Citation: Yuyao Guan, Baoting Yu, Jun Ding, Tingting Sun, Zhigang Xie. BODIPY photosensitizers for antibacterial photodynamic therapy[J]. Chinese Chemical Letters, ;2025, 36(8): 110645. doi: 10.1016/j.cclet.2024.110645 shu

BODIPY photosensitizers for antibacterial photodynamic therapy

    * Corresponding authors.
    E-mail addresses: dingjun@jlu.edu.cn (J. Ding), suntt@ciac.ac.cn (T. Sun).
  • Received Date: 6 September 2024
    Revised Date: 4 November 2024
    Accepted Date: 11 November 2024
    Available Online: 12 November 2024

Figures(13)

  • Bacterial infections pose a significant threat to human health and entail substantial economic losses. Due to the broad-spectrum antibacterial effect and low susceptibility to drug resistance, photodynamic therapy (PDT), a nontraditional antibacterial approach, has garnered a lot of attention. In PDT, the selection of photosensitizer (PS) is crucial because it directly affects the efficiency and safety of the treatment. As a versatile fluorophore, the advantages of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) used as a PS for antibacterial PDT are mainly reflected in its high quantum yield of singlet oxygen, easy modification, and exceptional photostability. Through strategic chemical modifications of the BODIPY structures, it is possible to enhance their photodynamic antibacterial activity and refine their selectivity for bacterial killing. This review focuses on the application of BODIPY-based PSs for treating bacterial infections. According to the design strategies of photodynamic antibacterial materials incorporating BODIPY, a variety of representative therapeutic agents having emerged in recent years are classified and discussed, aiming to offer insights for future research and development in this field.
  • 加载中
    1. [1]

      Y.H. Yan, Y.Z. Li, Z.W. Zhang, et al., Colloids Surf. B: Biointerfaces 202 (2021) 111682.

    2. [2]

      Y.W. Ren, H.P. Liu, X.M. Liu, et al., Cell Rep. Phys. Sci. 1 (2020) 100245.

    3. [3]

      Y.C. Tian, R. Zhang, B.B. Guan, et al., Pharmaceutics 13 (2021) 1399.

    4. [4]

      M. Blondel, C. Machet, B. Wildemann, Y. Abidine, P. Swider, J. Orthop. Res. 42 (2024) 1861–1869.  doi: 10.1002/jor.25822

    5. [5]

      D. Nicolotti, S. Grossi, V. Palermo, et al., Crit. Care 28 (2024) 44.

    6. [6]

      R. Martin-Mateos, L. Martínez-Arenas, Á. Carvalho-Gomes, et al., J. Hepatol. 80 (2024) 904–912.

    7. [7]

      G.H. Liu, R.C. Ma, P. Liu, K. Wang, K.Y. Cai, J. Colloid Interface Sci. 655 (2024) 809–821.

    8. [8]

      X.Y. Li, D.D. Xing, Y.J. Bai, et al., Biomed. Mater. 19 (2024) 025028.

    9. [9]

      P. Xue, R. Sang, N. Li, et al., Front. Cell. Infect. Microbiol. 13 (2023) 1119037.

    10. [10]

      O.M. Abdallah, H.R. Shebl, E. Abdelsalam, S.I. Mehrez, World J. Microbiol. Biotechnol. 40 (2024) 72.

    11. [11]

      W.T. Wang, Y.Z. Chen, Y.T. Chen, et al., Microbiol. Spectrum 12 (2024) e0127923.

    12. [12]

      L.H. Zhou, Y.Y. Wu, X.Q. Meng, et al., Small 14 (2018) e1801008.

    13. [13]

      V.N. Nguyen, Z. Zhao, B.Z. Tang, J. Yoon, Chem. Soc. Rev. 50 (2022) 3324–3340.  doi: 10.1039/d1cs00647a

    14. [14]

      Y. Liu, Y.H. Wang, S.Y. Song, H.J. Zhang, Natl. Sci. Rev. 9 (2022) nwab139.

    15. [15]

      Q.Y. Zheng, X.M. Liu, Y.F. Zheng, et al., Chem. Soc. Rev. 50 (2021) 5086–5125.  doi: 10.1039/d1cs00056j

    16. [16]

      G.N. Zhang, Z.Z. Wu, Y.Q. Yang, et al., Chem. Eng. J. 428 (2022) 131155.

