , Jia-Rong Ding , Jin-Ming Si , Tian-Jiao Zhou , Yi Wang , Lei Xing , Hu-Lin Jiang . A PDGFRβ-targeting nanodrill system for pancreatic fibrosis therapy. Chinese Chemical Letters, 2024, 35(10): 109583-. doi: 10.1016/j.cclet.2024.109583
Jiaqi Huang , Renjiang Kong , Yanmei Li , Ni Yan , Yeyang Wu , Ziwen Qiu , Zhenming Lu , Xiaona Rao , Shiying Li , Hong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254
Boyuan Liu , Zixu Liu , Ping Wang , Yu Zhang , Haibing He , Tian Yin , Jingxin Gou , Xing Tang . Nanomedicine-based targeting delivery systems for peritoneal cavity localized therapy: A promising treatment of ovarian cancer and its peritoneal metastasis. Chinese Chemical Letters, 2025, 36(6): 110229-. doi: 10.1016/j.cclet.2024.110229
Han-Min Wang , Yan-Chen Li , Lu-Lu Sun , Ming-Ye Tang , Jia Liu , Jiahao Cai , Lei Dong , Jia Li , Yi Zang , Hai-Hao Han , Xiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603
Shaoqing Du , Xinyong Liu , Xueping Hu , Peng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378
Lu-Lu He , Lan-Tu Xiong , Xin Wang , Yu-Zhen Li , Jia-Bao Li , Yu Shi , Xin Deng , Zi-Ning Cui . Application of inhibitors targeting the type III secretion system in phytopathogenic bacteria. Chinese Chemical Letters, 2025, 36(4): 110044-. doi: 10.1016/j.cclet.2024.110044
Xing Tian , Di Wu , Wanheng Wei , Guifu Dai , Zhanxian Li , Benhua Wang , Mingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912
Yanfei Liu , Yaqin Hu , Yifu Tan , Qiwen Chen , Zhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289
Cheng-Zhe Gao , Hao-Ran Jia , Tian-Yu Wang , Xiao-Yu Zhu , Xiaofeng Han , Fu-Gen Wu . A dual drug-loaded tumor vasculature-targeting liposome for tumor vasculature disruption and hypoxia-enhanced chemotherapy. Chinese Chemical Letters, 2025, 36(1): 109840-. doi: 10.1016/j.cclet.2024.109840
Yulin Chen , Guangchao Wang , Fengjin Zhou , Zhifeng Yin , Fuming Shen , Weizong Weng , Hao Zhang , Yingying Jiang , Xinru Liu , Yonghui Deng , Yuan Chen , Ke Xu , Jiacan Su . Targeting TRPA1 with liposome-encapsulated drugs anchored to microspheres for effective osteoarthritis treatment. Chinese Chemical Letters, 2025, 36(5): 110053-. doi: 10.1016/j.cclet.2024.110053
Yang Li , Ning Sheng , Kun Wang , Yuhuan Li , Jiandong Jiang , Jinlan Zhang . Azvudine alleviates SARS-CoV-2-induced inflammation by targeting myeloperoxidase in NETosis. Chinese Chemical Letters, 2025, 36(5): 110238-. doi: 10.1016/j.cclet.2024.110238
Xingyu Ma , Yi-Xin Chen , Zi Ye , Chong-Jing Zhang . Isotope-labeled click-free probes to identify protein targets of lysine-targeting covalent reversible molecules. Chinese Chemical Letters, 2025, 36(5): 110203-. doi: 10.1016/j.cclet.2024.110203