Citation: Linxin Zheng, Shuai Li, Liuting Zhang, Tao Zhong, Xiuzhen Wang, Ting Bian, Petr Senin, Ying Wu. A MOF derived multi-phase FeNi3-S catalyst for efficient hydrogen storage in magnesium hydride[J]. Chinese Chemical Letters, ;2026, 37(1): 110414. doi: 10.1016/j.cclet.2024.110414 shu

A MOF derived multi-phase FeNi3-S catalyst for efficient hydrogen storage in magnesium hydride

    * Corresponding authors.
    E-mail addresses: zhanglt89@just.edu.cn (L. Zhang), wangxiuzhenhome@163.com (X. Wang), wuying@ncepu.edu.cn (Y. Wu).
    1 These authors contributed equally to this work.
  • Received Date: 3 June 2024
    Revised Date: 1 September 2024
    Accepted Date: 5 September 2024
    Available Online: 6 September 2024

Figures(5)

  • Magnesium hydride (MgH2) demonstrates immense potential as a solid-state hydrogen storage material, while its commercial utilization is impeded by the elevated operating temperature and sluggish reaction kinetics. Herein, a MOF derived multi-phase FeNi3-S catalyst was specially designed for efficient hydrogen storage in MgH2. Experiments confirmed that the incorporation of FeNi3-S into MgH2 significantly lowered the desorption temperature and accelerated the kinetics of hydrogen desorption and reabsorption. The initial dehydrogenation temperature of the MgH2 + 10 wt% FeNi3-S composite was 202 °C, which was 123 °C lower than that of pure MgH2. At 325 °C, the MgH2 + 10 wt% FeNi3-S composite released 6.57 wt% H2 (fully dehydrogenated) within 1000 s. Remarkably, MgH2 + 10 wt% FeNi3-S composite initiated rehydrogenation at room temperature and rapidly absorbed 2.49 wt% H2 within 30 min at 100 °C. Moreover, 6.3 wt% H2 was still retained after 20 cycles at 300 °C, demonstrating the superior cycling performance of the MgH2 + 10 wt% FeNi3-S composite. The activation energy fitting calculations further evidenced the addition of FeNi3-S enhanced the de/resorption kinetics of MgH2 (Ea = 98.6 kJ/mol and 43.3 kJ/mol, respectively). Through phase and microstructural analysis, it was determined that the exceptional hydrogen storage performance of the composite was attributed to the in-situ formation of Mg/Mg2Ni + Fe/MgS and MgH2/Mg2NiH4 + Fe/MgS hydrogen storage systems. Further mechanistic analysis revealed that Mg2Ni/Mg2NiH4 served as “hydrogen pump” and Fe/MgS served as “hydrogen diffusion channel”, thus accelerating the dissociation and recombination of hydrogen molecules. In conclusion, this work offers insight into catalysts combining transition metal alloys and transition metal sulfide for exerting muti-phase synergistic effect on boosting the dehydrogenation/hydrogenation reactions of MgH2, which can also inspire future pioneering work on designing and fabricating high efficient catalysts in other energy storage related areas.
  • 加载中
    1. [1]

      J.O. Abe, A.P.I. Popoola, E. Ajenifuja, et al., Int. J. Hydrog. Energy 44 (2019) 15072–15086.

    2. [2]

      M.R. Usman, Renew. Sustain. Energy Rev. 167 (2022) 112743.

    3. [3]

      E.H. Abdechafik, H.A. Ousaleh, S. Mehmood, et al., Int. J. Hydrog. Energy 52 (2024) 1182–1193.

    4. [4]

      O. Faye, J. Szpunar, U. Eduok, Int. J. Hydrog. Energy 47 (2022) 13771–13802.

    5. [5]

      Y. Wang, Y. Xue, A. Züttel, Chem. Soc. Rev. 53 (2024) 972–1003.  doi: 10.1039/d3cs00706e

    6. [6]

      X. Zhang, Y. Liu, X. Zhang, et al., Mater. Today Nano 9 (2020) 100064.

    7. [7]

      L. Ren, Y. Li, N. Zhang, et al., Nano Micro Lett. 15 (2023) 93.

    8. [8]

      C. Zhou, Y. Peng, Q. Zhang, J. Mater. Sci. Technol. 50 (2020) 178–183.

    9. [9]

      Y. Shang, C. Pistidda, G. Gizer, et al., J. Magn. Alloy. 9 (2021) 1837–1860.

    10. [10]

      V.V. Berezovets, R.V. Denys, I.Y. Zavaliy, et al., Int. J. Hydrog. Energy 47 (2022) 7289–7298.

