Citation: Zunjie Zhang, Mengran Liu, Bingcheng Ge, Tianfang Yang, Shuaitong Wang, Yang Liu, Shuyan Gao. In-situ reconstructed Cu/NiO nanosheets synergistically boosting nitrate electroreduction to ammonia[J]. Chinese Chemical Letters, ;2025, 36(8): 110657. doi: 10.1016/j.cclet.2024.110657 shu

In-situ reconstructed Cu/NiO nanosheets synergistically boosting nitrate electroreduction to ammonia

    * Corresponding author.
    E-mail address: shuyangao@htu.cn (S. Gao).
  • Received Date: 14 June 2024
    Revised Date: 30 October 2024
    Accepted Date: 19 November 2024
    Available Online: 21 November 2024

Figures(4)

  • Electrochemical reduction of nitrate (NO3) serves as an eco-friendly friendly alternative to the conventional Haber-Bosch ammonia (NH3) synthesis process. The Cu electrocatalyst is widely recognized for its strong adsorption capacity towards nitrate, but its limited H adsorption and slow hydrogenation of oxynitride intermediates hinder the efficiency of converting NO3 into NH3. Herein, a series of nanocomposite catalysts composed of CuO nanostructure with low NiO content that grow in-situ on carbon paper (CuO/NiOx-CP) were synthesized via hydrothermal method and calcination for enhanced nitrate electroreduction utilizing the strong nitrate adsorption capacity of copper and excellent water dissociation ability of NiO to supply hydrogen free radicals (H). In-situ Raman spectroscopy reveals dynamic reconstruction of Cu/NiOx during the electrochemical nitrate reduction process from CuO/NiOx. Due to the synergistic effect of Cu and NiO, a high Faradaic efficiency (FE, ~97.9%) and yield rate (YR, 391.5 µmol h−1 cm−2) of ammonia are achieved on CuO/NiO2.3%-CP. Electron paramagnetic resonance (EPR) proves that the presence of NiO enhances the generation of H, which can be rapidly consumed during nitrate reduction process. Density functional theory (DFT) calculations indicate that the activation energy of NiO (0.57 eV) is much lower than Cu (0.84 eV) for water splitting to generate H, thus facilitating *NO hydrogenations. This drives us to create more effective catalysts for nitrate reduction under neutral conditions by promoting H2O dissociation.
  • 加载中
    1. [1]

      S. Luo, H. Guo, T. Li, et al., Appl. Catal. B: Environ. 351 (2024) 123967.

    2. [2]

      T.N. Ye, S.W. Park, Y. Lu, et al., Nature 583 (2020) 391–395.  doi: 10.1038/s41586-020-2464-9

    3. [3]

      F. Ni, Y. Ma, J. Chen, W. Luo, J. Yang, Chin. Chem. Lett. 32 (2021) 2073–2078.

    4. [4]

      Y. Gong, J. Wu, M. Kitano, et al., Nat. Catal. 1 (2018) 178–185.  doi: 10.1038/s41929-017-0022-0

    5. [5]

      M. Lim, Z. Ma, G. O'Connell, et al., Small 20 (2024) 2401333.

    6. [6]

      W. Liao, J. Wang, G. Ni, et al., Nat. Commun. 15 (2024) 1264.

    7. [7]

      M. Fu, Y. Mao, H. Wang, et al., Chin. Chem. Lett. 35 (2024) 108341.

    8. [8]

      K. Liu, H. Li, M. Xie, et al., J. Am. Chem. Soc. 146 (2024) 7779–7790.  doi: 10.1021/jacs.4c00429

    9. [9]

      N. Zhou, Z. Wang, N. Zhang, et al., ACS Catal. 13 (2023) 7529–7537.  doi: 10.1021/acscatal.3c01315

    10. [10]

      Y. Wang, F. Hao, M. Sun, et al., Adv. Mater. 36 (2024) 2313548.

    11. [11]

      M. Tang, Q. Tong, Y. Li, et al., Chinese Chem. Lett. 34 (2023) 108410.

    12. [12]

      H. Luo, S. Li, Z. Wu, et al., Adv. Funct. Mater. 34 (2024) 2403838.

    13. [13]

      J. John, D.R. MacFarlane, A.N. Simonov, Nat. Catal. 6 (2023) 1125–1130.  doi: 10.1038/s41929-023-01060-w

    14. [14]

      P. Li, R. Li, Y. Liu, et al., J. Am. Chem. Soc. 145 (2023) 6471–6479.  doi: 10.1021/jacs.3c00334

    15. [15]

      Q. Peng, D. Xing, L. Dong, et al., J. Mater. Chem. A 12 (2024) 8689–8693.  doi: 10.1039/d3ta07506k

    16. [16]

      L. Sun, B. Liu, Adv. Mater. 35 (2023) 1–8.

    17. [17]

      B. Zhang, Z. Dai, Y. Chen, et al., Nat. Commun. 15 (2024) 2816.

    18. [18]

