Citation: Zhijuan Niu, Peizhe Sun, Kwangnak Koh, Changping Li. Ultrasensitive electrochemical sensor based on para-sulfonatocalix[4]arene functionalized gold nanoparticles for sulfamethazine detection[J]. Chinese Chemical Letters, ;2025, 36(11): 110844. doi: 10.1016/j.cclet.2025.110844 shu

Ultrasensitive electrochemical sensor based on para-sulfonatocalix[4]arene functionalized gold nanoparticles for sulfamethazine detection

    * Corresponding author.
    E-mail address: licpbit@hotmail.com (C. Li).
  • Received Date: 17 December 2024
    Revised Date: 9 January 2025
    Accepted Date: 10 January 2025
    Available Online: 15 January 2025

Figures(4)

  • In order to realize the simple and rapid detection of antibiotic contaminants in environmental water, the para-sulfocalix[4]arene (pSC4) functionalized gold nanoparticles (AuNPs) composites (pSC4-AuNPs) were prepared by sodium borohydride reduction. Here, a rapid and sensitive electrochemical sensor for the detection of antibiotic contaminants in water was constructed. The detection mechanism and the signaling changes of the different sulfamethazine (SMZ) concentrations were further explored based on pSC4-AuNPs/SMZ modified glassy carbon electrode through aggregation of gold nanoparticles induced by host-guest recognition of SMZ and pSC4. The results suggested that this method achieved rapid and ultrasensitive detection of SMZ with a limit of detection of 0.0038 ng/mL (linear detection range of 1.0 - 1.0 × 104 ng/mL). The recoveries ranged from 91.1% to 97.0% with relative standard deviations (RSDs) of 1.5%-3.5%. The accurate detection of SMZ in recovery rate of spiking assay proved the potential practical application of the sensor. Host-guest recognition induced AuNPs aggregation results in dramatic signal enhancement for electrochemical impedimetric detection assay of SMZ. This detection method provides a new concept for developing sensitive electrochemical sensors for simple and sensitive detection of small molecules in water.
  • 加载中
    1. [1]

      P. Kovalakova, L. Cizmas, T.J. McDonald, et al., Chemosphere 251 (2020) 126351.

    2. [2]

      T.P. Van Boeckel, C. Brower, M. Gilbert, et al., Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 5649-5654.  doi: 10.1073/pnas.1503141112

    3. [3]

      N. Delgado, J. Orozco, S. Zambrano, et al., J. Hazard. Mater. 460 (2023) 132431.

    4. [4]

      W.Y. Duan, H.W. Cui, X.Y. Jia, X. Huang, Sci. Total Environ. 820 (2022) 153178.

    5. [5]

      S.H. Wang, Z.L. Wang, L. Zhang, et al., Food Chem. 374 (2022) 131712.

    6. [6]

      Y.D. Wang, Z.J. Niu, C.C. Xu, et al., J. Hazard. Mater. 456 (2023) 131642.

    7. [7]

      K. Neafsey, X. Zeng, A.T. Lemley, J. Agric. Food Chem. 58 (2010) 1068-1076.  doi: 10.1021/jf904066a

    8. [8]

      C. Wang, Y. Zhao, S. Liu, et al., Environ. Monit. Assess. 193 (2021) 98.  doi: 10.1111/os.12838

    9. [9]

      Y. Zhang, T.S. Liu, X.Z. Zhang, et al., J. Water Process. Eng. 53 (2023) 103891.

    10. [10]

      J. O'neill, Review AMR 1 (2016) 1-16.  doi: 10.5040/9798400671654.ch-001

    11. [11]

      Y.X. Wang, M.T. Zhao, J.F. Ping, et al., Adv. Mater. 28 (2016) 4149-4155.  doi: 10.1002/adma.201600108

    12. [12]

      Y. Wen, M. Zhang, Q. Zhao, Y.Q. Feng, J. Agr, Food. Chem. 53 (2005) 8463-8473.

    13. [13]

      C. Ling, C.L. Yue, R.R. Yuan, et al., Chem. Eng. J. 384 (2020) 123278.

    14. [14]

      Z.J. Niu, Y.W. Liu, X. Li, et al., Microchim. Acta 189 (2022) 71.

    15. [15]

      T. Le, Q. Sun, Y. Xie, et al., Food Anal. Methods 11 (2018) 2778-2787.  doi: 10.1007/s12161-018-1258-2

    16. [16]

      Z.Z. Wang, B. Cui, Microchim. Acta 186 (2019) 555.

    17. [17]

      N.F. Zhu, Y.Q. Zhu, J. Wang, et al., Talanta 199 (2019) 72-79.

    18. [18]

      Y.F. Wang, M.Q. Zou, Y. Chen, et al., Talanta 267 (2024) 125208.

