Citation: Peiyang Du, Ling Yuan, Tong Bao, Yamin Xi, Jiaxin Li, Yin Bi, Luli Yin, Jing Wang, Chao Liu. Facet effect of metal-organic frameworks on supporting co-catalysts for photocatalytic hydrogen peroxide production[J]. Chinese Chemical Letters, ;2025, 36(11): 110472. doi: 10.1016/j.cclet.2024.110472 shu

Facet effect of metal-organic frameworks on supporting co-catalysts for photocatalytic hydrogen peroxide production

    * Corresponding authors.
    E-mail addresses: jingwang@sit.edu.cn (J. Wang), cliu@chem.ecnu.edu.cn (C. Liu).
    1 These authors contributed equally to this work.
  • Received Date: 22 July 2024
    Revised Date: 27 August 2024
    Accepted Date: 17 September 2024
    Available Online: 19 September 2024

Figures(5)

  • The facet effect of metal-organic frameworks (MOF) on regulating the property of loaded co-catalysts is an important but unexplored issue in the field of photocatalysis. In this work, a series of MIL-125-NH2 polyhedrons (MIL = Materials Institute Lavoisier) with facet exposure of {001}, {001}/{111} and {111} are synthesized and used to load Pd-based co-catalysts for photocatalytic oxygen reduction reaction (ORR) toward H2O2 production. The different facets with distinct chemical environments (Ti-O clusters on {111} facets and carboxyl ligands on {001} facets) result in the selective loading of Pd0 and PdO dominated cocatalysts on {001} and {111} facets, respectively. The {001}/{111} co-exposed MIL-125-NH2 thus enables the spatially separated loading of Pd0 and PdO dual cocatalysts respectively. Pd0 efficiently traps the photoexcited electrons and PdO trends to capture the holes, collaboratively promoting the directional separation of photogenerated electron-hole pairs. As a result, the photocatalytic ORR activity is significantly enhanced with a H2O2 production rate of 128.6 mmol L-1 g-1 h-1, superior than pristine and single cocatalyst modified MIL-125-NH2 samples. Our findings provide new insight into the design of high-performance photocatalysts.
  • 加载中
    1. [1]

      A. Santos, R.J. Lewis, G. Malta, et al., Ind. Eng. Chem. Res. 58 (2019) 12623–12631.  doi: 10.1021/acs.iecr.9b02211

    2. [2]

      S. Li, K. Rong, X. Wang, et al., Acta Phys. Chim. Sin. 40 (2024) 2403005.  doi: 10.3866/pku.whxb202403005

    3. [3]

      Y. Xue, Y. Wang, Z. Pan, et al., Angew. Chem. Int. Ed. 60 (2021) 10469–10480.  doi: 10.1002/anie.202011215

    4. [4]

      J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro, Angew. Chem. Int. Ed. 45 (2006) 6962–6984.  doi: 10.1002/anie.200503779

    5. [5]

      Z. Jiang, X. Xu, Y. Ma, et al., Nature 586 (2020) 549–554.  doi: 10.1038/s41586-020-2738-2

    6. [6]

      L. Zhou, W. Zhou, M. Yu, et al., J. Liaocheng Univ. (Nat. Sci. Ed. ) 37 (2024) 50–61.

    7. [7]

      C. Zhuang, Y. Chang, W. Li, et al., ACS Nano 18 (2024) 5206–5217.  doi: 10.1021/acsnano.4c00217

    8. [8]

      Q. Zhang, M. Zhou, G. Ren, et al., Nat. Commun. 11 (2020) 1731.

    9. [9]

      Z. Tian, C. Han, Y. Zhao, et al., Nat. Commun. 12 (2021) 2039.

    10. [10]

      B. He, Z. Wang, P. Xiao, et al., Adv. Mater. 34 (2022) 2203225.

    11. [11]

      K. Kim, J. Park, H. Kim, et al., ACS Catal. 9 (2019) 9206–9211.  doi: 10.1021/acscatal.9b02269

    12. [12]

      O. Tomita, T. Otsubo, M. Higashi, et al., ACS Catal. 6 (2016) 1134–1144.  doi: 10.1021/acscatal.5b01850

    13. [13]

      S. Li, K. Dong, M. Cai, et al., eScience (2024) 100208.

    14. [14]

      J. Luo, X. Wei, Y. Qiao, et al., Adv. Mater. 35 (2023) 2210110.

    15. [15]

      A. Wang, H. Liang, F. Chen, et al., Appl. Catal. B 310 (2022) 121336.

    16. [16]

      B. Liu, J. Du, G. Ke, et al., Adv. Funct. Mater. 32 (2022) 2111125.

    17. [17]

