2D photocatalysts for hydrogen peroxide synthesis
-
* Corresponding author.
E-mail address: wang.qian@material.nagoya-u.ac.jp (Q. Wang).
Citation:
Liyong Ding, Zhenhua Pan, Qian Wang. 2D photocatalysts for hydrogen peroxide synthesis[J]. Chinese Chemical Letters,
;2024, 35(12): 110125.
doi:
10.1016/j.cclet.2024.110125
J. Campos-Martin, G. Blanco-Brieva, J. Fierro, Angew. Chem. Int. Ed. 45 (2006) 6962–6984.
doi: 10.1002/anie.200503779
L. Pi, J. Cai, L. Xiong, et al., Chem. Eng. J. 389 (2020) 123420.
doi: 10.1016/j.cej.2019.123420
Z. Lu, G. Chen, S. Siahrostami, et al., Nat. Catal. 1 (2018) 156–162.
doi: 10.1038/s41929-017-0017-x
Research and Markets, Hydrogen Peroxide Global Market Report 2023,
P. Landon, P. Collier, A. Papworth, et al., Chem. Commun. (2002) 2058–2059.
J. Lunsford, J. Catal. 216 (2003) 455–460.
doi: 10.1016/S0021-9517(02)00070-2
Y. Sun, L. Han, P. Strasser, Chem. Soc. Rev. 49 (2020) 6605–6631.
doi: 10.1039/d0cs00458h
Y. Tian, D. Deng, L. Xu, et al., Nano-Micro Lett. 15 (2023) 122.
doi: 10.1007/s40820-023-01067-9
S. Qu, H. Wu, Y. Ng, Adv. Energy Mater. 13 (2023) 2301047.
doi: 10.1002/aenm.202301047
N. Kaynan, B. Berke, O. Hazut, R. Yerushalmi, J. Mater. Chem. A 2 (2014) 13822–13826.
doi: 10.1039/C4TA03004D
T. Liu, Z. Pan, J. Vequizo, et al., Nat. Commun. 13 (2022) 1034.
doi: 10.1038/s41467-022-28686-x
Y. Zhang, C. Pan, G. Bian, et al., Nat. Energy 8 (2023) 361–371.
doi: 10.1038/s41560-023-01218-7
Y. Ye, J. Pan, F. Xie, et al., Proc. Natl. Acad. Sci. U. S. A. 118 (2021) e2103964118.
doi: 10.1073/pnas.2103964118
H. Hou, X. Zeng, X. Zhang, Angew. Chem. Int. Ed. 59 (2020) 17356–17376.
doi: 10.1002/anie.201911609
X. Zhang, H. Su, P. Cui, et al., Nat. Commun. 14 (2023) 7115.
doi: 10.1038/s41467-023-42887-y
H. Huang, Q. Zhang, R. Shi, et al., Appl. Catal. B: Environ. 317 (2022) 121731.
doi: 10.1016/j.apcatb.2022.121731
S. Wu, X. Quan, ACS ES&T Eng. 2 (2022) 1068–1079.
doi: 10.1021/acsestengg.1c00456
L. Wang, J. Zhang, Y. Zhang, et al., Small 18 (2022) 2104561.
doi: 10.1002/smll.202104561
L. Zhang, J. Zhang, H. Yu, J. Yu, Adv. Mater. 34 (2022) e2107668.
doi: 10.1002/adma.202107668
X. Xu, Y. Sui, W. Chen, et al., Appl. Catal. B: Environ. 341 (2024) 123271.
doi: 10.1016/j.apcatb.2023.123271
C. Feng, Z. Wu, K. Huang, et al., Adv. Mater. 34 (2022) 2200180.
doi: 10.1002/adma.202200180
L. Wang, H. Xu, Prog. Poly. Sci. 145 (2023) 101734.
doi: 10.1016/j.progpolymsci.2023.101734
Y. Zhou, Z. Wang, L. Huang, et al., Adv. Energy Mater. 11 (2021) 2003159.
