-
[1]
L.L. Guarieiro, J.P. dos Anjos, L.A. de Silva, et al., Chem. Soc. 33 (2022) 844–869.
-
[2]
G.P. Hammond, Process Saf. Environ. Prot. 78 (2000) 304–323.
doi: 10.1205/095758200530826
-
[3]
B.D. Solomon, K. Krishna, Energy Policy 39 (2011) 7422–7431.
doi: 10.1016/j.enpol.2011.09.009
-
[4]
IEA, CO2 Emissions in 2023, IEA, Paris, 2023.
-
[5]
D.M. Koshy, S.S. Nathan, A.S. Asundi, Angew. Chem. Int. Ed. 133 (2021) 17613–17621.
doi: 10.1002/ange.202101326
-
[6]
Y. Li, L. Zhang, B. Yu, J. Zhu, C. Wu, Engineering 21 (2023) 101–114.
doi: 10.1016/j.eng.2022.02.016
-
[7]
H. Wang, Nano Res. 15 (2022) 2834–2854.
doi: 10.1007/s12274-021-3984-9
-
[8]
C.D. Windle, R.N. Perutz, Coord. Chem. Rev. 256 (2012) 2562–2570.
doi: 10.1016/j.ccr.2012.03.010
-
[9]
W. Zhang, Y. Hu, L. Ma, et al., Adv. Sci. 5 (2018) 1700275.
doi: 10.1002/advs.201700275
-
[10]
N. Han, R.Z. Ren, M.J. Ma, et al., Chin. Chem. Lett. 33 (2022) 2658–2662.
doi: 10.1016/j.cclet.2021.09.100
-
[11]
J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 43 (2014) 631–675.
doi: 10.1039/C3CS60323G
-
[12]
A. Hauch, R. Küngas, P. Blennow, et al., Science 370 (2020) eaba6118.
doi: 10.1126/science.aba6118
-
[13]
W. Li, J.L. Luo, Electrochem. Energy Rev. 4 (2021) 518–544.
doi: 10.1007/s41918-021-00099-2
-
[14]
Y. Peng, Y. Song, I. Razanau, et al., J. Energy Chem. 100 (2025) 286–308.
doi: 10.1016/j.jechem.2024.08.050
-
[15]
K. Sridhar, B. Vaniman, Solid State Ionics 93 (1997) 321–328.
doi: 10.1016/S0167-2738(96)00513-9
-
[16]
H. Chandler, F. Pollara, Oxygen regeneration from solid electrolytic reduction of carbon dioxide for space cabin atmosphere, in: H. Chandler (Ed. ), Oxygen Regeneration in a Solid Electrolyte System, Elsevier, New York, 1966, pp. 5–36.
-
[17]
S.D. Ebbesen, M. Mogensen, J. Power Sources 193 (2009) 349–358.
doi: 10.1016/j.jpowsour.2009.02.093
-
[18]
X. Yue, J.T.S. Irvine, Solid State Ionics 225 (2012) 131–135.
doi: 10.1016/j.ssi.2012.06.015
-
[19]
Y. Li, Y. Gan, Y. Wang, K. Xie, Y. Wu, Int. J. Hydrogen Energy 38 (2013) 10196–10207.
doi: 10.1016/j.ijhydene.2013.06.057
-
[20]
D. Neagu, G. Tsekouras, D.N. Miller, H. Menard, J.T. Irvine, Nat. Chem. 5 (2013) 916–923.
doi: 10.1038/nchem.1773
-
[21]
C.M. Stoots, Idaho National Lab. (INL), Idaho Falls, ID (United States), 2006.
-
[22]
L. Chen, F. Chen, C. Xia, Energy Environ. Sci. 7 (2014) 4018–4022.
doi: 10.1039/C4EE02786H
-
[23]
Q. Fu, C. Mabilat, M. Zahid, A. Brisse, L. Gautier, Energy Environ. Sci. 3 (2010) 1382–1397.
doi: 10.1039/c0ee00092b
-
[24]
Y.F. Sun, Y.Y. Wu, Y.Q. Zhang, et al., Chem. Commun. 52 (2016) 13687–13690.