      Y. Shi, M. Hou, J. Li, L. Li, Z. Zhang, Acta Phys. Chim. Sin. 38 (2022) 2206020.  doi: 10.3866/pku.whxb202206020

    19. [19]

      G. Jiang, M. Peng, L. Hu, et al., Chem. Eng. J. 435 (2022) 134853.

    20. [20]

      X. Fan, D. Zhao, Z. Deng, et al., Small 19 (2023) 2208036.

    21. [21]

      K. Fan, W. Xie, J. Li, et al., Nat. Commun. 13 (2022) 7958.

    22. [22]

      R. Jia, Y. Wang, C. Wang, et al., ACS Catal. 10 (2020) 3533–3540.  doi: 10.1021/acscatal.9b05260

    23. [23]

      Z. Deng, C. Ma, X. Fan, et al., Mater. Today Phys. 28 (2022) 100854.

    24. [24]

      X. Cheng, J. He, H. Ji, et al., Adv. Mater. 34 (2022) 2205767.

    25. [25]

      H. Chen, C. Zhang, L. Sheng, et al., J. Hazard. Mater. 434 (2022) 128892.

    26. [26]

      Y. Zhou, R. Duan, H. Li, et al., ACS Catal. 13 (2023) 10846–10854.  doi: 10.1021/acscatal.3c02951

    27. [27]

      W. Luo, Z. Guo, L. Ye, et al., Small 20 (2024) 2311336.

    28. [28]

      Y. Bu, C. Wang, W. Zhang, et al., Angew. Chem. Int. Ed. 62 (2023) e202217337.

    29. [29]

      Y. Fu, S. Wang, Y. Wang, et al., Angew. Chem. Int. Ed. 62 (2023) e202303327.

    30. [30]

      H. Liu, X. Lang, C. Zhu, et al., Angew. Chem. Int. Ed. 61 (2022) e202202556.

    31. [31]

      F.Y. Chen, Z.Y. Wu, S. Gupta, et al., Nat. Nanotechnol. 17 (2022) 759–767.  doi: 10.1038/s41565-022-01121-4

    32. [32]

      Y. Zheng, M.X. Qin, X. Yu, et al., Small 19 (2023) 2302266.

    33. [33]

      Y. Huang, C. He, C. Cheng, et al., Nat. Commun. 14 (2023) 7368.

    34. [34]

      J. Li, G. Zhan, J. Yang, et al., J. Am. Chem. Soc. 142 (2020) 7036–7046.  doi: 10.1021/jacs.0c00418

    35. [35]

      Z. Ge, T. Wang, Y. Ding, et al., Adv. Energy Mater. 12 (2022) 2103916.

    36. [36]

      Y. Zhang, X. Chen, W. Wang, L. Yin, J.C. Crittenden, Appl. Catal. B: Environ. 310 (2022) 121346.

    37. [37]

      Y. Wang, Z. Ji, Y. Pei, J. Hazard. Mater. 463 (2024) 132813.

    38. [38]

      Q. Gao, H.S. Pillai, Y. Huang, et al., Nat. Commun. 13 (2022) 2338.

    39. [39]

      H. Xu, J. Wu, W. Luo, et al., Small 16 (2020) 2001775.

    40. [40]

      J. Lim, C.Y. Liu, J. Park, et al., ACS Catal. 11 (2021) 7568–7577.  doi: 10.1021/acscatal.1c01413

    41. [41]

      C. Li, J.Y. Xue, W. Zhang, et al., Nano Res. 16 (2023) 4742–4750.  doi: 10.1007/s12274-022-5194-5

    42. [42]

      F. Guo, Z. Zhang, R. Chen, et al., Mater. Horiz. 10 (2023) 2913–2920.  doi: 10.1039/d3mh00416c

    43. [43]

      P. Wang, H. Yang, C. Tang, Y. Wu, et al., Nat. Commun. 13 (2022) 3754.

    44. [44]

      J. Wang, Y. Wang, C. Cai, et al., Nano Lett. 23 (2023) 1897–1903.  doi: 10.1021/acs.nanolett.2c04949

    45. [45]

      Y. Wang, W. Zhou, R. Jia, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 59 (2020) 5350–5354.  doi: 10.1002/anie.201915992

    46. [46]

      Y. Deng, A.D. Handoko, Y. Du, S. Xi, B.S. Yeo, ACS Catal. 6 (2016) 2473–2481.  doi: 10.1021/acscatal.6b00205

    47. [47]

      W.J. Duan, S.H. Lu, Z.L. Wu, Y.S. Wang, J. Phys. Chem. C 116 (2012) 26043–26051.  doi: 10.1021/jp308073c

    48. [48]

      R. Daiyan, T. Tran-Phu, P. Kumar, et al., Energy Environ. Sci. 14 (2021) 3588–3598.  doi: 10.1039/d1ee00594d

    49. [49]

      K. Huang, K. Tang, M. Wang, et al., Adv. Funct. Mater. 34 (2024) 2315324.

    50. [50]

      S. He, V. Somayaji, M. Wang, et al., Nano Res. 15 (2022) 4785–4791.  doi: 10.1007/s12274-021-3665-8

    51. [51]

      X. Huang, Y. Ma, L. Zhi, Acta Phys. Chim. Sin. 38 (2021) 2011050.

    52. [52]

      B. Deng, M. Huang, K. Li, et al., Angew. Chem. Int. Ed. 61 (2022) e202114080.

    53. [53]

      W. He, J. Zhang, S. Dieckhöfer, et al., Nat. Commun. 13 (2022) 1129.

    54. [54]

      L.H. Zhang, Y. Jia, J. Zhan, et al., Angew. Chem. Int. Ed. 62 (2023) e202303483.