doi: 10.1002/aenm.202003159
Y. Guo, X. Tong, N. Yang, Nano-Micro Lett. 15 (2023) 77.
doi: 10.1007/s40820-023-01052-2
X. Zeng, Y. Liu, X. Hu, X. Zhang, Green Chem. 23 (2021) 1466–1494.
doi: 10.1039/d0gc04236f
Z. Yong, T. Ma, Angew. Chem. Int. Ed. 62 (2023) e202308980.
doi: 10.1002/anie.202308980
H. Cheng, J. Cheng, L. Wang, H. Xu, Chem. Mater. 34 (2022) 4259–4273.
doi: 10.1021/acs.chemmater.2c00936
J. Ma, X. Peng, Z. Zhou, et al., Chin. Chem. Lett. 34 (2023) 108784.
doi: 10.1016/j.cclet.2023.108784
J. Tang, T. Zhao, D. Solanki, et al., Joule 5 (2021) 1432–1461.
doi: 10.1016/j.joule.2021.04.012
C. Qin, X. Wu, L. Tang, et al., Nat. Commun. 14 (2023) 5238.
doi: 10.1038/s41467-023-40991-7
E. Baur, C. Neuweiler, Helv. Chim. Acta 10 (1927) 901–907.
doi: 10.1002/hlca.192701001113
T. Gill, X. Zheng, Chem. Mater. 32 (2020) 6285–6294.
doi: 10.1021/acs.chemmater.0c02010
Y. Nosaka, A. Nosaka, Chem. Rev. 117 (2017) 11302–11336.
doi: 10.1021/acs.chemrev.7b00161
G. Eisenberg, Ind. Eng. Chem. Anal. Ed. 15 (1943) 327–328.
doi: 10.1021/i560117a011
V. Diesen, M. Jonsson, J. Phys. Chem. C 118 (2014) 10083–10087.
doi: 10.1021/jp500315u
K. Sahel, L. Elsellami, I. Mirali, et al., Appl. Catal. B: Environ. 188 (2016) 106–112.
doi: 10.1016/j.apcatb.2015.12.044
Y. Zhao, P. Zhang, Z. Yang, et al., Nat. Commun. 12 (2021) 3701.
doi: 10.1038/s41467-021-24048-1
C. Marquette, L. Blum, Anal. Bioanal. Chem. 385 (2006) 546–554.
doi: 10.1007/s00216-006-0439-9
T. Hirakawa, Y. Nosaka, J. Phys. Chem. C 112 (2008) 15818–15823.
doi: 10.1021/jp8055015
C. Chu, Q. Zhu, Z. Pan, et al., Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 6376–6382.
doi: 10.1073/pnas.1913403117
A. Keston, R. Brandt, Anal. Biochem. 11 (1965) 1–5.
doi: 10.1016/0003-2697(65)90034-5
C. Bernardini, G. Cappelletti, M. Dozzi, E. Selli, J. Photochem. Photobiol. A 211 (2010) 185–192.
doi: 10.1016/j.jphotochem.2010.03.006
C. Huckaba, F. Keyes, J. Am. Chem. Soc. 70 (1948) 1640–1644.
doi: 10.1021/ja01184a098
E. Jung, H. Shin, B. Lee, et al., Nat. Mater. 19 (2020) 436–442.
doi: 10.1038/s41563-019-0571-5
X. Shi, S. Siahrostami, G. Li, et al., Nat. Commun. 8 (2017) 701.
doi: 10.1038/s41467-017-00585-6
H. Cheng, H. Lv, J. Cheng, et al., Adv. Mater. 34 (2022) 2107480.
doi: 10.1002/adma.202107480
G. Li, P. Fu, Q. Yue, et al., Chem. Catal. 2 (2022) 1734–1747.
doi: 10.1016/j.checat.2022.05.002
D. Chen, W. Chen, Y. Wu, et al., Angew. Chem. Int. Ed. 62 (2023) e202217479.