    17. [17]

      J.P. Shi, J. Li, Y. Wang, C.Y. Zhang, Chem. Eng. J. 431 (2022) 133714.

    18. [18]

      A. Maleki, J. He, S. Bochani, et al., ACS Nano 15 (2021) 18895–18930.  doi: 10.1021/acsnano.1c08334

    19. [19]

      C.Y. Mao, Y.M. Xiang, X.M. Liu, et al., ACS Appl. Mater. Interfaces 11 (2019) 17902–17914.  doi: 10.1021/acsami.9b05787

    20. [20]

      A. Alabugin, Photochem. Photobiol. 95 (2019) 722–732.  doi: 10.1111/php.13068

    21. [21]

      D.P. Chen, Q. Yu, X. Huang, et al., Small 16 (2020) 2001059.

    22. [22]

      D.P. Chen, Q. Xu, W.J. Wang, et al., Small 17 (2021) e2006742.

    23. [23]

      J.Y. Liu, Y. Tian, L. Dong, RSC Adv. 14 (2024) 8735–8739.  doi: 10.1039/d4ra00041b

    24. [24]

      R.Z. Zhang, K.K. Niu, Y.S. Bi, et al., Green Chem. 26 (2024) 2241–2247.  doi: 10.1039/d3gc04412b

    25. [25]

      R.Z. Dong, X.H. Shi, X.D. Wang, et al., Mol. Catal. 553 (2024) 113749.

    26. [26]

      X.J. Cai, J. Tian, J.W. Zhu, et al., Chem. Eng. J. 426 (2021) 131919.

    27. [27]

      H. Chen, S.L. Li, M. Wu, et al., Angew. Chem. Int. Ed. 59 (2020) 632–636.  doi: 10.1002/anie.201907343

    28. [28]

      X.L. Sun, J. Sun, Y. Sun, et al., Adv. Funct. Mater. 31 (2021) 2101040.

    29. [29]

      L.G. Ding, S. Wang, B.J. Yao, et al., Adv. Healthc. Mater. 10 (2021) 2001821.

    30. [30]

      A. Turksoy, D. Yildiz, E.U. Akkaya, Coord. Chem. Rev. 379 (2019) 47–64.

    31. [31]

      J. Tian, B.X. Huang, M.H. Nawaz, W.A. Zhang, Coord. Chem. Rev. 420 (2020) 213410.

    32. [32]

      A.K. Pujari, R. Kaur, Y.N. Reddy, et al., J. Med. Chem. 67 (2024) 2004–2018.  doi: 10.1021/acs.jmedchem.3c01841

    33. [33]

      X. Li, B.D. Zheng, X.H. Peng, et al., Coord. Chem. Rev. 379 (2019) 147–160.

    34. [34]

      M. Wainwright, A. McLean, Dyes Pigm. 136 (2017) 590–600.

    35. [35]

      K. Bilici, S. Cetin, E. Aydındogan, H.Y. Acar, S. Kolemen, Front. Chem. 9 (2021) 707876.

    36. [36]

      M. Maia, D.I.S.P. Resende, F. Durães, M.M.M. Pinto, E. Sousa, Eur. J. Med. Chem. 210 (2021) 113085.

    37. [37]

      J. Wang, C.J. Yu, E.H. Hao, L.J. Jiao, Coord. Chem. Rev. 470 (2022) 214709.

    38. [38]

      N.A. Bumagina, E.V. Antina, A.A. Ksenofontov, et al., Coord. Chem. Rev. 469 (2022) 214684.

    39. [39]

      Z.Y. Wang, X. Guo, Z.X. Kang, et al., Org. Lett. 25 (2023) 744–749.

    40. [40]

      F. Lv, X. Guo, Z.Y. Li, et al., Dyes Pigm. 210 (2023) 111030.

    41. [41]

      F. Lv, H. Li, Q.H. Wu, et al., Chem. Commun. 58 (2022) 3937–3940.  doi: 10.1039/d2cc00297c

    42. [42]

      R.B. Liu, Y. Qian, Spectrochim. Acta. A Mol. Biomol. Spectrosc. 304 (2024) 123387.