      L. Zhou, J. Lei, F. Wang, et al., Appl. Catal. B 288 (2021) 119993.

    18. [18]

      L. Shi, L. Yang, W. Zhou, et al., Small 14 (2018) 1703142.

    19. [19]

      H. Cheng, J. Cheng, L. Wang, et al., Chem. Mater. 34 (2022) 4259–4273.  doi: 10.1021/acs.chemmater.2c00936

    20. [20]

      C. Zhao, X. Wang, Y. Yin, et al., Angew. Chem. Int. Ed. 62 (2023) e202218318.

    21. [21]

      L. Yuan, C. Zhang, J. Wang, et al., Nano Res. 14 (2021) 3267–3273.  doi: 10.1007/s12274-021-3517-6

    22. [22]

      P. Das, J. Roeser, A. Thomas, Angew. Chem. Int. Ed. 62 (2023) e202304349.

    23. [23]

      M. Kou, Y. Wang, Y. Xu, et al., Angew. Chem. Int. Ed. 61 (2022) e202200413.

    24. [24]

      H. Wang, C. Yang, F. Chen, et al., Angew. Chem. Int. Ed. 61 (2022) e202202328.

    25. [25]

      L. Yuan, Y. Zou, L. Zhao, et al., Appl. Catal. B 318 (2022) 121859.

    26. [26]

      Y. Li, F. Ma, L. Zheng, et al., Mater. Horiz. 8 (2021) 2842–2850.  doi: 10.1039/d1mh00869b

    27. [27]

      J. Qiu, D. Dai, J. Yao, Coord. Chem. Rev. 501 (2024) 215597.

    28. [28]

      W. Liang, P. Wied, F. Carraro, et al., Chem. Rev. 121 (2021) 1077–1129.  doi: 10.1021/acs.chemrev.0c01029

    29. [29]

      B. He, Q. Zhang, Z. Pan, et al., Chem. Rev. 122 (2022) 10087–10125.  doi: 10.1021/acs.chemrev.1c00978

    30. [30]

      N.F. Suremann, B.D. McCarthy, W. Gschwind, et al., Chem. Rev. 123 (2023) 6545–6611.  doi: 10.1021/acs.chemrev.2c00587

    31. [31]

      J. Xiao, Q. Han, Y. Xie, et al., Environ. Sci. Technol. 51 (2017) 13380–13387.  doi: 10.1021/acs.est.7b04215

    32. [32]

      Q. Wang, T. Hisatomi, Q. Jia, et al., Nat. Mater. 15 (2016) 611–615.  doi: 10.1038/nmat4589

    33. [33]

      L. Bai, F. Ye, L. Li, et al., Small 13 (2017) 1701607.

    34. [34]

      R. Li, H. Han, F. Zhang, et al., Energy Environ. Sci. 7 (2014) 1369–1376.

    35. [35]

      M. Li, S. Yu, H. Huang, et al., Angew. Chem. Int. Ed. 58 (2019) 9517–9521.  doi: 10.1002/anie.201904921

    36. [36]

      L. Mu, Y. Zhao, A. Li, et al., Energy Environ. Sci. 9 (2016) 2463–2469.

    37. [37]

      R. Li, F. Zhang, D. Wang, et al., Nat. Commun. 4 (2013) 1432.

    38. [38]

      J. Pan, G. Liu, G.Q.M. Lu, et al., Angew. Chem. Int. Ed. 50 (2011) 2133–2137.  doi: 10.1002/anie.201006057

    39. [39]

      X.M. Cheng, X.Y. Dao, S.Q. Wang, et al., ACS Catal. 11 (2020) 650–658.

    40. [40]

      C. Zhou, S. Wang, Z. Zhao, et al., Adv. Funct. Mater. 28 (2018) 1801214.

    41. [41]

      J. Zhang, T. Bai, H. Huang, et al., Adv. Mater. 32 (2020) 2004747.

    42. [42]

      A. Meng, J. Zhang, D. Xu, et al., Appl. Catal. B 198 (2016) 286–294.

    43. [43]

      T. Liu, Z. Pan, J.J.M. Vequizo, et al., Nat. Commun. 13 (2022) 1034.

    44. [44]

      X. Xie, Y. Li, Z.Q. Liu, et al., Nature 458 (2009) 746–749.  doi: 10.1038/nature07877

    45. [45]

      W. Jiang, C. Ni, L. Zhang, et al., Angew. Chem. Int. Ed. 61 (2022) e202302575.

    46. [46]