doi: 10.1002/anie.202217479
X. Shi, Y. Zhang, S. Siahrostami, X. Zheng, Adv. Energy Mater. 8 (2018) 1801158.
doi: 10.1002/aenm.201801158
F. Liu, P. Zhou, Y. Hou, et al., Nat. Commun. 14 (2023) 4344.
doi: 10.1038/s41467-023-40007-4
Y. Mou, X. Wu, C. Qin, et al., Angew. Chem. Int. Ed. 62 (2023) e202309480.
doi: 10.1002/anie.202309480
J. Chang, Q. Li, J. Shi, et al., Angew. Chem. Int. Ed. 62 (2023) e202218868.
doi: 10.1002/anie.202218868
G. Moon, W. Kim, A. Bokare, et al., Energy Environ. Sci. 7 (2014) 4023–4028.
doi: 10.1039/C4EE02757D
R. Nogueira, M. Oliveira, W. Paterlini, Talanta 66 (2005) 86–91.
doi: 10.1016/j.talanta.2004.10.001
F. Kuttassery, Y. Ohsaki, A. Thomas, et al., Angew. Chem. Int. Ed. 62 (2023) e202308956.
doi: 10.1002/anie.202308956
V. Sanz, S. Marcos, J. Castillo, J. Galbán, J. Am. Chem. Soc. 127 (2005) 1038–1048.
doi: 10.1021/ja046830k
M. Zhou, Z. Diwu, N. Panchuk-Voloshina, R. Haugland, Anal. Biochem. 253 (1997) 162–168.
doi: 10.1006/abio.1997.2391
Z. Wu, M. Liu, Z. Liu, Y. Tian, J. Am. Chem. Soc. 142 (2020) 7532–7541.
doi: 10.1021/jacs.0c00771
S. Du, J. Lian, F. Zhang, Trans. Tianjin Univ. 28 (2021) 33–52.
J. Harbour, J. Tromp, M. Hair, Can. J. Chem. 63 (1985) 204–208.
doi: 10.1139/v85-032
V. Maurino, C. Minero, G. Mariella, E. Pelizzetti, Chem. Commun. (2005) 2627–2629.
doi: 10.1039/b418789j
M. Teranishi, S. Naya, H. Tada, J. Am. Chem. Soc. 132 (2010) 7850–7851.
doi: 10.1021/ja102651g
E. Goliaei, N. Seriani, J. Phys. Chem. C 123 (2019) 2855–2863.
doi: 10.1021/acs.jpcc.8b09300
Y. Liu, X. Zeng, X. Hu, et al., Catal. Today 335 (2019) 243–251.
doi: 10.1016/j.cattod.2018.11.053
Y. Liu, X. Zeng, C. Easton, et al., Nanoscale 12 (2020) 8775–8784.
doi: 10.1039/d0nr01611j
B. Liu, C. Bie, Y. Zhang, et al., Langmuir 37 (2021) 14114–14124.
doi: 10.1021/acs.langmuir.1c02360
C. Zhu, M. Zhu, Y. Sun, et al., ACS Appl. Energy Mater. 2 (2019) 8737–8746.
doi: 10.1021/acsaem.9b01712
C. Fu, L. Liu, Z. Li, et al., J. Phys. Chem. Lett. 14 (2023) 7690–7696.
doi: 10.1021/acs.jpclett.3c01865
Y. Wang, Y. Wang, J. Zhao, et al., Appl. Catal. B: Environ. 284 (2021) 119691.
doi: 10.1016/j.apcatb.2020.119691
W. Xie, Z. Huang, R. Wang, et al., J. Mater. Sci. 55 (2020) 11829–11840.
doi: 10.1007/s10853-020-04837-7
D. Tsukamoto, A. Shiro, Y. Shiraishi, et al., ACS Catal. 2 (2012) 599–603.
doi: 10.1021/cs2006873
M. Teranishi, R. Hoshino, S. Naya, H. Tada, Angew. Chem. Int. Ed. 55 (2016) 12773–12777.
doi: 10.1002/anie.201606734
