Citation: Cheng-Cheng Jiao, Guang-Xing Dong, Ke Su, You-Xiang Feng, Min Zhang, Tong-Bu Lu. The construction of InVO4/BiVO4 heterojunction via cation-exchange for efficient and highly selective CO2 photoreduction to methanol[J]. Chinese Chemical Letters, ;2026, 37(1): 110752. doi: 10.1016/j.cclet.2024.110752 shu

The construction of InVO4/BiVO4 heterojunction via cation-exchange for efficient and highly selective CO2 photoreduction to methanol

    * Corresponding authors.
    E-mail addresses: ksu2021@stud.tjut.edu.cn (K. Su), zm2016@email.tjut.edu.cn (M. Zhang).
    1 These authors contributed equally to this work.
  • Received Date: 12 November 2024
    Revised Date: 1 December 2024
    Accepted Date: 11 December 2024
    Available Online: 12 December 2024

Figures(4)

  • Converting CO2 into methanol (CH3OH), a high-value-added liquid-phase product, through efficient and highly selective photocatalysis remains a significant challenge. Herein, we present a straightforward cation exchange strategy for the in-situ growth of BiVO4 on an InVO4 substrate to generate a Z-scheme heterojunction of InVO4/BiVO4. This in-situ partial transformation approach endows the InVO4/BiVO4 heterojunction with a tightly connected interface, resulting in a significant improvement in charge separation efficiency between InVO4 and BiVO4. Moreover, the construction of the heterojunction reduces the formation energy barrier of the *COOH intermediate during the photoreduction of CO2 and increases the desorption energy barrier of the *CO intermediate, facilitating the deep reduction of *CO. Consequently, the InVO4/BiVO4 heterojunction is capable of photocatalytic CO2 reduction to CH3OH with high efficiency and selectivity. Under conditions where water serves as the electron source and a light intensity of 100 mW/cm2, the yield of CH3OH reaches 130.5 µmol g−1 h−1 with a selectivity of 92 %, outperforming photocatalysts reported under similar conditions.
  • 加载中
    1. [1]

      S. Fang, M. Rahaman, J. Bharti, et al., Nat. Rev. Methods Prim. 3 (2023) 61.

    2. [2]

      S. Yang, W.J. Byun, F. Zhao, et al., Adv. Mater. 36 (2024) 2312616.

    3. [3]

      T. Wang, Y. Wang, Y. Li, C. Li, Nano Res. 17 (2024) 5–17.

    4. [4]

      Y. Li, Y. Wei, W. He, et al., Chin. Chem. Lett. 34 (2023) 108417.

    5. [5]

      Q. Tang, T. Li, W. Tu, et al., Adv. Funct. Mater. 34 (2024) 2311609.

    6. [6]

      C. Liu, F. Chen, B.H. Zhao, Y. Wu, B. Zhang, Nat. Rev. Chem. 8 (2024) 277–293.  doi: 10.1038/s41570-024-00589-z

    7. [7]

      B. Su, Y. Kong, S. Wang, et al., J. Am. Chem. Soc. 145 (2023) 27415–27423.  doi: 10.1021/jacs.3c08311

    8. [8]

      W.J. Wang, K. Chen, Chin. Chem. Lett. 36 (2025) 109998.

    9. [9]

      S.X. Yuan, K. Su, Y.X. Feng, et al., Chin. Chem. Lett. 34 (2023) 107682.

    10. [10]

      H.K. Wang, M.R. Zhang, K. Su, et al., Sci. China Mater. 67 (2024) 3176–3184.  doi: 10.1007/s40843-024-3035-4

    11. [11]

      X. Deng, Y. Ke, J. Ding, et al., Chin. Chem. Lett. 35 (2024) 109064.

    12. [12]

      Z. Xie, H. Luo, S. Xu, L. Li, W. Shi, Adv. Funct. Mater. 34 (2024) 2313886.

    13. [13]

      Z. Ye, K.R. Yang, B. Zhang, et al., Proc. Natl. Acad. Sci. U. S. A. 121 (2024) e2408183121.

    14. [14]

      J. Wu, F. Huang, Q. Hu, et al., J. Am. Chem. Soc. 146 (2024) 26478–26484.  doi: 10.1021/jacs.4c09841

    15. [15]

      H. Jian, K. Deng, T. Wang, et al., Chin. Chem. Lett. 35 (2024) 108651.

    16. [16]

      B. Shang, F. Zhao, S. Suo, et al., J. Am. Chem. Soc. 146 (2024) 2267–2274.  doi: 10.1021/jacs.3c13540

    17. [17]

      H. Lu, N. Uddin, Z. Sun, et al., Nano Energy 115 (2023) 108684.

    18. [18]

      M. Cheng, N. Cao, Z. Wang, et al., ACS Nano 18 (2024) 10582–10595.  doi: 10.1021/acsnano.4c00350

    19. [19]

      Q. Sun, X. Liu, Q. Gu, et al., J. Am. Chem. Soc. 146 (2024) 28885–28894.  doi: 10.1021/jacs.4c09106

    20. [20]

      C.L. Rooney, M. Lyons, Y. Wu, et al., Angew. Chem. Int. Ed. 63 (2024) e202310623.

