Citation: Yanqiu Xu, Xuanli Chen, Yin Li, Keyu Zhang, Shaoze Zhang, Junxian Hu, Yaochun Yao. Progress in Na2FePO4F cathodes for energy storage: Fabrication, modification and application[J]. Chinese Chemical Letters, ;2025, 36(12): 110574. doi: 10.1016/j.cclet.2024.110574 shu

Progress in Na2FePO4F cathodes for energy storage: Fabrication, modification and application

    * Corresponding authors.
    E-mail addresses: hujunxian@kust.edu.cn (J. Hu), yaochun9796@163.com (Y. Yao).
  • Received Date: 9 September 2024
    Revised Date: 3 October 2024
    Accepted Date: 22 October 2024
    Available Online: 29 October 2024

Figures(8)

  • Sodium-ion batteries (SIBs) are the promising rechargeable batteries in large-scale energy storage systems for their low cost, high safety, wide temperature range adaptability, environmental friendliness and excellent fast-charging capabilities. Significant research endeavors in SIBs have focused on the exploration of high-performance electrode materials and thorough investigation of their mechanisms. Na2FePO4F (NFPF) is one of potential cathode materials because of low cost, minimal volume strain and extended cycle performance. This review summarizes the crystal structure, sodium ion migration pathways, and synthesis methods of NFPF and discusses the effect of various strategies including hybridization with carbon materials, ion doping, morphology control and electrolyte optimization on its electrochemical performance. Additionally, the application of the NFPF in different batteries is summarized. Finally, the challenges and future directions of NFPF are proposed. This review is both timely and important for promoting the applications of cost-effective NFPF.
  • 加载中
    1. [1]

      M. Höök, X. Tang, Energy Policy 52 (2013) 797–809.

    2. [2]

      X. Deng, J. Li, L. Ma, et al., Mater. Chem. Front. 3 (2019) 2221–2245.  doi: 10.1039/c9qm00425d

    3. [3]

      A. Noori, M.F. El-Kady, M.S. Rahmanifar, et al., Chem. Soc. Rev. 48 (2019) 1272–1341.  doi: 10.1039/c8cs00581h

    4. [4]

      Y. Jiang, Z. Zhang, H. Liao, et al., ACS Nano 18 (2024) 7796–7824.  doi: 10.1021/acsnano.4c00613

    5. [5]

      S.T. Myung, Y.-K. Sun, Chem. Soc. Rev. 46 (2017) 3529–3614.

    6. [6]

      B. Scrosati, J. Garche, J. Power Sources 195 (2010) 2419–2430.

    7. [7]

      Y. Li, Y. Lu, C. Zhao, et al., Energy Storage Mater. 7 (2017) 130–151.

    8. [8]

      H. PAN, Y.-S. HU, H. LI, et al., Sci. Sin. Chim. 44 (2014) 1269–1279.

    9. [9]

      Q. Wang, S. Chu, S. Guo, Chin. Chem. Lett. 31 (2020) 2167–2176.

    10. [10]

      Q. Liu, Z. Hu, M. Chen, et al., Adv. Funct. Mater. 30 (2020) 1909530.

    11. [11]

      H. Gao, J. Zeng, Z. Sun, et al., Mater. Today Energy 42 (2024) 101551.

    12. [12]

      Q. Ni, Y. Bai, F. Wu, et al., Adv. Sci. 4 (2017) 1600275.

    13. [13]

      P. Barpanda, L. Lander, S.I. Nishimura, et al., Adv. Energy Mater. 8 (2018) 1703055.

    14. [14]

      J. Ning, J. Hu, M. Zhou, et al., Chem. Eng. J. 489 (2024) 151531.

    15. [15]

      J. Peng, Y. Liao, Y. Zhang, et al., ACS Appl. Nano Mater. (2023) 10.1021/acsanm.3c03981.  doi: 10.1021/acsanm.3c03981

    16. [16]

      D. Yuan, X. Liang, L. Wu, et al., Adv. Mater. 26 (2014) 6301–6306.  doi: 10.1002/adma.201401946

    17. [17]

      L.N. Zhao, T. Zhang, H.L. Zhao, et al., Mater. Today Nano 10 (2020) 100072.