doi: 10.1039/C6CC03503E
-
[25]
J. Lu, Y. Hu, M. Zhang, Q. Hu, J. Wu, Int. J. Hydrogen Energy 55 (2024) 786–795.
doi: 10.1016/j.ijhydene.2023.11.247
-
[26]
Y. Guo, S. Wang, R. Li, et al., Joule 7 (2024) 2016–2032.
-
[27]
H. Xu, B. Chen, J. Irvine, M. Ni, Int. J. Hydrogen Energy 41 (2016) 21839–21849.
doi: 10.1016/j.ijhydene.2016.10.026
-
[28]
X. Zhang, L. Ye, H. Li, F. Chen, K. Xie, ACS Catal. 10 (2020) 3505–3513.
doi: 10.1021/acscatal.9b05409
-
[29]
Y. Song, L. Lin, W. Feng, et al., Angew. Chem. Int. Ed. 58 (2019) 16043–16046.
doi: 10.1002/anie.201908388
-
[30]
A. Tsyganok, P.J.E. Harlick, A. Sayari, Catal. Commun. 8 (2007) 850–854.
doi: 10.1016/j.catcom.2006.09.010
-
[31]
L. Ye, X. Duan, K. Xie, Angew. Chem. Int. Ed. 60 (2021) 21746–21750.
doi: 10.1002/anie.202109355
-
[32]
X. Hou, Y. Jiang, K. Wei, et al., Chem. Rev. 124 (2024) 5119–5166.
doi: 10.1021/acs.chemrev.3c00760
-
[33]
I. Jang, J.S.A. Carneiro, J.O. Crawford, et al., Chem. Rev. 124 (2024) 8233–8306.
doi: 10.1021/acs.chemrev.4c00008
-
[34]
H. Liu, M. Yu, X. Tong, Q. Wang, M. Chen, Chem. Rev. 124 (2024) 10509–10576.
doi: 10.1021/acs.chemrev.3c00795
-
[35]
J. Cao, Y. Ji, Z. Shao, Chem. Soc. Rev. 53 (2024) 450–501.
doi: 10.1039/d3cs00303e
-
[36]
S.E. Wolf, F.E. Winterhalder, V. Vibhu, et al., J. Mater. Chem. A 11 (2023) 17977–18028.
doi: 10.1039/d3ta02161k
-
[37]
C. Sun, J.A. Alonso, J. Bian, Adv. Energy Mater. 11 (2020) 200459.
-
[38]
Z. Wang, Y. Wang, Z. Jin, et al., Adv. Funct. Mater. 34 (2024) 2404051.
doi: 10.1002/adfm.202404051
-
[39]
X. Xu, Y. Zhong, Z. Shao, Trends Chem. 1 (2019) 410–424.
doi: 10.1016/j.trechm.2019.05.006
-
[40]
X. Xu, Y. Pan, Y. Zhong, R. Ran, Z. Shao, Mater. Horiz. 7 (2020) 2519–2565.
doi: 10.1039/d0mh00477d
-
[41]
R. Xu, S. Liu, M. Yang, et al., Chem. Sci. 15 (2024) 11166–11187.
doi: 10.1039/d4sc03306j
-
[42]
M. Yang, S. Liu, X. Shen, et al., ACS Energy Lett. 9 (2024) 3818–3827.
doi: 10.1021/acsenergylett.4c01447
-
[43]
M. Stanbury, J.D. Compain, M. Trejo, et al., Electrochim. Acta 240 (2017) 288–299.
doi: 10.1016/j.electacta.2017.04.080
-
[44]
Y. Zheng, W. Zhang, Y. Li, et al., Nano Energy 40 (2017) 512–539.
doi: 10.1016/j.nanoen.2017.08.049
-
[45]
K. Chen, S.P. Jiang, J. Electrochem. Soc. 163 (2016) F3070–F3083.
doi: 10.1149/2.0101611jes
-
[46]
M.S. Sohal, J.E. O'Brien, C.M. Stoots, et al., J. Fuel Cell Sci. Technol. 9 (2012) 011017.
doi: 10.1115/1.4003787
-
[47]
P.A. Kempler, A.C. Nielander, Nat. Commun. 14 (2023) 1158.
doi: 10.1038/s41467-023-36880-8
-
[48]
P.S. Gaikwad, K. Mondal, Y.K. Shin, et al., npj Comput. Mater. 9 (2023) 149.
doi: 10.1038/s41524-023-01044-1
-
[49]
M.G. Sahini, S.D. Lupyana, Mate. Sci. Eng. B 292 (2023) 116415.