    21. [21]

      Y. Wang, R. Godin, J.R. Durrant, J. Tang, Angew. Chem. Int. Ed. 60 (2021) 20811–20816.  doi: 10.1002/anie.202105570

    22. [22]

      Z. Shang, X. Feng, G. Chen, R. Qin, Y. Han, Small 19 (2023) 2304975.

    23. [23]

      C. Shen, X.Y. Meng, R. Zou, et al., Angew. Chem. Int. Ed. 63 (2024) e202402369.

    24. [24]

      J.R. Huang, W.X. Shi, S.Y. Xu, Adv. Mater. 36 (2024) 2306906.

    25. [25]

      L. Wang, B. Zhu, J. Zhang, et al., Matter 5 (2022) 4187–4211.

    26. [26]

      H. Chen, X. Yang, M. Lin, et al., ACS Sustain. Chem. Eng. 11 (2023) 18029–18040.  doi: 10.1021/acssuschemeng.3c05883

    27. [27]

      Q. Han, X. Bai, Z. Man, et al., J. Am. Chem. Soc. 141 (2019) 4209–4213.  doi: 10.1021/jacs.8b13673

    28. [28]

      M.Y. Ye, Z.H. Zhao, Z.F. Hu, et al., Angew. Chem. Int. Ed. 56 (2017) 8407–8411.  doi: 10.1002/anie.201611127

    29. [29]

      Y. Liu, H. Shang, B. Zhang, D. Yan, X. Xiang, Nat. Commun. 15 (2024) 8155.

    30. [30]

      J. Li, F. Wei, Z. Xiu, X. Han, Chem. Eng. J. 446 (2022) 137129.

    31. [31]

      M. Yu, J. Wang, G. Li, S. Zhang, Q. Zhong, J. Mater. Sci. Technol. 154 (2023) 129–139.

    32. [32]

      D.S. Lee, Y.W. Chen, J. CO2 Util. 10 (2015) 1–6.

    33. [33]

      G.X. Dong, M.R. Zhang, K, Su, et al., J. Mater. Chem. A 11 (2023) 9989–9999.  doi: 10.1039/d3ta01405c

    34. [34]

      J. Xu, Z. Bai, X. Xin, A. Chen, H. Wang, Chem. Eng. J. 337 (2018) 684–696.

    35. [35]

      J.B. Pan, B.H. Wang, S. Shen, L. Chen, S.F. Yin, Angew. Chem. Int. Ed. 62 (2023) e202307246.

    36. [36]

      F. Guo, W. Shi, X. Lin, et al., Sep. Purif. Technol. 141 (2015) 246–255.

    37. [37]

      Y. Fan, R. Yang, R. Zhu, Colloid Surf. A 589 (2020) 124448.

    38. [38]

      L. Yu, H. Wang, Q. Huang, et al., Sep. Purif. Technol. 310 (2023) 123143.

    39. [39]

      W. Sun, Y. Dong, X. Zhai, et al., Chem. Eng. J. 430 (2022) 132872.

    40. [40]

      D. Ma, Y. Zhang, M. Gao, et al., Appl. Surf. Sci. 353 (2015) 118–126.

    41. [41]

      C. Chen, C. Ye, X. Zhao, et al., Nat. Commun. 15 (2024) 7825.

    42. [42]

      K. Wang, M. Cheng, F. Xia, et al., Small 19 (2023) 2207581.

    43. [43]

      P. Liu, Y.L. Men, X.Y. Meng, et al., Angew. Chem. Int. Ed. 62 (2023) e202309443.

    44. [44]

      X. Duan, H. Jia, T. Cao, et al., Appl. Catal. B 352 (2024) 124016.

    45. [45]

      Z. Wang, J. Zhu, X. Zu, et al., Angew. Chem. Int. Ed. 61 (2022) e202203249.

  • 加载中
    1. [1]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    2. [2]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    3. [3]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    4. [4]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

    5. [5]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    6. [6]

      Junqing YeMengyuan RenJunfeng QianXibao LiQun Chen . Advances in graphene quantum dots-based photocatalysts for enhanced charge transfer in photocatalytic reactions. Chinese Chemical Letters, 2025, 36(9): 110857-. doi: 10.1016/j.cclet.2025.110857

    7. [7]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    8. [8]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    9. [9]

      Xiaofan ZHANGYu DUANMeijie SHINan LURenhong LIXiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079

    10. [10]

      Haiyan Yin Abdusalam Ablez Zhuangzhuang Wang Weian Li Yanqi Wang Qianqian Hu Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560

    11. [11]

      Jiaming LiNa XuYafei ZhangHongjun DongChunmei Li . Research progress of heterogeneous photocatalyst for H2O2 production: A mini review. Chinese Chemical Letters, 2025, 36(11): 110470-. doi: 10.1016/j.cclet.2024.110470

    12. [12]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    13. [13]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    14. [14]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    15. [15]

      Huifang MaTao XuSaifei YuanShujuan LiJiayao WangYuping ZhangHao RenShulai Lei . Interlayer interactions and electron transfer effects on sodium adsorption on 2D heterostructures surfaces. Chinese Chemical Letters, 2025, 36(8): 110219-. doi: 10.1016/j.cclet.2024.110219

    16. [16]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    17. [17]

      Juhong LianDeng LiYongmei MaHui BianYifan ShaoZitong WangJunqing YanRuibin JiangShengzhong (Frank) LiuFuxiang Zhang . Decorating CsPbBr3 with In2O3 seeds to build intimate direct Z-scheme heterojunction for promoted photocatalytic CO2 reduction. Chinese Chemical Letters, 2025, 36(11): 111394-. doi: 10.1016/j.cclet.2025.111394

    18. [18]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    19. [19]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    20. [20]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

Metrics
  • PDF Downloads(0)
  • Abstract views(5)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return