    19. [19]

      D.H. Wu, Q.L. Zhao, J. Sun, X.R. Yang, Chin. Chem. Lett. 34 (2023) 107672.

    20. [20]

      Z.Y. Han, H.K. Li, Q.Q. Zhu, R.R. Yuan, H.M. He, Chin. Chem. Lett. 32 (2021) 2865-2868.

    21. [21]

      Y.X. Li, C.B. Liu, Q.J. Li, S. Mao, Chin. Chem. Lett. 35 (2024) 109541.

    22. [22]

      X. Chen, A. Ostovan, M. Arabi, et al., Anal. Chem. 96 (2024) 6417-6425.  doi: 10.1021/acs.analchem.4c00541

    23. [23]

      J. Baranwal, B. Barse, G. Gatto, G. Broncova, A. Kumar, Chemosensors 10 (2022) 363.  doi: 10.3390/chemosensors10090363

    24. [24]

      A. Hrioua, A. Loudiki, A. Farahi, et al., Bioelectrochemistry 137 (2021) 107687.

    25. [25]

      T.T. Liang, X.L. Qin, Y.H. Xiang, et al., TrAC-Trend. Anal. Chem. 148 (2022) 116532.

    26. [26]

      D.Y. Qiu, X.Q. Wang, Y.P. Wen, et al., Anal. Methods 15 (2022) 1471-1481.  doi: 10.1007/s12161-021-02198-8

    27. [27]

      R. Surya, S. Sakthinathan, G.A. Meenakshi, C.L. Yu, T. Chiu, Sensors 24 (2024) 5844.  doi: 10.3390/s24175844

    28. [28]

      I.J.D. Priscillal, A.A. Alothman, S.F. Wang, R. Arumugam, Microchim. Acta 188 (2021) 313.

    29. [29]

      S.F. Guo, X.Y. Chen, Y.T. Ling, et al., Int. J. Electrochem. Sci. 16 (2021) 210950.

    30. [30]

      Y.J. Hou, N. Long, Q.B. Xu, et al., Food Chem. 403 (2023) 134-375.  doi: 10.1117/12.2665108

    31. [31]

      J. Lalmalsawmi, D. Tiwari, S.M. Lee, D.J. Kim, H. Kim, Microchem. J. 179 (2022) 107520.

    32. [32]

      J.K. Lee, D. Samanta, H.G. Nam, R.N. Zare, Nat. Commun. 9 (2018) 1562.

    33. [33]

      P.Y. Li, Y. Chen, Y. Liu, Chin. Chem. Lett. 30 (2019) 1190-1197.

    34. [34]

      X.J. Hu, Y.J. Huang, J. Chen, et al., Sensor. Actuat. B: Chem. 342 (2021) 130076.

    35. [35]

      E.B. Noruzi, M. Molaparast, M. Zarei, et al., Eur. J. Med. Chem. 191 (2020) 112121.

    36. [36]

      C.P. Han, L.L. Zeng, H.B. Li, G.Y. Xie, Sensor. Actuat. B: Chem. 137 (2009) 704-709.

    37. [37]

      L. Li, P.X. Ji, M. Huang, et al., Chin. Chem. Lett. 35 (2024) 109144.

    38. [38]

      H.B. Dong, F. Zou, X.J. Hu, et al., Biosens. Bioelectron. 117 (2018) 605-612.

    39. [39]

      D.J. Xiong, M.L. Chen, H.B. Li, Chem. Commun. 7 (2008) 880-882.

    40. [40]

      K. Xia, T. Yatabe, K. Yonesato, et al., Nat. Commun. 15 (2024) 851.

    41. [41]

      Z.H. Mao, J.L. Zhao, J. Chen J, et al., Sensor. Actuat. B: Chem. 346 (2021) 130496.

    42. [42]

      Z.Y. Wang, L.L. Huang, M. Zhang, et al., J. Am. Chem. Soc. 144 (2022) 17330-17335.  doi: 10.1021/jacs.2c06026

    43. [43]

      C.Z. Ye, X.G. Chen, D. Zhang, et al., Electrochim. Acta 379 (2021) 138174.

    44. [44]

      F.Q. Liu, Y.B. Liu, Q.F. Yao, et al., Environ. Sci. Technol. 54 (2020) 5913-5921.  doi: 10.1021/acs.est.0c00427

    45. [45]

      W.J. Zhang, P.P. Wang, J. Ma, et al., Electrochem. Acta 261 (2016) 110-119.

    46. [46]

      Z.J. Niu, Y.W. Liu, X. Li, K. Yan, H.X. Chen, Chemosphere 307 (2022) 135570.

    47. [47]

      H.B. Dong, X.J. Hu, J.L. Zhao, et al., Sensor. Actuat. B: Chem. 276 (2018) 150-157.

    48. [48]

      J.J. Hu, J.L. Zhao, H. Zhu, et al., Sensor. Actuat. B: Chem. 340 (2021) 129948.