doi: 10.1016/j.mseb.2023.116415
-
[50]
L.M. Ushkalov, E. М. Brodnikovs'kyi, N. О. Lysunenko, et al., Mat. Sci. 51 (2016) 555–562.
doi: 10.1007/s11003-016-9875-7
-
[51]
J.R. Mawdsley, J.D. Carter, A.J. Kropf, et al., Int. J. Hydrogen Energy 34 (2009) 4198–4207.
doi: 10.1016/j.ijhydene.2008.07.061
-
[52]
A.V. Virkar, Int. J. Hydrogen Energy 35 (2010) 9527–9543.
doi: 10.1016/j.ijhydene.2010.06.058
-
[53]
S.D. Ebbesen, C. Graves, A. Hauch, et al., J. Electrochem. Soc. 157 (2010) B1419.
doi: 10.1149/1.3464804
-
[54]
S.D. Ebbesen, M. Mogensen, Electrochem. Solid-State Lett. 13 (2010) B106.
doi: 10.1149/1.3455882
-
[55]
A.K. Opitz, A. Nenning, C. Rameshan, et al., ACS Appl. Mater. Interfaces 9 (2017) 35847–35860.
doi: 10.1021/acsami.7b10673
-
[56]
Y. Yang, Y. Li, Y. Jiang, et al., Electrochim. Acta 284 (2018) 159–167.
doi: 10.1016/j.electacta.2018.07.187
-
[57]
Y. Yu, B. Mao, A. Geller, et al., Phys. Chem. Chem. Phys. 16 (2014) 11633–11639.
doi: 10.1039/C4CP01054J
-
[58]
Z.A. Feng, M.L. Machala, W.C. Chueh, Phys. Chem. Chem. Phys. 17 (2015) 12273–12281.
doi: 10.1039/C5CP00114E
-
[59]
E.M. Sala, N. Mazzanti, M.B. Mogensen, et al., Solid State Ionics 375 (2022) 115833.
doi: 10.1016/j.ssi.2021.115833
-
[60]
N. Shi, Y. Xie, D. Huan, et al., J. Mater. Chem. A 7 (2019) 4855–4864.
doi: 10.1039/c8ta12458b
-
[61]
J. Lu, S. Li, S. Tao, T. Zhang, K. Xie, Int. J. Hydrogen Energy 42 (2017) 8197–8206.
doi: 10.1016/j.ijhydene.2017.01.182
-
[62]
W. Qi, Y. Gan, D. Yin, et al., J. Mater. Chem. A 2 (2014) 6904–6915.
doi: 10.1039/C4TA00344F
-
[63]
S. Liu, Q. Liu, J.L. Luo, J. Mater. Chem. A 5 (2017) 2673–2680.
doi: 10.1039/C6TA09151B
-
[64]
L. Ye, M. Zhang, P. Huang, et al., Nat. Commun. 8 (2017) 14785.
doi: 10.1038/ncomms14785
-
[65]
Y. Zhou, Z. Zhou, Y. Song, et al., Nano Energy 50 (2018) 43–51.
doi: 10.1016/j.nanoen.2018.04.054
-
[66]
J. Xu, X. Zhou, L. Pan, M. Wu, K. Sun, J. Power Sources 371 (2017) 1–9.
doi: 10.1016/j.jpowsour.2017.10.016
-
[67]
M. Wu, X. Zhou, J. Xu, et al., J. Power Sources 451 (2020) 227334.
doi: 10.1016/j.jpowsour.2019.227334
-
[68]
X. Zhang, Y. Song, F. Guan, et al., J. Catal. 359 (2018) 8–16.
doi: 10.1016/j.jcat.2017.12.027
-
[69]
S. Liu, Q. Liu, J.L. Luo, ACS Catal. 6 (2016) 6219–6228.
doi: 10.1021/acscatal.6b01555
-
[70]
J. Li, Q. Liu, Y. Song, et al., Green Chem. Eng. 3 (2022) 250–258.
doi: 10.1016/j.gce.2021.12.011
-
[71]
H. Lv, T. Liu, X. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 15968–15973.
doi: 10.1002/anie.202006536
-
[72]
Z. Wang, T. Tan, K. Du, et al., Adv. Mater. 36 (2024) 2312119.
doi: 10.1002/adma.202312119
-
[73]