    55. [55]

      W. Liu, P. Zhai, A. Li, et al., Nat. Commun. 13 (2022) 1877.

    56. [56]

      X. Yang, R. Wang, S. Wang, et al., Appl. Catal. B: Environ. 325 (2023) 122360.

    57. [57]

      Y. Shi, Y. Li, R. Li, et al., Chem. Eng. J. 479 (2024) 147574.

    58. [58]

      Z. Chang, G. Meng, Y. Chen, et al., Adv. Mater. 35 (2023) 2304508.

    59. [59]

      Z. Huang, B. Yang, Y. Zhou, et al., ACS Nano 17 (2023) 25091–25100.  doi: 10.1021/acsnano.3c07734

    60. [60]

      Y. Hu, J. Liu, C. Lee, et al., ACS Nano 17 (2023) 23637–23648.  doi: 10.1021/acsnano.3c06798

  • 加载中
    1. [1]

      Anni WuChengyi HongHu ZhengWei Teng . Multi-site synergistic relay electrocatalysis with high-entropy nanoalloys for effective nitrate reduction to ammonia. Chinese Chemical Letters, 2025, 36(12): 111066-. doi: 10.1016/j.cclet.2025.111066

    2. [2]

      Mingxing ChenXue LiNian LiuZihe DuZhitao WangJing Qi . A zinc-nitrate battery for efficient ammonia electrosynthesis and energy output by a high entropy hydroxide catalyst. Chinese Chemical Letters, 2025, 36(10): 111294-. doi: 10.1016/j.cclet.2025.111294

    3. [3]

      Lingyun ShenShenxiang YinQingshu ZhengZheming SunWei WangTao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580

    4. [4]

      Yuwei LiuYihui ZhuWeijian DuanYizhuo YangHaorui TuoChunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347

    5. [5]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    6. [6]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    7. [7]

      Mingrun LiBin HanLei GongYucheng JinMingyue WangXu DingDongdong QiJianzhuang Jiang . 1D COFs with phthalocyanine functional building blocks and imide linkage for superior electrocatalytic nitrate reduction. Chinese Chemical Letters, 2026, 37(2): 110590-. doi: 10.1016/j.cclet.2024.110590

    8. [8]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    9. [9]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    10. [10]

      Hua LiuJian ZhaoQi LiXiang-Yu ZhangZhi-Wei ZhengKun HuangDa-Bin QinBin Zhao . Indium-captured zirconium-porphyrin frameworks displaying rare multi-selectivity for catalytic transfer hydrogenation of aldehydes and ketones. Chinese Chemical Letters, 2025, 36(6): 110593-. doi: 10.1016/j.cclet.2024.110593

    11. [11]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    12. [12]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    13. [13]

      Lanlan ZongYuxin DaiJiahao XuChaofeng QiaoYao QiChengyuan MaHong LiXiaobin PangXiaohui Pu . Luteolin and glycyrrhetinic exert cooperative effect on liver cancer by selfassembling into carrier-free nanostructures. Chinese Chemical Letters, 2025, 36(10): 111325-. doi: 10.1016/j.cclet.2025.111325

    14. [14]

      Yuxin ZengYan LuoYao HeKaihang ZhangBinbin ZhuYuanzheng ZhangJunfeng Niu . Photo-assisted electrocatalysis with bimetallic PdCu/TiOx catalysts: Enhancing denitrification and economic viability. Chinese Chemical Letters, 2025, 36(6): 110514-. doi: 10.1016/j.cclet.2024.110514

    15. [15]

      Jieyu LiuJunze ZhangHaigang DengShuoao WangXingxing JiangLi WangChanghong Wang . Understanding the activity origin of Pd-anchored single-atom alloy catalysts for NO-to-NH3 conversion by DFT studies and machine learning. Chinese Chemical Letters, 2025, 36(12): 110656-. doi: 10.1016/j.cclet.2024.110656

    16. [16]

      Ke GongJinghan LiaoJiangtao LinQuan WangZhihua WuLiting WangJiali ZhangYi DongYourong DuanJianhua Chen . Mitochondria-targeted nanoparticles overcome chemoresistance via downregulating BACH1/CD47 axis in ovarian carcinoma. Chinese Chemical Letters, 2024, 35(5): 108888-. doi: 10.1016/j.cclet.2023.108888

    17. [17]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    18. [18]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    19. [19]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    20. [20]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

Metrics
  • PDF Downloads(0)
  • Abstract views(735)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return