S. Cao, T. Chan, Y. Lu, et al., Nano Energy 67 (2020) 104287.
doi: 10.1016/j.nanoen.2019.104287
X. Zeng, Z. Wang, N. Meng, et al., Appl. Catal. B: Environ. 202 (2017) 33–41.
doi: 10.1016/j.apcatb.2016.09.014
Y. Yang, Q. Wang, X. Zhang, et al., J. Mater. Chem. A 11 (2023) 1991–2001.
doi: 10.1039/d2ta08145h
J. Wang, J. Wang, S. Zuo, et al., Chin. Chem. Lett. 34 (2023) 108157.
doi: 10.1016/j.cclet.2023.108157
B. He, Z. Wang, P. Xiao, et al., Adv. Mater. 34 (2022) 2203225.
doi: 10.1002/adma.202203225
X. Dang, S. Wu, H. Zhao, ACS Sustain. Chem. Eng. 10 (2022) 4161–4172.
doi: 10.1021/acssuschemeng.1c07985
G. Han, F. Xu, B. Cheng, et al., Acta Phys. Chim. Sin. 38 (2022) 2112037.
doi: 10.3866/pku.whxb202112037
X. Meng, P. Zong, L. Wang, et al., Catal. Commun. 134 (2020) 105860.
doi: 10.1016/j.catcom.2019.105860
Z. Jiang, B. Cheng, Y. Zhang, et al., J. Mater. Sci. Technol. 124 (2022) 193–201.
doi: 10.1016/j.jmst.2022.01.029
B. Mishra, L. Biswal, S. Das, et al., Langmuir 39 (2023) 957–971.
doi: 10.1021/acs.langmuir.2c02315
X. Chen, W. Zhang, L. Zhang, et al., J. Mater. Chem. A 8 (2020) 18816–18825.
doi: 10.1039/d0ta05753c
L. Feng, B. Li, Y. Xiao, et al., Catal. Commun. 155 (2021) 106315.
doi: 10.1016/j.catcom.2021.106315
X. Yan, G. Yu, C. Xing, et al., Catal. Sci. Technol. 13 (2023) 3094–3105.
doi: 10.1039/d3cy00235g
X. Chen, W. Zhang, L. Zhang, et al., ACS Appl. Mater. Interfaces 13 (2021) 25868–25878.
doi: 10.1021/acsami.1c02953
S. Mansingh, K. Das, N. Priyadarshini, et al., Energy Fuels 37 (2023) 9873–9894.
doi: 10.1021/acs.energyfuels.3c00717
J. Low, J. Yu, M. Jaroniec, et al., Adv. Mater. 29 (2017) 1601694.
doi: 10.1002/adma.201601694
C. Pan, Z. Mao, X. Yuan, et al., Adv. Sci. 9 (2022) 2105747.
doi: 10.1002/advs.202105747
X. Yue, J. Fan, Q. Xiang, Adv. Funct. Mater. 32 (2021) 2110258.
X. Mao, X. Lang, Z. Wang, et al., J. Phys. Chem. Lett. 4 (2013) 3839–3844.
doi: 10.1021/jz402053p
W. Wang, Q. Song, Q. Luo, et al., Nat. Commun. 14 (2023) 2493.
doi: 10.1002/ps.7431
F. Haque, T. Daeneke, K. Kalantar-zadeh, J. Ou, Nano-Micro Lett. 10 (2018) 23.
doi: 10.1007/s40820-017-0176-y
H. Song, L. Wei, C. Chen, et al., J. Catal. 376 (2019) 198–208.
doi: 10.1016/j.jcat.2019.06.015
G. Jiang, X. You, B. An, et al., Appl. Surf. Sci. 618 (2023) 156656.
doi: 10.1016/j.apsusc.2023.156656
Y. Yang, H. Guo, D. Huang, et al., Chem. Eng. J. 479 (2024) 147863.
doi: 10.1016/j.cej.2023.147863
A. Tikoo, N. Lohia, S. Kondeti, P. Meduri, J. Mater. Chem. A 11 (2023) 14887–14899.