X. Li, T. Chen, C. Wang, et al., Adv. Funct. Mater. 3 (2024) 2411216.
-
[74]
Y. Zheng, Z. Chen, J. Zhang, Electrochem. Energy Rev. 4 (2021) 508–517.
doi: 10.1007/s41918-021-00097-4
-
[75]
Z. Zhan, L. Zhao, J. Power Sources 195 (2010) 7250–7254.
doi: 10.1016/j.jpowsour.2010.05.037
-
[76]
S.A.A. Naqvi, M.T. Mehran, R.H. Song, et al., Chem. Eng. J. 300 (2016) 384–393.
doi: 10.1016/j.cej.2016.04.095
-
[77]
S. -W. Kim, H. Kim, K.J. Yoon, et al., J. Power Sources 280 (2015) 630–639.
doi: 10.1016/j.jpowsour.2015.01.083
-
[78]
C. Stoots, J. O'Brien, J. Hartvigsen, Int. J. Hydrogen Energy 34 (2009) 4208–4215.
doi: 10.1016/j.ijhydene.2008.08.029
-
[79]
M. Ni, J. Power Sources 202 (2012) 209–216.
doi: 10.1016/j.jpowsour.2011.11.080
-
[80]
K.T. Wu, J. Matsuda, A. Staykov, T. Ishihara, Adv. Energy Mater. 13 (2023) 2301042.
doi: 10.1002/aenm.202301042
-
[81]
D.J. Deka, J. Kim, S. Gunduz, et al., Appl. Catal. A 602 (2020) 117697.
doi: 10.1016/j.apcata.2020.117697
-
[82]
J. Li, X. Sun, Y. Ye, M. Zhou, Y. Chen, Energy Fuels 37 (2023) 19230–19238.
doi: 10.1021/acs.energyfuels.3c03312
-
[83]
J. Liang, Y. Wang, J. Zhu, et al., Energy Convers. Manag. 277 (2023) 116621.
doi: 10.1016/j.enconman.2022.116621
-
[84]
L. Bian, C. Duan, L. Wang, et al., J. Power Sources 482 (2021) 228887.
doi: 10.1016/j.jpowsour.2020.228887
-
[85]
R. Peters, N. Wegener, R.C. Samsun, et al., Processes 10 (2022) 699.
doi: 10.3390/pr10040699
-
[86]
F. Liu, Z. Chen, H. Zhou, et al., J. Power Sources 609 (2024) 234703.
doi: 10.1016/j.jpowsour.2024.234703
-
[87]
W. Wang, C. Su, Y. Wu, R. Ran, Z. Shao, Chem. Rev. 113 (2013) 8104–8151.
doi: 10.1021/cr300491e
-
[88]
M. Zhou, Z. Liu, X. Yan, et al., J. Electrochem. Soc. 169 (2022) 034502.
doi: 10.1149/1945-7111/ac554d
-
[89]
Y. Wang, T. Liu, L. Lei, F. Chen, J. Power Sources 344 (2017) 119–127.
doi: 10.1016/j.jpowsour.2017.01.096
-
[90]
Y. Wang, T. Liu, S. Fang, et al., J. Power Sources 277 (2015) 261–267.
doi: 10.1016/j.jpowsour.2014.11.092
-
[91]
P. Schwach, X. Pan, X. Bao, Chem. Rev. 117 (2017) 8497–8520.
doi: 10.1021/acs.chemrev.6b00715
-
[92]
S. Zhang, C. Xu, R. Ren, et al., ACS Appl. Mater. Interfaces 16 (2024) 3451–3459.
doi: 10.1021/acsami.3c16107
-
[93]
M. Qin, S. Zhang, W. Sun, et al., Ceram. Int. 49 (2023) 30178–30186.
doi: 10.1016/j.ceramint.2023.06.274
-
[94]
L. Lei, Y. Wang, S. Fang, et al., Appl. Energy 173 (2016) 52–58.
doi: 10.1016/j.apenergy.2016.03.116
-
[95]
B. Ewan, O. Adeniyi, Energies 6 (2013) 1657–1668.
doi: 10.3390/en6031657
-
[96]
T.L. Skafte, P. Blennow, J. Hjelm, C. Graves, J. Power Sources 373 (2018) 54–60.