    18. [18]

      N.V. Kosova, V.R. Podugolnikov, E.T. Devyatkina, et al., Mater. Res. Bull. 60 (2014) 849–857.

    19. [19]

      P. Moreau, D. Guyomard, J. Gaubicher, et al., Chem. Mater. 22 (2010) 4126–4128.  doi: 10.1021/cm101377h

    20. [20]

      H. Liao, Z. Zhang, Y. Zheng, et al., Energy Storage Mater. 65 (2024) 103157.

    21. [21]

      S.M. Oh, S.T. Myung, J. Hassoun, et al., Electrochem. Commun. 22 (2012) 149–152.

    22. [22]

      A. Maxim, D.L. Chris, T.Thiam Teck, et al., Inorg. Chem. 53 (2013) 682–684.

    23. [23]

      B.L. Ellis, W.R.M. Makahnouk, Y. Makimura, et al., Nat. Mater. 6 (2007) 749–753.  doi: 10.1038/nmat2007

    24. [24]

      Z. El Kacemi, L. Fkhar, K. El Maalam, et al., J. Mol. Struct. 1312 (2024) 138524.

    25. [25]

      Z. El Kacemi, Z. Mansouri, A. Benyoussef, et al., Comput. Mater. Sci. 206 (2022) 111292.

    26. [26]

      V.T. Ivan, A.A. Dmitry, A.D. Oleg, et al., J. Am. Chem. Soc. 140 (2018) 3994–4003.

    27. [27]

      L. Zhu, H. Wang, D. Sun, et al., J. Mater. Chem. A 8 (2020) 21387–21407.  doi: 10.1039/d0ta07872g

    28. [28]

      J. Di, Q. Hailong, D. Fei, et al., Solid State Sci. 93 (2019) 62–69.  doi: 10.1109/mwc.2019.1800301

    29. [29]

      S. Weixin, J. Xiaobo, W. Zhengping, et al., J. Mater. Chem. A 2 (2014) 2571–2577.

    30. [30]

      L. Qi, L. Zigeng, Z. Feng, et al., Angew. Chem. Int. Ed. 57 (2018) 11918–11923.

    31. [31]

      Z.R. Deng, L.L. Zhang, F. Pei, et al., Small 20 (2024) 2400149.

    32. [32]

      R. Tripathi, S.M. Wood, M.S. Islam, et al., Energy Environ. Sci. 6 (2013) 2257–2264.  doi: 10.1039/c3ee40914g

    33. [33]

      M. Avdeev, Z. Mohamed, C.D. Ling, et al., Inorg. Chem. 52 (2013) 8685–8693.  doi: 10.1021/ic400870x

    34. [34]

      S. Chikashi, M. Yusuke, N. Shin-ichi, et al., J. Comput. Chem. 40 (2018) 239–248.

    35. [35]

      Y. Gong, X. Gao, L. Sheng, et al., Electrochim. Acta 439 (2023) 141670.

    36. [36]

      B. Magali, K. Natacha, P.H. Raphaël, et al., Mater. Lett. 130 (2014) 263–266.

    37. [37]

      L. Haiming, W. Tailin, W. Xue, et al., Chem. Eur. J. 27 (2021) 9022–9030.

    38. [38]

      Z. Liu, L. Li, J. Chen, et al., J. Alloys Compd. 855 (2021) 157485.

    39. [39]

      S. Hua, S. Cai, R. Ling, et al., Inorg. Chem. Commun. 95 (2018) 90–94.

    40. [40]

      J. Xun, Y. Zhang, B. Zhang, et al., ACS Appl. Energy Mater. 3 (2020) 6232–6239.  doi: 10.1021/acsaem.0c00323

    41. [41]

      S. Lalit, B. Ankush, A. Loïc, et al., Ionics 24 (2017) 2187–2192.

    42. [42]

      W. Fanfan, Z. Ning, Z. Xudong, et al., Adv. Sci. 6 (2019) 1900649.

    43. [43]