    11. [11]

      Y. Zhang, G. Wu, J. Gu, et al., Rare Met. 43 (2024) 3260–3272.  doi: 10.1007/s12598-024-02627-7

    12. [12]

      J. Zhang, X. Ding, R. Chen, et al., J. Power Sources 548 (2022) 232037.

    13. [13]

      Y. Fu, Z. Ding, S. Ren, et al., Int. J. Hydrog. Energy 45 (2020) 28154–28162.

    14. [14]

      H. Huang, T. Xu, J. Chen, et al., Chem. Eng. J. 483 (2024) 149434.

    15. [15]

      S. Li, L. Zhang, F. Wu, et al., Chin. Chem. Lett. 36 (2025) 109566.

    16. [16]

      Y. Fu, L. Zhang, Y. Li, et al., J. Magn. Alloys. 11 (2023) 2927–2938.

    17. [17]

      X. Xie, B. Zhang, H. Kimura, et al., Chem. Eng. J. 464 (2023) 142630.

    18. [18]

      N.S. Norberg, T.S. Arthur, S.J. Fredrick, et al., J. Am. Chem. Soc. 133 (2011) 10679–10681.  doi: 10.1021/ja201791y

    19. [19]

      X. Li, Y. Fu, Y. Xie, et al., Int. J. Hydrog. Energy 46 (2021) 33186–33196.

    20. [20]

      X. Yang, Q. Hou, L. Yu, et al., Dalton Trans. 50 (2021) 1797–1807.  doi: 10.1039/d0dt03627g

    21. [21]

      M. Song, L. Zhang, Z. Yao, et al., Inorg. Chem. Front. 9 (2022) 3874–3884.  doi: 10.1039/d2qi00863g

    22. [22]

      P.K. Soni, A. Bhatnagar, M.A. Shaz, Int. J. Hydrogen Energy 48 (2023) 17970–17982.

    23. [23]

      D. Pukazhselvan, N. Nasani, P. Correia, et al., J. Power Sources 362 (2017) 174–183.

    24. [24]

      D. Pukazhselvan, K.S. Sandhya, D. Ramasamy, et al., ChemPhysChem 21 (2020) 1195–1201.  doi: 10.1002/cphc.202000031

    25. [25]

      B. Liu, B. Zhang, X. Chen, et al., Mater. Today Nano 17 (2022) 100168.

    26. [26]

      L. Li, G. Jiang, H. Tian, et al., Int. J. Hydrog. Energy 42 (2017) 28464–28472.

    27. [27]

      Y. Meng, J. Zhang, S. Ju, et al., J. Mater. Chem. A 11 (2023) 9762–9771.  doi: 10.1039/d3ta01029e

    28. [28]

      Z. Wang, Z. Ren, N. Jian, et al., J. Mater. Chem. A 6 (2018) 16177–16185.  doi: 10.1039/c8ta05437a

    29. [29]

      S. Guo, Z. Yu, Y. Li, et al., J. Alloy. Compd. 976 (2024) 173035.

    30. [30]

      L. Zhang, H. Yu, Z. Lu, et al. Chin. J. Chem. Eng. 43 (2022) 343–352.

    31. [31]

      Y. Fu, Z. Yu, S. Guo, et al., Chem. Eng. J. 458 (2023) 141337.

    32. [32]

      M. Pozzo, D. Alfè, Int. J. Hydrog. Energy 34 (2009) 1922–1930.

    33. [33]

      Z. Ding, Y. Fu, L. Zhang, et al., J. Alloy. Compd. 843 (2020) 156035.

    34. [34]

      W. He, F. Wang, Y. Gao, et al., Sustain. Energy Fuels 6 (2022) 3852–3857.  doi: 10.1039/d2se00886f

    35. [35]

      J. Mei, Y. Deng, X. Cheng, et al., Chin. Chem. Lett. 35 (2024) 108900.

    36. [36]

      W. Zhang, G. Xu, Y. Cheng, et al., Dalton Trans. 47 (2018) 5217–5225.  doi: 10.1039/c7dt04665k

    37. [37]

      W. Zhang, Y. Cheng, D. Han, et al., Energy 93 (2015) 625–630.

    38. [38]

      L. Zeng, Z. Lan, B. Li, et al., J. Magn. Alloy. 10 (2022) 3628–3640.

    39. [39]

      D. Zhou, K. Cui, Z. Zhou, et al., Int. J. Hydrog. Energy 46 (2021) 34369–34380.

    40. [40]

      Y. Qian, F. Zhang, S. Zhao, et al., Nano Energy 111 (2023) 108415.

    41. [41]

      Y. Chen, R. Zhang, L. Jiao, et al., Coord. Chem. Rev. 362 (2018) 1–23.

    42. [42]