doi: 10.1016/j.jpowsour.2017.10.097
-
[97]
V. Duboviks, M. Lomberg, R. Maher, et al., J. Power Sources 293 (2015) 912–921.
doi: 10.1016/j.jpowsour.2015.06.003
-
[98]
Y. Tao, S.D. Ebbesen, M.B. Mogensen, J. Electrochem. Soc. 161 (2014) F337–F343.
doi: 10.1149/2.079403jes
-
[99]
Y.H. Niu, W.R. Huo, Y.D. Yu, et al., Chin. Chem. Lett. 33 (2022) 674–682.
doi: 10.1016/j.cclet.2021.07.037
-
[100]
X.X. Zhang, B. Liu, Y.L. Yang, et al., Chin. Chem. Lett. 34 (2023) 108035.
doi: 10.1016/j.cclet.2022.108035
-
[101]
P. Zhang, J. Chang, F. Qu, et al., ACS Sustain. Chem. Eng. 12 (2024) 1561–1572.
doi: 10.1021/acssuschemeng.3c06791
-
[102]
F. Bidrawn, G. Kim, G. Corre, et al., Electrochem. Solid-State Lett. 11 (2008) B167.
doi: 10.1149/1.2943664
-
[103]
L. Ye, C. Pan, M. Zhang, et al., ACS Appl. Mater. Interfaces 9 (2017) 25350–25357.
doi: 10.1021/acsami.7b07039
-
[104]
M. Pidburtnyi, B. Zanca, C. Coppex, S. Jimenez-Villegas, V. Thangadurai, Chem. Mater. 33 (2021) 4249–4268.
doi: 10.1021/acs.chemmater.1c00771
-
[105]
P. Qiu, S. Sun, J. Li, L. Jia, Sep. Purif. Technol. 298 (2022) 121581.
doi: 10.1016/j.seppur.2022.121581
-
[106]
T.H. Shin, J.H. Myung, M. Verbraeken, G. Kim, J.T. Irvine, Faraday Discuss. 182 (2015) 227–239.
doi: 10.1039/C5FD00025D
-
[107]
J. Zhu, W. Zhang, Y. Li, et al., Appl. Catal. B 268 (2020) 118389.
doi: 10.1016/j.apcatb.2019.118389
-
[108]
D.J. Deka, S. Gunduz, T. Fitzgerald, J.T. Miller, Appl. Catal. B 248 (2019) 487–503.
doi: 10.1016/j.apcatb.2019.02.045
-
[109]
V.S. Kudyakova, B.V. Politov, O.V. Merkulov, A.Y. Suntsov, Mater. Res. Bull. 149 (2022) 111717.
doi: 10.1016/j.materresbull.2021.111717
-
[110]
G. Tsekouras, D. Neagu, J.T.S. Irvine, Energy Environ. Sci. 6 (2013) 256–266.
doi: 10.1039/C2EE22547F
-
[111]
C. Xu, S. Zhen, R. Ren, et al., Chem. Commun. 55 (2019) 8009–8012.
doi: 10.1039/c9cc03455b
-
[112]
F. He, M. Hou, F. Zhu, et al., Adv. Energy Mater. 12 (2022) 2202175.
doi: 10.1002/aenm.202202175
-
[113]
S. Hu, L. Zhang, H. Liu, et al., J. Power Sources 443 (2019) 227268.
doi: 10.1016/j.jpowsour.2019.227268
-
[114]
Y. Tian, L. Zhang, Y. Liu, et al., J. Mater. Chem. A 7 (2019) 6395–6400.
doi: 10.1039/c9ta00643e
-
[115]
M. Asamoto, S. Miyake, K. Sugihara, H. Yahiro, Electrochem. Commun. 11 (2009) 1508–1511.
doi: 10.1016/j.elecom.2009.05.042
-
[116]
T. Takeguchi, Y. Kani, T. Yano, et al., J. Power Sources 112 (2002) 588–595.
doi: 10.1016/S0378-7753(02)00471-8
-
[117]
Y. Tian, Y. Liu, A. Naden, et al., J. Mater. Chem. A 8 (2020) 14895–14899.
doi: 10.1039/d0ta05518b
-
[118]