    43. [43]

      C. Kim, D.K. Mai, W.J. Kim, et al., Biomater. Sci. 12 (2024) 1536–1548.  doi: 10.1039/d3bm01520c

    44. [44]

      X. Chen, B.B. Mendes, Y.H. Zhuang, et al., J. Am. Chem. Soc. 146 (2024) 1644–1656.  doi: 10.1021/jacs.3c12416

    45. [45]

      X. Guo, J.M. Yang, M. Li, et al., Angew. Chem. Int. Ed. 61 (2022) e202211081.

    46. [46]

      Z.Q. Mao, J.H. Kim, J. Lee, et al., Coord. Chem. Rev. 476 (2023) 1–34.

    47. [47]

      B.W. Lu, X. Lu, M.M. Mu, et al., Heliyon 10 (2024) e26907.

    48. [48]

      T. Tao, X. Hu, D. Sun, et al., Dyes Pigm. 224 (2024) 111996.

    49. [49]

      M. Hu, X.C. Dong, W.L. Zhao, Bioorg. Med. Chem. 99 (2024) 117583.

    50. [50]

      P. Sen, A. Sindelo, N. Nnaji, J. Mack, T. Nyokong, Photochem. Photobiol. 99 (2022) 947–956.

    51. [51]

      Q.H. Wu, H. Wen, W.H. Lin, T.T. Sun, Z.G. Xie, Chin. Chem. Lett. 35 (2024) 109692.

    52. [52]

      O. Santoro, M.C. Malacarne, F. Sarcone, et al., Int. J. Mol. Sci. 24 (2023) 4340.  doi: 10.3390/ijms24054340

    53. [53]

      D. Navarro-Barreda, R. de Llanos, J.F. Miravet, et al., J. Photochem. Photobiol. B 235 (2022) 112543.

    54. [54]

      S. Kirar, Y.N. Reddy, U. Chand Banerjee, J. Bhaumik, ChemPhotoChem 7 (2022) e202200172.

    55. [55]

      J. Wang, Q.B. Gong, L.J. Jiao, E.H. Hao, Coord. Chem. Rev. 496 (2023) 215367.

    56. [56]

      A.M. Durantini, D.A. Heredia, J.E. Durantini, E.N. Durantini, Eur. J. Med. Chem. 144 (2018) 651–661.

    57. [57]

      M.L. Agazzi, M.B. Ballatore, A.M. Durantini, E.N. Durantini, A.C. Tomé, J. Photochem. Photobiol. C 40 (2019) 21–48.

    58. [58]

      C.N. Li, Y.T. Li, Q.H. Wu, T.T. Sun, Z.G. Xie, Biomater. Sci. 9 (2021) 7648–7654.  doi: 10.1039/d1bm01384j

    59. [59]

      H. Wen, Q.H. Wu, L.Q. Liu, et al., Biomater. Sci. 11 (2023) 2870–2876.  doi: 10.1039/d3bm00073g

    60. [60]

      G.Y. Lin, M. Hu, R. Zhang, et al., J. Med. Chem. 64 (2021) 18143–18157.  doi: 10.1021/acs.jmedchem.1c01643

    61. [61]

      C.J. Mou, X.Y. Wang, Y.C. Liu, Z.G. Xie, M. Zheng, J. Mater. Chem. B 10 (2022) 8094–8099.  doi: 10.1039/d2tb01539k

    62. [62]

      X.N. Liang, L. Xia, Y.C. Zhu, et al., Biomater. Sci. 10 (2022) 4235–4242.  doi: 10.1039/d2bm00780k

    63. [63]

      Y.C. Liu, M. Zheng, Food Chem. 427 (2023) 136691.

    64. [64]

      Z.Q. Shen, L.L. Qu, X.L. Kan, et al., Colloids Surf. A 644 (2022) 128835.

    65. [65]

      S.S. Zhao, X.P. Guo, X.H. Pan, Y.B. Huang, R. Cao, Chem. Eng. J. 457 (2023) 141017.