      B. Magali, C. Sébastien, T.S. Moulay, et al., Sol. Energy Mater. Sol. Cells 148 (2016) 67–72.

    44. [44]

      L. Zhaozhao, C. Hongxia, L. Xilin, et al., J. Mater. Sci. Mater. Electron. 33 (2022) 6898–6910.

    45. [45]

      S. Tang, X. Zhang, Y. Sui, et al., Front. Chem. 8 (2020) 633949.

    46. [46]

      L. Huangxu, W. Taosheng, W. Sha, et al., ACS Sustain. Chem. Eng. 9 (2021) 11798–11806.

    47. [47]

      Y. Guo, X. Wang, Y. Shen, et al., J. Mater. Sci. 57 (2022) 58–104.

    48. [48]

      H. Huang, Y. Xia, Y. Hao, et al., Adv. Funct. Mater. 33 (2023) 2305109.

    49. [49]

      R. Ling, S. Cai, D. Xie, et al., J. Mater. Sci. 53 (2017) 2735–2747.

    50. [50]

      H. Hu, Y. Bai, C. Miao, et al., J. Electroanal. Chem. 867 (2020) 114187.

    51. [51]

      K. Yoshiteru, Y. Naoaki, K. Masataka, et al., Electrochem. Commun. 13 (2011) 1225–1228.

    52. [52]

      D. Xiang, S. Wenxiang, S. Jaka, et al., ACS Appl. Mater. Interfaces 9 (2017) 16280–16287.

    53. [53]

      Y. Cao, X.L. Li, X. Dong, et al., Small 18 (2022) 2204830.

    54. [54]

      Y. Jianhua, L. Xingbo, L. Bingyun, Electrochem. Commun. 56 (2015) 46–50.

    55. [55]

      L. Markas, R. Vishwanathan, B. Palani, RSC Adv. 5 (2015) 50155–50164.

    56. [56]

      T.-U. Atsushi, T. Hirotaka, H. Takuya, et al., J. Ceram. Soc. Jpn. 126 (2018) 336–340.

    57. [57]

      Z. El Kacemi, L. Fkhar, K. El Maalam, et al., Solid State Ionics 392 (2023) 116167.

    58. [58]

      S.K. Jesse, V.T.D.N. Vicky, K. Hyung-Seok, et al., J. Mater. Chem. A 5 (2017) 18707–18715.

    59. [59]

      D. Jiemin, X. Jingchao, Y. Yifan, et al., Energy Storage Mater. 45 (2021) 851–860.

    60. [60]

      L. He, X. Ge, X. Wang, et al., Energy Storage Mater. 61 (2023) 102905.

    61. [61]

      L. Wang, H. Tian, X. Yao, et al., Micromachines 15 (2023) 15.

    62. [62]

      F. Guo, S. Wang, G. Liu, et al., Electrochemistry 90 (2022) 117003.  doi: 10.5796/electrochemistry.22-00103

    63. [63]

      L. Quan, M. Liu, Z. Wang, et al., Chem. Eng. Sci. 299 (2024) 120522.

    64. [64]

      Y. Liu, S. Li, Z.Y. Gu, et al., Energy Storage Mater. 68 (2024) 103319.

    65. [65]

      K. Yoshiteru, Y. Naoaki, K. Masataka, et al., Electrochemistry 80 (2012) 80–84.

    66. [66]

      Y. Xie, H. Wang, R. Liu, et al., J. Electrochem. Soc. 164 (2017) A3487–A3492.  doi: 10.1149/2.0281714jes

    67. [67]

      R. Ling, S. Cai, S. Shen, et al., J. Alloys Compd. 704 (2017) 631–640.

    68. [68]

      L. Alex, X. Yunhua, L. Yihang, et al., J. Power Sources 223 (2012) 62–67.

    69. [69]

      J. Zhang, X. Zhou, Y. Wang, et al., Small 15 (2019) e1903723.

    70. [70]

      Y. Lei, J. Zhang, X. Chen, et al., Mater. Today Energy 26 (2022) 100997.

    71. [71]

      A.K. Maria, S.A. Alexey, A.A. Dmitry, et al., Inorg. Chem. 59 (2020) 16225–16237.