H. Li, W. Wang, L. Wang, et al., ACS Appl. Mater. Interfaces 15 (2023) 43732–43744.
doi: 10.1021/acsami.3c08561
-
[119]
W. Lin, W. Su, Y. Li, et al., Small 19 (2023) e2303305.
doi: 10.1002/smll.202303305
-
[120]
D. Neagu, T.S. Oh, D.N. Miller, et al., Nat. Commun. 6 (2015) 8120.
doi: 10.1038/ncomms9120
-
[121]
A. Staykov, H. Tellez, J. Druce, et al., Sci. Technol. Adv. Mater. 19 (2018) 221–230.
doi: 10.1080/14686996.2018.1440136
-
[122]
J. Yan, H. Chen, E. Dogdibegovic, et al., J. Power Sources 252 (2014) 79–84.
doi: 10.1016/j.jpowsour.2013.11.047
-
[123]
T.L. Skafte, Z. Guan, M.L. Machala, et al., Nat. Energy 4 (2019) 846–855.
doi: 10.1038/s41560-019-0457-4
-
[124]
Z. Li, M. Peng, Y. Zhu, et al., J. Mater. Chem. A 10 (2022) 20350–20364.
doi: 10.1039/d2ta05827h
-
[125]
L. Zhang, S. Hu, W. Li, et al., ACS Sustain. Chem. Eng. 7 (2019) 9629–9636.
doi: 10.1021/acssuschemeng.9b01183
-
[126]
S. Lee, M. Kim, K.T. Lee, J.T.S. Irvine, T.H. Shin, Adv. Energy Mater. 11 (2021) 2100339.
doi: 10.1002/aenm.202100339
-
[127]
Y.Q. Zhang, J.H. Li, Y.F. Sun, B. Hua, J.L. Luo, ACS Appl. Mater. Interfaces 8 (2016) 6457–6463.
doi: 10.1021/acsami.5b11979
-
[128]
J. Ni, L. Chen, J. Lin, S. Kawi, Nano Energy 1 (2012) 674–686.
doi: 10.1016/j.nanoen.2012.07.011
-
[129]
S. Tao, J.T. Irvine, Nat. Mater. 2 (2003) 320–323.
doi: 10.1038/nmat871
-
[130]
X. Yue, J.T.S. Irvine, J. Electrochem. Soc. 159 (2012) F442–F448.
doi: 10.1149/2.040208jes
-
[131]
C. Cui, Y. Wang, Y. Tong, et al., Int. J. Hydrogen Energy 46 (2021) 20305–20312.
doi: 10.1016/j.ijhydene.2021.03.177
-
[132]
J. Lu, C. Zhu, C. Pan, et al., Sci. Adv. 4 (2018) eaar5100.
doi: 10.1126/sciadv.aar5100
-
[133]
Z. Wang, Y. Tian, Y. Li, J. Power Sources 196 (2011) 6104–6109.
doi: 10.1016/j.jpowsour.2011.03.053
-
[134]
K. Zheng, K. Świerczek, N.M. Carcases, T. Norby, ECS Trans. 64 (2014) 103.
doi: 10.1149/06402.0103ecst
-
[135]
V. Kyriakou, D. Neagu, G. Zafeiropoulos, et al., ACS Catal. 10 (2019) 1278–1288.
-
[136]
C. Zhu, S. Hou, X. Hu, et al., Nat. Commun. 10 (2019) 1173.
doi: 10.1038/s41467-019-09083-3
-
[137]
X. Sun, H. Yang, B. Chen, et al., ACS Catal. 14 (2024) 5827–5837.
doi: 10.1021/acscatal.3c04731
-
[138]
M. Karthikeyan, D.M. Mahapatra, A.S.A. Razak, et al., Catal. Rev. 4 (2022) 997–1027.
-
[139]
X. Zhang, J. Liu, R. Li, et al., J. Colloid Interface Sci. 645 (2023) 956–963.
doi: 10.1016/j.jcis.2023.05.011
-
[140]
L.E. Lucchetti, J.M. de Almeida, S. Siahrostami, EES Catal. 2 (2024) 1037–1058.
doi: 10.1039/d4ey00104d
-
[141]
M. Sun, B. Huang, M, Adv. Energy Mater. 13 (2023) 2301948.
doi: 10.1002/aenm.202301948
-
[142]
D. Roy, A. Das, S. Manna, B. Pathak, J. Phys. Chem. C 127 (2023) 871–881.
doi: 10.1021/acs.jpcc.2c06924