      S. Zhang, Z. Huang, T.T. Isimjan, et al., Appl. Catal. B Environ. 343 (2024) 123448.

    43. [43]

      L. Ren, Y. Li, Z. Li, et al., Nano Micro Lett. 16 (2024) 160.

    44. [44]

      L. Zhang, L. Ji, Z. Yao, et al., Int. J. Hydrog. Energy 44 (2019) 21955–21964.

    45. [45]

      P. Wang, Z. Wang, Z. Tian, et al., Renew. Energy 160 (2020) 409–417.

    46. [46]

      P. Wang, Z. Tian, Z. Wang, et al., Int. J. Hydrog. Energy 46 (2021) 27107-27118.

    47. [47]

      Q. Hou, J. Zhang, Z. Zheng, et al., Dalton Trans. 51 (2022) 14960-14969.  doi: 10.1039/d2dt02425j

    48. [48]

      L. Ji, L. Zhang, X. Yang, et al., Dalton Trans. 49 (2020) 4146-4154.  doi: 10.1039/d0dt00230e

    49. [49]

      T. Zhong, T. Xu, L. Zhang, et al., J. Magn. Alloy. 13 (2025) 148-160.

  • 加载中
    1. [1]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    2. [2]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    3. [3]

      Lingyun ShenShenxiang YinQingshu ZhengZheming SunWei WangTao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580

    4. [4]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    5. [5]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    6. [6]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    7. [7]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    8. [8]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    9. [9]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    10. [10]

      Ying Yang Yonghan Wu Zixuan Li Lu Zhang Rongqin Lin Yefan Zhang Jiquan Liu Xiaohui Ning Yan Li Bin Cui . Visualization Simulation Experiment of Cyclic Voltammetry (CV) Based on Python. University Chemistry, 2025, 40(10): 233-242. doi: 10.12461/PKU.DXHX202412024

    11. [11]

      Zhuan ChenBo YangJun LiKun DuJiangchen FuXiao WuJiazhen CaoMingyang Xing . Environmentally safe storage and sustained release of hydrogen peroxide utilizing commercial hydrogel. Chinese Chemical Letters, 2025, 36(6): 110320-. doi: 10.1016/j.cclet.2024.110320

    12. [12]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    13. [13]

      Tengfei YangJingshuai XiaoXiao SunYan SongChaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691

    14. [14]

      Liangbo ZhangJun ChengYahui ShiKunjie HouQi AnJingyi LiBaohui CuiFei Chen . Efficient removal of tetracycline hydrochloride by ZnO/HNTs composites under visible light: Kinetics, degradation pathways and mechanism. Chinese Chemical Letters, 2025, 36(7): 110400-. doi: 10.1016/j.cclet.2024.110400

    15. [15]

      Longjian LiPing ZhangYongchong YuReyila TuerhongXiaoping SuLijuan HanEnzhou LiuJizhou Jiang . Electron trap-induced charge accumulation and surface reaction kinetics synergistically enhance overall nitrogen photofixation. Chinese Chemical Letters, 2025, 36(8): 111118-. doi: 10.1016/j.cclet.2025.111118

    16. [16]

      Yongyi LiJin HanXiangyu WangZhenwei WeiIn-situ reaction monitoring and kinetics study of photochemical reactions by optical focusing inductive electrospray mass spectrometry. Chinese Chemical Letters, 2025, 36(9): 110708-. doi: 10.1016/j.cclet.2024.110708

    17. [17]

      Ting ZhangBaojing HuangHong HuangAiling YanShiqiang LuXufang Qian . Visible light boosted Fenton-like reaction of carbon dot-Fe(Ⅲ) complex: Kinetics and mechanism insights. Chinese Chemical Letters, 2025, 36(11): 110885-. doi: 10.1016/j.cclet.2025.110885

    18. [18]

      Guang ZengYue ZengHuamin HuYaqing BaiFangjie NieJunfei DuanZhaoyong ChenQi-Long Zhu . Regulating pore structure and pseudo-graphitic phase of hard carbon anode towards enhanced sodium storage performance. Chinese Chemical Letters, 2025, 36(7): 110122-. doi: 10.1016/j.cclet.2024.110122

    19. [19]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    20. [20]

      Shengdong JingXiaoli PengShilan LiLong YuanShengjun LuYufei ZhangHaosen Fan . Synergistic realization of fast polysulfide redox kinetics and stable lithium anode in Li-S battery from CoNi-MOF/MXene derived CoNi@TiO2/C heterostructure. Chinese Chemical Letters, 2025, 36(10): 110732-. doi: 10.1016/j.cclet.2024.110732

Metrics
  • PDF Downloads(0)
  • Abstract views(6)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return