    72. [72]

      S. Lalit, N. Prasant Kumar, L. Ezequiel de la, et al., ACS Appl. Mater. Interfaces 9 (2017) 34961–34969.

    73. [73]

      J. Bodart, N. Eshraghi, M.T. Sougrati, et al., J. Power Sources 555 (2023) 232410.

    74. [74]

      L. Haiming, W. Tailin, W. Xue, et al., Electrochim. Acta 373 (2021) 137905.

    75. [75]

      K. Wonseok, Y. Jung-Keun, P. Hyunyoung, et al., J. Power Sources 432 (2019) 1–7.

    76. [76]

      M. Inagaki, Carbon 50 (2012) 3247–3266.

    77. [77]

      A. Al-Kawaz, A. Rubin, N. Badi, et al., Mater. Chem. Phys. 175 (2016) 206–214.

    78. [78]

      A. Tyagi, R.S. Walia, Q. Murtaza, et al., Int. J. Refract. Met. Hard. Mater. 78 (2019) 107–122.

    79. [79]

      M. Abdelfattah, C. Sebastien, B. Magali, et al., J. Solid State Electrochem. 22 (2017) 103–112.

    80. [80]

      Q. Jiang, Y. Cai, X. Sang, et al., Energy Fuels 38 (2024) 10542–10559.  doi: 10.1021/acs.energyfuels.4c00918

    81. [81]

      Y. Chen, X. Li, K. Park, et al., Chemistry 3 (2017) 152–163.

    82. [82]

      L. He, H. Li, X. Ge, et al., Adv. Mater. Interfaces 9 (2022) 2200515.

    83. [83]

      J. Zhang, S. Ma, J. Zhang, et al., Nano Energy 128 (2024) 109814.

    84. [84]

      X. Han, Z. Liu, X. Hu, et al., Adv. Energy Sustain. Res. 5 (2023) 2300166.

    85. [85]

      Z.X. Huang, X.L. Zhang, X.X. Zhao, et al., Inorg. Chem. Front. 10 (2023) 37–48.  doi: 10.1039/d2qi02237k

    86. [86]

      J. Luo, Y. Zhang, E. Matios, et al., Nano Lett. 22 (2022) 1382–1390.  doi: 10.1021/acs.nanolett.1c04835

    87. [87]

      X. Wu, J. Zheng, Z. Gong, et al., J. Mater. Chem. 21 (2011) 18630–18637.  doi: 10.1039/c1jm13578c

    88. [88]

      C. Dongming, C. Shasha, H. Chang, et al., J. Power Sources 301 (2015) 87–92.

    89. [89]

      S. Lalit, N. Kosuke, S. Ryo, et al., ChemElectroChem 5 (2018) 1–7.

    90. [90]

      L.L. Albert, K. Soojeong, P. Baofei, et al., J. Power Sources 369 (2017) 133–137.

    91. [91]

      L.E. Brian, W.R.M. Makahnouk, W.N. Rowan-Weetaluktuk, et al., Chem. Mater. 22 (2009) 1059–1070.

    92. [92]

      H. Hu, Y. Wang, Y. Huang, et al., J. Cent. South Univ. 26 (2019) 1521–1529.  doi: 10.1007/s11771-019-4108-5

    93. [93]

      L. Mingjun, G. Rongting, L. Wei, et al., J. Electroanal. Chem. 922 (2022) 116772.

    94. [94]

      A. Huiting, L. Wei, L. Zheng, et al., J. Alloys Compd. 854 (2021) 157156.

    95. [95]

      Y. Niu, Y. Zhang, M. Xu, J. Mater. Chem. A 7 (2019) 15006–15025.  doi: 10.1039/c9ta04274a

  • 加载中
    1. [1]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    2. [2]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

    3. [3]

      Qiong SuChao HuSichan LiWenjun HuangJianyu DongRen SongLan XuGuozhao Fang . Sodium-ion batteries at low temperature: Storage mechanism and modification strategies. Chinese Chemical Letters, 2025, 36(12): 111267-. doi: 10.1016/j.cclet.2025.111267

