Citation: Junfei Yang, Ke Wang, Shuxin Sun, Tianqi Pei, Junxiu Li, Xunwei Gong, Cuixia Zheng, Yun Zhang, Qingling Song, Lei Wang. A "spore-like" oral nanodrug delivery platform for precision targeted therapy of inflammatory bowel disease[J]. Chinese Chemical Letters, ;2025, 36(3): 110180. doi: 10.1016/j.cclet.2024.110180 shu

A "spore-like" oral nanodrug delivery platform for precision targeted therapy of inflammatory bowel disease

    * Corresponding authors.
    E-mail addresses: songqingling@zzu.edu.cn (Q. Song), wanglei1@zzu.edu.cn (L. Wang).
  • Received Date: 9 April 2024
    Revised Date: 23 June 2024
    Accepted Date: 26 June 2024
    Available Online: 26 June 2024

Figures(5)

  • Colon-targeted oral drug delivery systems are one of the most promising therapeutic strategies for alleviating and curing inflammatory bowel disease (IBD), but they still face challenges in successfully passing through the harsh gastrointestinal environment and intestinal mucus barrier. To overcome the gastrointestinal barriers for oral drug delivery mentioned above, a "spore-like" oral nanodrug delivery platform (Cur/COS/SC NPs) has been developed. Firstly, chitooligosaccharides (COS) are encapsulated on the surface of Curcumin nanoparticles (Cur NPs) to form carrier-free nanoparticles (Cur/COS NPs). Subsequently, inspired by the natural high resistance of spore coat (SC), SC is chosen as the "protective umbrella" to encapsulate Cur/COS NPs for precision targeted therapy of IBD. After oral administration, SC can effectively protect NPs through the rugged gastrointestinal environment and exhibit excellent intestinal mucus penetration characteristics. Moreover, the negatively-charged Cur/COS/SC NPs specifically target positively-charged inflamed colon via electrostatic interactions. It is demonstrated that Cur/COS/SC NPs can promote the expression of tight junction proteins, inhibit aberrant activation of the Toll-like receptor 4/myeloid differentiation primary response gene 88/nuclear factor-κB (TLR4/MyD88/NF-κB) signaling pathway, and downregulate the levels of pro-inflammatory factors, exhibiting excellent anti-inflammatory effects. Notably, it is found that Cur/COS/SC NPs can significantly increase the richness and diversity of gut microbiota, and restore the homeostasis of gut microbiota by inhibiting pathogenic bacteria and promoting probiotics. Hence, Cur/COS/SC NPs provide a safe, efficient, and feasible new strategy for IBD treatment.
  • 加载中
    1. [1]

      A.T. Rahman, J. Shin, C.-H. Whang, et al., ACS Nano 17 (2023) 10996–11013.  doi: 10.1021/acsnano.3c03252

    2. [2]

      N.G. Kotla, Y. Rochev, Trends Mol. Med. 29 (2023) 241–253.

    3. [3]

      C. Yu, D. Wang, Z. Yang, T. Wang, Int. J. Mol. Sci. 23 (2022) 6939.  doi: 10.3390/ijms23136939

    4. [4]

      K. Rajamaki, A. Taira, R. Katainen, et al., Gastroenterol. 161 (2021) 592–607.

    5. [5]

      L. Liang, R. Lin, Y. Xie, et al., Int. J. Biol. Sci. 17 (2021) 2548–2560.  doi: 10.7150/ijbs.58671

    6. [6]

      J.F. Colombel, P. Rutgeerts, W. Reinisch, et al., Gastroenterol. 141 (2011) 1194–1201.

    7. [7]

      H.S. Sardo, F. Saremnejad, S. Bagheri, et al., Int. J. Pharm. 558 (2019) 367–379.

    8. [8]

      H. Liu, Z. Cai, F. Wang, et al., Adv. Sci. 8 (2021) 2101619.

    9. [9]

      D. Dehaini, R.H. Fang, L. Zhang, Bioeng. Transl. Med. 1 (2016) 30–46.  doi: 10.1002/btm2.10004

    10. [10]

      J. Wang, H. Pan, J. Li, et al., Chin. Chem. Lett. 34 (2023) 107828.

    11. [11]

      E. Wang, R. Han, M. Wu, et al., Chin. Chem. Lett. 35 (2024) 108361.

    12. [12]

      Y. Xu, N. Shrestha, V. Preat, A. Beloqui, J. Control. Release 322 (2020) 486–508.

    13. [13]

      A.M. dos Santos, S.G. Carvalho, A.B. Meneguin, et al., J. Control. Release 334 (2021) 353–366.