    66. [66]

      H. Wen, Q.H. Wu, C.N. Li, T.T. Sun, Z.G. Xie, ACS Appl. Nano Mater. 5 (2022) 1500–1507.  doi: 10.1021/acsanm.1c04143

    67. [67]

      B.K. Liu, J. Zheng, H. Wang, L.Y. Niu, Q.Z. Yang, Mater. Chem. Front. 7 (2023) 5879–5890.  doi: 10.1039/d3qm00753g

    68. [68]

      W.T. Lei, Q.H. Wu, H. Wen, et al., J. Mater. Chem. B 11 (2023) 6853–6858.  doi: 10.1039/d3tb00684k

    69. [69]

      J.K. Gao, H.F. Jiang, P.W. Chen, R.S. Zhang, N. Liu, Bioorg. Chem. 136 (2023) 106554.

    70. [70]

      A.G. Robertson, L.M. Rendina, Chem. Soc. Rev. 50 (2021) 4231–4244.  doi: 10.1039/d0cs01075h

    71. [71]

      P. Bhutani, G. Joshi, N. Raja, et al., J. Med. Chem. 64 (2021) 2339–2381.  doi: 10.1021/acs.jmedchem.0c01786

    72. [72]

      Y.P. Wu, S.M. Li, Y.C. Chen, W.J. He, Z.J. Guo, Chem. Sci. 13 (2022) 5085–5106.  doi: 10.1039/d1sc05478c

    73. [73]

      N.M. Amal, M. Shiddiq, B. Armynah, D. Tahir, Luminescence 37 (2022) 2006–2017.  doi: 10.1002/bio.4388

    74. [74]

      M. Garren, P. Maffe, A. Melvin, et al., ACS Appl. Mater. Interfaces 13 (2021) 56931–56943.  doi: 10.1021/acsami.1c17248

    75. [75]

      R. Devine, M. Douglass, M. Ashcraft, N. Tayag, H. Handa, ACS Appl. Mater. Interfaces 13 (2021) 19613–19624.  doi: 10.1021/acsami.1c01330

    76. [76]

      H.J. Wang, Y. Wang, W.H. Xu, et al., ACS Appl. Mater. Interfaces 15 (2023) 54266–54279.  doi: 10.1021/acsami.3c10862

    77. [77]

      C.Y. Qi, J. Chen, Y. Zhuang, et al., Int. J. Pharm. 640 (2023) 123014.

    78. [78]

      C. Farah, L.Y.M. Michel, J.L. Balligand, Nat. Rev. Cardiol. 15 (2018) 292–316.  doi: 10.1038/nrcardio.2017.224

    79. [79]

      Y.F. Zhao, C. Li, S. Zhang, et al., Front. Microbiol. 14 (2023) 1277552.

    80. [80]

      M.Y. He, D.P. Wang, Y.M. Xu, et al., Pharmaceutics 14 (2022) 1345.

    81. [81]

      A. Olah, B.A. Barta, M. Ruppert, et al., Eur. Heart J. 44 (2023) 1965 ehad655-.

    82. [82]

      J.K. Jiang, J.L. Xie, L. Zhou, et al., Chem. Eng. J. 480 (2024) 147850.

    83. [83]

      S.Y. Tao, J. Cheng, G. Su, et al., Angew. Chem. Int. Ed. 59 (2020) 21864–21869.  doi: 10.1002/anie.202010009

    84. [84]

      R. Ren, D.H. Bremner, W.L. Chen, et al., Int. J. Biol. Macromol. 238 (2023) 124087.

    85. [85]

      D. Gao, S. Asghar, R.F. Hu, et al., Acta Pharm. Sin. B 13 (2023) 1498–1521.

    86. [86]

      H.N. Tian, J.Y. Lin, F.K. Zhu, et al., Chin. Chem. Lett. 34 (2023) 107577.

    87. [87]

      V.A. Zaborova, A.V. Butenko, A.B. Shekhter, et al., Med. Gas Res. 13 (2023) 128–132.  doi: 10.4103/2045-9912.344983

    88. [88]

      Y.T. Duan, K.W. He, G.Y. Zhang, J.M. Hu, Biomacromolecules 22 (2021) 2160–2170.  doi: 10.1021/acs.biomac.1c00251

    89. [89]

      M.M. Wan, H. Chen, Q. Wang, et al., Nat. Commun. 10 (2019) 966.