    4. [4]

      Xuan WangPeng SunSiteng YuanLu YueYufeng Zhao . P2-type low-cost and moisture-stable cathode for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 110015-. doi: 10.1016/j.cclet.2024.110015

    5. [5]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    6. [6]

      Fanjun KongJing ZhangYuting TangChencheng SunChunfu LinTao ZhangWangsheng ChuLi SongLiang ZhangShi Tao . Introducing high-valence element into P2-type layered cathode material for high-rate sodium-ion batteries. Chinese Chemical Letters, 2025, 36(8): 110993-. doi: 10.1016/j.cclet.2025.110993

    7. [7]

      Wenya LiYuanqi YangYuqing YangMin LiangHuizi LiXi KeLiying LiuYan SunChunsheng LiZhicong ShiSu Ma . Insights into magnesium and titanium co-doping to stabilize the O3-type NaCrO2 cathode material for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(10): 110388-. doi: 10.1016/j.cclet.2024.110388

    8. [8]

      Hangwen ZhengZiqian WangHuiJie ZhangJing LeiRihui LiJian YangHaiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245

    9. [9]

      Zheng LiFangkun LiXijun XuJun ZengHangyu ZhangLei XiYiwen WuLinwei ZhaoJiahe ChenJun LiuYanping HuoShaomin Ji . A scalable approach to Na4Fe3(PO4)2P2O7@carbon/expanded graphite as cathode for ultralong-lifespan and low-temperature sodium-ion batteries. Chinese Chemical Letters, 2025, 36(10): 110390-. doi: 10.1016/j.cclet.2024.110390

    10. [10]

      Yanxue WuXijun XuShanshan ShiFangkun LiShaomin JiJingwei ZhaoJun LiuYanping Huo . Facile construction of Cu2-xSe@C nanobelts as anode for superior sodium-ion storage. Chinese Chemical Letters, 2025, 36(6): 110062-. doi: 10.1016/j.cclet.2024.110062

    11. [11]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    12. [12]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    13. [13]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    14. [14]

      Weinan HuLi LiXinyu WangYongqiang ZhangMaoping SongLinlin ShiXinqi HaoSiyu Lu . Carbonized polymer dots: Illuminating synthesis pathways, optical frontiers, and photoelectronic breakthroughs. Chinese Chemical Letters, 2025, 36(11): 111612-. doi: 10.1016/j.cclet.2025.111612

    15. [15]

      Yao WangJun OuyangHuadong YuanJianmin LuoShihui ZouJianwei NaiXinyong TaoYujing Liu . Impact of local amorphous environment on the diffusion of sodium ions at the solid electrolyte interface in sodium-ion batteries. Chinese Chemical Letters, 2025, 36(10): 110412-. doi: 10.1016/j.cclet.2024.110412

    16. [16]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    17. [17]

      Liangju ZhaoShiyu QinFei WuLimin ZhuQing HanLingling XieXuejing QiuHongliang WeiLanhua YiXiaoyu Cao . Polycarbonyl conjugated porous polyimide as anode materials for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(8): 110246-. doi: 10.1016/j.cclet.2024.110246

    18. [18]

      Hong YinDanyang HanWei WangZhaohui HouMiao ZhouYe Hanİhsan ÇahaJoão CunhaMaryam KarimiZhixin TaiXinxin Cao . Bimetallic sulfide anodes based on heterojunction structures for high-performance sodium-ion battery anodes. Chinese Chemical Letters, 2025, 36(12): 110537-. doi: 10.1016/j.cclet.2024.110537

    19. [19]

      Jiaojiao LiangYouming PengZhichao XuYufei WangMenglong LiuXin LiuDi HuangYuehua WeiZengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452

    20. [20]

      Yining LiShimei WuLantao ChenHaosen FanYufei ZhangLingxing Zeng . Multiple yolks-shell cobalt phosphosulfide nanocrystals encapsulating into rich heteroatoms co-doped carbon frameworks for advanced sodium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(9): 110371-. doi: 10.1016/j.cclet.2024.110371

Metrics
  • PDF Downloads(0)
  • Abstract views(19)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return