    14. [14]

      S. Davoodi, E. Foley, Front. Immunol. 10 (2020) 3128.

    15. [15]

      X. Zhu, K. Zhang, X. Teng, et al., Chem 9 (2023) 1094–1117.

    16. [16]

      H. Gou, H. Su, D. Liu, et al., Gastroenterology 165 (2023) 1404–1419.

    17. [17]

      R. Wu, R. Xiong, Y. Li, J. Chen, R. Yan, J. Autoimmun. 141 (2023) 103062.

    18. [18]

      J. Ni, G.D. Wu, L. Albenberg, V.T. Tomov, Nat. Rev. Gastroenterol. Hepatol. 14 (2017) 573–584.  doi: 10.1038/nrgastro.2017.88

    19. [19]

      M. Pesce, L. Seguella, A. Del Re, et al., Int. J. Mol. Sci. 23 (2022) 5466.  doi: 10.3390/ijms23105466

    20. [20]

      H. Luo, G. Cao, C. Luo, et al., Pharmacol. Res. 178 (2022) 106146.

    21. [21]

      Q. Song, H. Zhao, C. Zheng, et al., Adv. Funct. Mater. 31 (2021) 2104994.

    22. [22]

      Q. Song, C. Zheng, J. Jia, et al., Adv. Mater. 31 (2019) 1903793.

    23. [23]

      G. Christie, P. Setlow, Cell. Signalling. 74 (2020) 1093793.

    24. [24]

      J. Yin, L. Wei, N. Wang, X. Li, M. Miao, J. Ethnopharmacol. 289 (2022) 115041.

    25. [25]

      S.S. Kesharwani, R. Ahmad, M.A. Bakkari, et al., J. Controlled Release. 290 (2018) 165–179.

    26. [26]

      J.D. Lewis, M.T. Abreu, Gastroenterol. 152 (2017) 398–414.

    27. [27]

      J. Zhang, S. Li, F. -F. An, et al., Nanoscale. 7 (2015) 13503–13510.

    28. [28]

      Y. Wang, Y. Li, L. He, et al., Colloids Surf. B: Biointerfaces 203 (2021) 111756.

    29. [29]

      W. Xia, P. Liu, J. Zhang, J. Chen, Food Hydrocoll. 25 (2011) 170–179.

    30. [30]

      B. Zhu, H. He, D. Guo, M. Zhao, T. Hou, Food Hydrocoll. 102 (2020) 105567.

    31. [31]

      X. Wei, L. Yu, C. Zhang, et al., Carbohydr. Polym. 299 (2023) 120156.

    32. [32]

      Y. Wang, J. Lin, Z. Cheng, et al., Oxid. Med. Cell. Longevity. 2022 (2022) 5462390.

    33. [33]

      S. Zhao, Y. Li, Q. Liu, et al., Adv. Funct. Mater. 30 (2020) 2004692.

    34. [34]

      K. Wei, F. Gong, J. Wu, et al., ACS Nano 17 (2023) 21539–21552.  doi: 10.1021/acsnano.3c06551

    35. [35]

      X.Q. Sang, W.J. Yan, X.F. Qin, et al., Chin. J. Anal. Chem. 51 (2023) 100194.

    36. [36]

      E. Ricca, S.M. Cutting, J. Nanobiotechnol. 1 (2003) 6.

    37. [37]

      C.T. Nordgard, K.I. Draget, Adv. Drug Deliv. Rev. 124 (2018) 175–183.

    38. [38]

      C. Menzel, A. Bernkop-Schnuerch, Adv. Drug Deliv. Rev. 124 (2018) 164–174.

    39. [39]

      N.P. Gabrielson, H. Lu, L. Yin, et al., Angew. Chem. Int. Ed. 51 (2012) 1143–1147.  doi: 10.1002/anie.201104262

    40. [40]

      H.X. Wang, Z. Song, Y.H. Lao, et al., Proc. Nat. Acad. Sci. 115 (2018) 4903–4908.  doi: 10.1073/pnas.1712963115

    41. [41]

      F.J. Enguita, L.O. Martins, A.O. Henriques, M.A. Carrondo, J. Biol. Chem. 278 (2003) 19416–19425.

    42. [42]

      P. Moller, D.M. Jensen, D.V. Christophersen, et al., Environ. Mol. Mutagen. 56 (2015) 97–110.  doi: 10.1002/em.21899

    43. [43]

      W.T. Kuo, M.A. Odenwald, J.R. Turner, L. Zuo, Ann. NY Acad. Sci. 1514 (2022) 21–33.  doi: 10.1111/nyas.14798

    44. [44]

      X. Mao, R. Sun, Q. Wang, et al., Front. Immunol. 12 (2022) 817583.

    45. [45]

      N. Ma, D. Ma, X. Liu, et al., Environ. Int. 175 (2023) 107949.

    46. [46]

      Y.C. Lu, W.C. Yeh, P.S. Ohashi, Cytokine. 42 (2008) 145–151.