    90. [90]

      L. Wang, S.X. Li, J.X. Yin, et al., Nano Lett. 20 (2020) 5036–5042.  doi: 10.1021/acs.nanolett.0c01196

    91. [91]

      A. Galstyan, R. Schiller, U. Dobrindt, Angew. Chem. Int. Ed. 56 (2017) 10362–10366.  doi: 10.1002/anie.201703398

    92. [92]

      S.S. Liu, B.N. Wang, Y.W. Yu, et al., ACS Nano 16 (2022) 9130–9141.  doi: 10.1021/acsnano.2c01206

    93. [93]

      L. Liu, X.Y. Wang, S.X. Zhu, et al., Chem. Mater. 32 (2019) 438–447.

    94. [94]

      H.L. Zhou, D.S. Tang, X.X. Kang, et al., Adv. Sci. 9 (2022) 2200732.

    95. [95]

      C. Zhao, X. Wang, L. Yu, et al., Acta Biomater. 138 (2022) 528–544.

    96. [96]

      S.M. Wu, C. Xu, Y.W. Zhu, et al., Adv. Funct. Mater. 31 (2021) 2103591.

    97. [97]

      D.K. Joshi, F. Betancourt, A. McAdorey, et al., J. Photochem. Photobiol. A 434 (2023) 114213.

    98. [98]

      Q.X. Shi, C.J. Mou, Z.G. Xie, M. Zheng, Photodiagn. Photodyn. Ther. 39 (2022) 102901.

    99. [99]

      V.T. Orlandi, E. Martegani, F. Bolognese, E. Caruso, Photochem. Photobiol. Sci. 21 (2022) 1233–1248.  doi: 10.1007/s43630-022-00212-4

    100. [100]

      H. Eserci Gürbüz, E. Öztürk Gündüz, M. Bat-Ozmatara, A. Şenocak, E. Okutan, J. Photochem. Photobiol. A 443 (2023) 114890.

    101. [101]

      H. Eserci, M. Çetin, F. Aydınoğlu, E.T. Eçik, E. Okutan, J. Mol. Struct. 1265 (2022) 133440.

    102. [102]

      C. Kromer, K. Schwibbert, S. Radunz, et al., Front. Microbiol. 14 (2023) 1274715.

    103. [103]

      B.L. Carpenter, F. Scholle, H. Sadeghifar, et al., Biomacromolecules 16 (2015) 2482–2492.  doi: 10.1021/acs.biomac.5b00758

    104. [104]

      J. Piskorz, W. Porolnik, M. Kucinska, et al., ChemMedChem 16 (2021) 399–411.  doi: 10.1002/cmdc.202000529

    105. [105]

      Y.B. Palacios, S.C. Santamarina, J. Durantini, et al., J. Photochem. Photobiol. B 212 (2020) 112049.

    106. [106]

      Y.Y. Bai, Y.Q. Hu, Y.C. Gao, et al., ACS Appl. Mater. Interfaces 13 (2021) 33790–33801.  doi: 10.1021/acsami.1c04996

    107. [107]

      S. Mansoor, O. Ali Wani, J.K. Lone, et al., Antioxidants 11 (2022) 225.  doi: 10.3390/antiox11020225

    108. [108]

      R. Singh, S. Singh, P. Parihar, et al., Front. Plant Sci. 7 (2016) 1299.

    109. [109]

      M.S. Katarzyna, W. Natalia, N. Klaudia, et al., Antioxidants 9 (2020) 199.

    110. [110]

      J.J. Zhang, Y.J. Li, M.L. Jiang, et al., ACS Biomater. Sci. Eng. 9 (2023) 821–830.  doi: 10.1021/acsbiomaterials.2c01539

    111. [111]

      S.M. Wu, W.Z. Zhang, C.R. Li, et al., Chem. Sci. 15 (2024) 5973–5979.  doi: 10.1039/d3sc06976a

    112. [112]

      Y.M. Zhang, S.C. Li, J. Wang, et al., J. Mater. Chem. B 12 (2024) 1372–1378.  doi: 10.1039/d3tb02623j

    113. [113]

      C. Liu, X. Ji, Z.l. Yu, et al., J. Med. Chem. 66 (2023) 7205–7220.  doi: 10.1021/acs.jmedchem.2c01653

    114. [114]

      Y.N. Sun, C.S. Dong, D.X. Zhang, et al., Dyes Pigm. 228 (2024) 112213.