    49. [49]

      M.Q. Wang, S.X. Fa, J.T. Yu, et al., Chin. Chem. Lett. 36 (2025) 110124.

  • 加载中
    1. [1]

      Huipeng LiXue YangMinjie Sun . Self-strengthened cascade-explosive nanogel using host-guest interaction strategy for synergistic tumor treatment. Chinese Chemical Letters, 2025, 36(8): 110651-. doi: 10.1016/j.cclet.2024.110651

    2. [2]

      Ran ZhuPan ZhangYitong XuJiutong MaQiong Jia . Design of host-guest interaction based molecularly imprinted polymers: Targeting recognition of the epitope of neuron-specific enolase via a SERS assay. Chinese Chemical Letters, 2025, 36(6): 110259-. doi: 10.1016/j.cclet.2024.110259

    3. [3]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    4. [4]

      Shengyong LiuHui LiWei ZhangYan ZhangYan DongWei Tian . Multiple host-guest and metal coordination interactions induce supramolecular assembly and structural transition. Chinese Chemical Letters, 2025, 36(6): 110465-. doi: 10.1016/j.cclet.2024.110465

    5. [5]

      Chong WangHao XieRulan XiaXuewei LiaoJin WangHuajun YangChen Wang . Nanofluidic ion rectification sensor for enantioselective recognition and detection. Chinese Chemical Letters, 2025, 36(8): 110642-. doi: 10.1016/j.cclet.2024.110642

    6. [6]

      Xin ZhangZhihao LuTianci RenJunxiang TangShuo LiChenghao ZhuLijun MaoDa Ma . Fluorescent "Texas-sized" macrocyclic receptors for the recognition and detection of nucleotides in water. Chinese Chemical Letters, 2025, 36(11): 110946-. doi: 10.1016/j.cclet.2025.110946

    7. [7]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    8. [8]

      Lintao WuYujia MengXumei ZhengYiqiao BaiChun HanZhijun WangJie YangXiaobi JingYong Yao . Pillar[5]arene based prodrug as a GSH-responsive SO2 nanogenerator for effective gas cancer therapy. Chinese Chemical Letters, 2025, 36(9): 110808-. doi: 10.1016/j.cclet.2024.110808

    9. [9]

      Saisai YuanYiming ChenXijuan WangDegui ZhaoTengyang GaoCaiyun WeiChuanxiang ChenYang YangWenjing Hong . Decouple the intermolecular interaction by encapsulating an insulating sheath. Chinese Chemical Letters, 2025, 36(6): 110816-. doi: 10.1016/j.cclet.2025.110816

    10. [10]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    11. [11]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    12. [12]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    13. [13]

      Xiangjun ZhangXiaodi YangYan WangZhongping XuSisi YiTao GuoYue LiaoXiyu TangJianxiang ZhangRuibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854

    14. [14]

      Yu-Hui ZhangYe TianXianliang ShengChen-Shuang LiuLu-Qiang WeiJie WangYong Chen . Construction of a black phosphorous-based noncovalent multiple nanosupramolecular assembly for synergistic targeted photothermal and chemodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110193-. doi: 10.1016/j.cclet.2024.110193

    15. [15]

      Linnan JiangZhenkai QianYong ChenXiaoyong YuYugui QiuWen-Wen XuYonghui SunXiufang XuLihua WangYu Liu . Double response reversible phosphorescence based on cyclodextrin supramolecular flexible elastic achieved multicolor delayed fluorescence. Chinese Chemical Letters, 2025, 36(8): 110676-. doi: 10.1016/j.cclet.2024.110676

    16. [16]

      Xueru ZhaoAopu WangShimin WangZhijie SongLi MaLi Shao . Adsorption and visual detection of nitro explosives by pillar[n]arenes-based host–guest interactions. Chinese Chemical Letters, 2025, 36(4): 110205-. doi: 10.1016/j.cclet.2024.110205

    17. [17]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    18. [18]

      Cheng HeRenlan HuangLingling WeiQiuhui HeJinbo LiuJiao ChenGe GaoCheng YangWanhua Wu . Uncovering the mask of sensitizers to switch on the TTA-UC emission by supramolecular host-guest complexation. Chinese Chemical Letters, 2025, 36(4): 110103-. doi: 10.1016/j.cclet.2024.110103

    19. [19]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    20. [20]

      Xianchen HuJunli YangFang GaoZhiyong ZhaoSimin Liu . Highly selective [4+4] cross-photodimerization of (4a-azonia)anthracenes driven by confinement of D-A hetero-guest pair in cucurbit[10]uril host. Chinese Chemical Letters, 2025, 36(3): 109967-. doi: 10.1016/j.cclet.2024.109967

Metrics
  • PDF Downloads(1)
  • Abstract views(23)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return