    47. [47]

      A. Lavelle, H. Sokol, Nat. Rev. Gastro. Hepat. 17 (2020) 223–237.  doi: 10.1038/s41575-019-0258-z

    48. [48]

      B. Chassaing, A.T. Gewirtz, Toxicol. Pathol. 42 (2014) 49–53.  doi: 10.1177/0192623313508481

    49. [49]

      H. Sokol, S. Jegou, C. McQuitty, et al., Gut Microbes 9 (2018) 55–60.

    50. [50]

      L. Mei, J. Guo, R. He, et al., Small 19 (2023) 202301129.

    51. [51]

      B. Zhang, X. Fan, H. Du, et al., ACS Nano 17 (2023) 6081–6094.  doi: 10.1021/acsnano.3c01005

    52. [52]

      C. Binda, L.R. Lopetuso, G. Rizzatti, et al., Digest. Liver Dis. 50 (2018) 421–428.

    53. [53]

      T. Magrone, E. Jirillo, Immun. Ageing 10 (2013) 31.

    54. [54]

      X. Zhong, Y. Zhao, L. Huang, et al., Front. Microbiol. 14 (2023) 1140498.

    55. [55]

      Y. Wang, X. Nan, Y. Zhao, et al., Microbiol. Spectrum. 9 (2021) e00105–21.

  • 加载中
    1. [1]

      Han WuYumei WangZekai RenHailin CongYouqing ShenBing Yu . The nanocarrier strategy for crossing the blood-brain barrier in glioma therapy. Chinese Chemical Letters, 2025, 36(4): 109996-. doi: 10.1016/j.cclet.2024.109996

    2. [2]

      Chao ZhangAi-Feng LiuShihui LiFang-Yuan ChenJun-Tao ZhangFang-Xing ZengHui-Chuan FengPing WangWen-Chao GengChuan-Rui MaDong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752

    3. [3]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    4. [4]

      Shuheng ZhangYuanyuan ZhangWanyu WangYuzhu HuXinchuan ChenBilan WangXiang Gao . A combination strategy of DOX and VEGFR-2 targeted inhibitor based on nanomicelle for enhancing lymphoma therapy. Chinese Chemical Letters, 2024, 35(12): 109658-. doi: 10.1016/j.cclet.2024.109658

    5. [5]

      Yu-Hui ZhangYe TianXianliang ShengChen-Shuang LiuLu-Qiang WeiJie WangYong Chen . Construction of a black phosphorous-based noncovalent multiple nanosupramolecular assembly for synergistic targeted photothermal and chemodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110193-. doi: 10.1016/j.cclet.2024.110193

    6. [6]

      Yihan ZhouDuo GaoYaying WangLi LiangQingyu ZhangWenwen HanJie WangChunliu ZhuXinxin ZhangYong Gan . Worm-like micelles facilitate the intestinal mucus diffusion and drug accumulation for enhancing colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108967-. doi: 10.1016/j.cclet.2023.108967

    7. [7]

      Shangqian ZhangJiaxuan LiXuan HuZelong ChenJunliang DongChenhao HuShuang ChaoYinghua LvYuxin PeiZhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314

    8. [8]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    9. [9]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    10. [10]

      Yu YanJiawei SongDongdong LiuZihan LiuJialing ChengZhiyang ChenYanfang YangWeizhe JiangHongliang WangJun YeYuling Liu . Simple and versatile in situ thermo-sensitive hydrogel for rectal administration of SZ-A to alleviate inflammation and repair mucosal barrier in ulcerative colitis. Chinese Chemical Letters, 2024, 35(6): 109736-. doi: 10.1016/j.cclet.2024.109736

    11. [11]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    12. [12]

      Jiayao Li Xinru Peng Shiwei Yin Changwei Wang Yirong Mo . Metastability of π-π stacking between the closed-shell ions of like charges. Chinese Journal of Structural Chemistry, 2024, 43(5): 100213-100213. doi: 10.1016/j.cjsc.2023.100213

    13. [13]

      Wenying CuiZhetong JinWentao FuChengshuo Shen . Flag-hinge-like highly luminescent chiral nanographenes with twist geometry. Chinese Chemical Letters, 2024, 35(11): 109667-. doi: 10.1016/j.cclet.2024.109667

    14. [14]

      Han HanBi-Te ChenJia-Rong DingJin-Ming SiTian-Jiao ZhouYi WangLei XingHu-Lin Jiang . A PDGFRβ-targeting nanodrill system for pancreatic fibrosis therapy. Chinese Chemical Letters, 2024, 35(10): 109583-. doi: 10.1016/j.cclet.2024.109583

    15. [15]

      Jialiang XUJiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245

    16. [16]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    17. [17]

      Botao QUQian WANGXiaogang NINGYuxin ZHOURuiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416

    18. [18]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    19. [19]

      Bin FangJiaqi YangLimin WangHaoqin LiJiaying GuoJiaxin ZhangQingyuan GuoBo PengKedi LiuMiaomiao XiHua BaiLi FuLin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913

    20. [20]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

Metrics
  • PDF Downloads(0)
  • Abstract views(135)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return