      C.Y. Liu, X.R. Chen, H.X. Chen, et al., J. Am. Chem. Soc. 142 (2020) 6690–6697.  doi: 10.1021/jacs.0c00368

    47. [47]

      F.L. Li, Q. Shao, X. Huang, et al., Angew. Chem. Int. Ed. 57 (2018) 1888–1892.  doi: 10.1002/anie.201711376

    48. [48]

      L. Jiao, Y. Wang, H.L. Jiang, et al., Adv. Mater. 30 (2018) 1703663.

    49. [49]

      M.S. Yao, J.W. Xiu, Q.Q. Huang, et al., Angew. Chem. Int. Ed. 131 (2019) 15057–15061.  doi: 10.1002/ange.201907772

    50. [50]

      F. Guo, J.H. Guo, P. Wang, et al., Chem. Sci. 10 (2019) 4834–4838.  doi: 10.1039/c8sc05060k

    51. [51]

      J. Ge, D. He, W. Chen, et al., J. Am. Chem. Soc. 138 (2016) 13850–13853.  doi: 10.1021/jacs.6b09246

    52. [52]

      B.T. Meshesha, N. Barrabés, K. Föttinger, et al., Appl. Catal. B 117-118 (2012) 236–245.

    53. [53]

      T.J. Wang, F.M. Li, H. Huang, et al., Adv. Funct. Mater. 30 (2020) 2000534.

    54. [54]

      L. Yuan, C. Zhang, Y. Zou, et al., Adv. Funct. Mater. 33 (2023) 2214627.

    55. [55]

      Z. Sorinezami, H. Mansouri-Torshizi, M. Aminzadeh, J. Biomol. Struct. Dyn. 37 (2019) 4238–4250.  doi: 10.1080/07391102.2018.1546619

    56. [56]

      Y. Tian, W. Li, C. Zhao, et al., Appl. Catal. B 213 (2017) 136–146.  doi: 10.1145/3083187.3083198

    57. [57]

      C. Zhang, C. Xie, Y. Gao, et al., Angew. Chem. Int. Ed. 61 (2022) e202204108.

    58. [58]

      W. Li, X.S. Chu, F. Wang, et al., Appl. Catal. B 288 (2021) 120034.

    59. [59]

      M. Guo, Q. Meng, W. Chen, et al., Angew. Chem. Int. Ed. 62 (2023) e202305212.

    60. [60]

      Q. Wu, J. Cao, X. Wang, et al., Nat. Commun. 12 (2021) 483.

    61. [61]

      J.Y. Bai, L.J. Wang, Y.J. Zhang, et al., Appl. Catal. B 266 (2020) 118590.

    62. [62]

      X.M. Cheng, X.Y. Dao, S.Q. Wang, et al., ACS Catal. 11 (2021) 650–658.  doi: 10.1021/acscatal.0c04426

    63. [63]

      X.M. Cheng, P. Wang, S.Q. Wang, et al., ACS Appl. Mater. Interfaces 14 (2022) 32350–32359.  doi: 10.1021/acsami.2c05037

    64. [64]

      C. Zhou, S. Wang, Z. Zhao, et al., Adv. Funct. Mater. 28 (2018) 1801214.

    65. [65]

      H. Li, Y. Sun, B. Cai, et al., Appl. Catal. B 170-171 (2015) 206–214.

    66. [66]

      B. Xu, Y. Li, Y. Gao, et al., Appl. Catal. B 246 (2019) 140–148.

    67. [67]

      J.H. Lee, H. Cho, S.O. Park, Appl. Catal. B 284 (2021) 119690.

  • 加载中
    1. [1]

      Jiaming LiNa XuYafei ZhangHongjun DongChunmei Li . Research progress of heterogeneous photocatalyst for H2O2 production: A mini review. Chinese Chemical Letters, 2025, 36(11): 110470-. doi: 10.1016/j.cclet.2024.110470

    2. [2]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    3. [3]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    4. [4]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    5. [5]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    6. [6]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    7. [7]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    8. [8]

      Xingyan LiuKaili WuYacen TangNing QiYumeng ZhangYouzhou HeMin FuYanhui Ao . Ti3C2 MXene-derived TiO2@C attached on Bi2WO6 with oxygen vacancies to fabricate S-scheme heterojunction for photocatalytic antibiotics degradation and NO removal. Chinese Chemical Letters, 2025, 36(11): 110882-. doi: 10.1016/j.cclet.2025.110882

    9. [9]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    10. [10]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    11. [11]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    12. [12]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    13. [13]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    14. [14]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    15. [15]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    18. [18]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    19. [19]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    20. [20]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(1)
  • Abstract views(25)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return