    115. [115]

      L.L. Cao, Y.K. Li, D.X. Zhang, et al., Chin. Chem. Lett. 35 (2024) 109735.

    116. [116]

      Z.Z. Yong, B.X. Wen, Q.Q. Dou, et al., Dyes Pigm. 219 (2023) 111614.

    117. [117]

      X.H. Ruan, M. Wei, X.Y. He, et al., Colloids Surf. B 231 (2023) 113547.

    118. [118]

      D.P. Chen, Z.H. Zhong, Q.L. Ma, et al., ACS Appl. Mater. Interfaces 12 (2020) 26914–26925.  doi: 10.1021/acsami.0c05021

    119. [119]

      S. Song, G.C. Xu, N. Yang, et al., J. Mater. Sci. 57 (2022) 21206–21218.  doi: 10.1007/s10853-022-07924-z

    120. [120]

      Q. Yu, X. Huang, T. Zhang, et al., Chem. Res. Chin. Univ. 37 (2021) 951–959.

    121. [121]

      X.Y. Wang, L.J. Chen, S.Y. Chong, et al., Nat. Chem. 10 (2018) 1180–1189.  doi: 10.1038/s41557-018-0141-5

    122. [122]

      D. Thakur, Q.T.H. Ta, J.S. Noh, ACS Appl. Nano Mater. 5 (2022) 1533–1541.  doi: 10.1021/acsanm.1c04254

    123. [123]

      G.F. Su, S.F. Qiu, J.Q. Lin, et al., Colloids Surf. A 640 (2022) 128414.

    124. [124]

      G. Gupta, Y. Sun, A. Das, P.J. Stang, C.Y. Lee, Coord. Chem. Rev. 452 (2022) 214308.

    125. [125]

      D.M. Chen, G.Q. He, Q.Y. Chen, et al., New J. Chem. 47 (2023) 8152–8160.  doi: 10.1039/d3nj00397c

    126. [126]

      X.L. Hu, L.Y. Chu, X.J. Dong, et al., Adv. Funct. Mater. 29 (2019) 1806981.

    127. [127]

      Y.Q. Wang, Y.Y. Jin, W. Chen, et al., Chem. Eng. J. 358 (2019) 74–90.  doi: 10.1364/dp.2019.74

    128. [128]

      Q. Guan, L.L. Zhou, Y.A. Li, et al., ACS Nano 13 (2019) 13304–13316.  doi: 10.1021/acsnano.9b06467

    129. [129]

      X. Chang, M.B. Qarai, F.C. Spano, J. Chem. Phys. 157 (2022) 209901.

    130. [130]

      J. Wang, X.M. Zhang, N. Wang, et al., ACS Appl. Nano Mater. 6 (2023) 16716–16729.  doi: 10.1021/acsanm.3c02922

    131. [131]

      T. Zhang, C. Ma, T.T. Sun, Z.G. Xie, Coord. Chem. Rev. 390 (2019) 76–85.

    132. [132]

      F.F. An, J.Q. Xin, C.T. Deng, et al., J. Mater. Chem. B 9 (2021) 9308–9315.  doi: 10.1039/d1tb01883c

    133. [133]

      Q.X. Shi, X.Y. Wang, H.X. Liu, Z.G. Xie, M. Zheng, J. Photochem. Photobiol. B 241 (2023) 112674.

    134. [134]

      H.Y. Wang, C.N. Li, Q.H. Wu, et al., J. Mater. Chem. B 10 (2022) 4967–4973.  doi: 10.1039/d2tb00778a

    135. [135]

      C.N. Li, W.H. Lin, S. Liu, T.T. Sun, Z.G. Xie, Mater. Chem. Front. 5 (2021) 284–292.  doi: 10.1039/d0qm00624f

    136. [136]

      S.W. Wang, W.B. Wu, P. Manghnani, et al., ACS Nano 13 (2019) 3095–3105.  doi: 10.1021/acsnano.8b08398

    137. [137]

      D.S. Zhang, L.Y. Peng, K.X. Teng, et al., ACS Mater. Lett. 5 (2023) 180–188.

    138. [138]

      Y.F. Kang, W.K. Chen, K.X. Teng, et al., CCS Chem. 4 (2022) 3516–3528.  doi: 10.31635/ccschem.021.202101600

    139. [139]

      J.X. Zhang, S. Mukamel, J. Jiang, J. Phys. Chem. B. 124 (2020) 2238–2244.  doi: 10.1021/acs.jpcb.0c00654

    140. [140]

      X. Wang, B. Yang, L.X. Li, et al., Theranostics 11 (2021) 7896–7910.  doi: 10.7150/thno.61337

    141. [141]

      J. Lv, H. Wang, G.Y. Rong, Y.Y. Cheng, Acc. Chem. Res. 55 (2022) 722–733.  doi: 10.1021/acs.accounts.1c00766

    142. [142]

      B.W. Jiang, D.Y. Hao, C.N. Li, et al., J. Mater. Chem. B 9 (2021) 9971–9979.  doi: 10.1039/d1tb02165f

    143. [143]

      C. Zhang, T.Q. Liu, W.Q. Wang, et al., ACS Nano 14 (2020) 7425–7434.  doi: 10.1021/acsnano.0c02954

    144. [144]

      X.Y. Wang, B.W. Jiang, Z.G. Xie, M. Zheng, Colloids Surf. B 220 (2022) 112966.

  • 加载中
    1. [1]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    2. [2]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    3. [3]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    4. [4]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    5. [5]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    6. [6]

      Yueying WangJianming XiongLinwei XinYuanyuan LiHe HuangWenjun Miao . Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing. Chinese Chemical Letters, 2025, 36(4): 110003-. doi: 10.1016/j.cclet.2024.110003

    7. [7]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    8. [8]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    9. [9]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    10. [10]

      Xiaokang HouHuanxin MaMengmeng ZhaoChunhua FengShishu Zhu . Unveiling role of Cu(Ⅱ) in photochemical transformation and reactive oxygen species production of schwertmannite in the presence of tartaric acid. Chinese Chemical Letters, 2025, 36(7): 110332-. doi: 10.1016/j.cclet.2024.110332

    11. [11]

      Yaxian LiangQingyi LiLiwei HuRuohan ZhaiFan LiuLin TanXiaofei WangHuixu Xie . Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chinese Chemical Letters, 2024, 35(10): 109459-. doi: 10.1016/j.cclet.2023.109459

    12. [12]

      Jiaqi HuangRenjiang KongYanmei LiNi YanYeyang WuZiwen QiuZhenming LuXiaona RaoShiying LiHong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254

    13. [13]

      Zekun GaoXiuli ZhengWeimin LiuJie ShaShuaishuai BianHaohui RenJiasheng WuWenjun ZhangChun-Sing LeePengfei Wang . GSH-activatable copper-elsinochrome off-on photosensitizer for combined specific NIR-Ⅱ two-photon photodynamic/chemodynamic therapy. Chinese Chemical Letters, 2025, 36(3): 109874-. doi: 10.1016/j.cclet.2024.109874

    14. [14]

      Haijun ShenYi QiaoChun ZhangYane MaJialing ChenYingying CaoWenna Zheng . A matrix metalloproteinase-sensitive hydrogel combined with photothermal therapy for transdermal delivery of deferoxamine to accelerate diabetic pressure ulcer healing. Chinese Chemical Letters, 2024, 35(12): 110283-. doi: 10.1016/j.cclet.2024.110283

    15. [15]

      Hongwei DingJingjing YangYongchen ShuaiDi WeiXueliang LiuGuiying LiLin JinJianliang ShenIn situ preparation of tannin-mediated CeO2@CuS nanocomposites for multimodal wound therapy. Chinese Chemical Letters, 2025, 36(6): 110286-. doi: 10.1016/j.cclet.2024.110286

    16. [16]

      Li QinWenjing WeiKeqing WangXianbao ShiGuixia LingPeng Zhang . Ultrasound-responsive heterojunction sonosensitizers for multifunctional synergistic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(7): 110777-. doi: 10.1016/j.cclet.2024.110777

    17. [17]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    18. [18]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    19. [19]

      Beitong ZhuXiaorui YangLirong JiangTianhong ChenShuangfei WangLintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222

    20. [20]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

Metrics
  • PDF Downloads(0)
  • Abstract views(22)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return