doi: 10.1039/d3ta02875e
W. Fang, L. Wang, X. Meng, C. Li, J. Alloy. Compd. 947 (2023) 169606.
doi: 10.1016/j.jallcom.2023.169606
Y. Li, Y. Zhao, H. Nie, et al., J. Mater. Chem. A 9 (2021) 515–522.
doi: 10.1039/d0ta10231h
R. Li, D. Zhang, Y. Shi, et al., J. Catal. 416 (2022) 322–331.
doi: 10.1016/j.jcat.2022.11.016
Y. Yang, H. Yu, M. Wu, et al., Appl. Catal. B: Environ. 325 (2023) 122307.
doi: 10.1016/j.apcatb.2022.122307
Y. Li, R. Jia, H. Lin, et al., Adv. Funct. Mater. 31 (2020) 2008420.
S. Thakur, T. Kshetri, N. Kim, J. Lee, J. Catal. 345 (2017) 78–86.
doi: 10.5958/2455-7129.2017.00011.5
Z. Tian, C. Han, Y. Zhao, et al., Nat. Commun. 12 (2021) 2039.
doi: 10.1038/s41467-021-22394-8
B. Jiang, D. Chen, N. Li, et al., Ind. Eng. Chem. Res. 62 (2023) 12974–12984.
doi: 10.1021/acs.iecr.3c01800
A. Tikoo, A. Koushik, P. Meduri, ACS Appl. Eng. Mater. 1 (2023) 1397–1407.
doi: 10.1021/acsaenm.3c00077
H. Chen, Y. Xing, S. Liu, et al., Chem. Eng. J. 462 (2023) 142038.
doi: 10.1016/j.cej.2023.142038
Y. Yang, B. Cheng, J. Yu, et al., Nano Res. 16 (2021) 4506–4514.
doi: 10.3390/app11104506
Z. Wang, B. Mi, Environ. Sci. Technol. 51 (2017) 8229–8244.
doi: 10.1021/acs.est.7b01466
K. Mak, C. Lee, J. Hone, et al., Phys. Rev. Lett. 105 (2010) 136805.
doi: 10.1103/PhysRevLett.105.136805
M. Bernardi, M. Palummo, J. Grossman, Nano Lett. 13 (2013) 3664–3670.
doi: 10.1021/nl401544y
U. Maitra, U. Gupta, M. De, et al., Angew. Chem. Int. Ed. 52 (2013) 13057–13061.
doi: 10.1002/anie.201306918
F. Bussolotti, J. Yang, H. Kawai, et al., ACS Nano 15 (2021) 2686–2697.
doi: 10.1021/acsnano.0c07982
L. Ding, R. Wei, H. Chen, et al., Appl. Catal. B: Environ. 172 (2015) 91–99.
L. Ding, M. Li, Y. Zhao, et al., Appl. Catal. B: Environ. 266 (2020) 118634.
doi: 10.1016/j.apcatb.2020.118634
X. Wu, H. Tan, C. Zhang, et al., Prog. Mater. Sci. 133 (2023) 101047.
doi: 10.1016/j.pmatsci.2022.101047
P. Chen, H. Liu, W. Cui, et al., EcoMat 2 (2020) e12047.
doi: 10.1002/eom2.12047
H. Hirakawa, S. Shiota, Y. Shiraishi, et al., ACS Catal. 6 (2016) 4976–4982.
doi: 10.1021/acscatal.6b01187
K. Wang, M. Wang, J. Yu, et al., ACS Appl. Nano Mater. 4 (2021) 13158–13166.
doi: 10.1021/acsanm.1c02688
H. Shi, Y. Li, K. Wang, et al., Chem. Eng. J. 443 (2022) 136429.
doi: 10.1016/j.cej.2022.136429
H. Shi, Y. Li, X. Wang, et al., Appl. Catal. B: Environ. 297 (2021) 120414.
doi: 10.1016/j.apcatb.2021.120414
K. Wang, Y. Li, H. Shi, et al., Adv. Sustain. Syst. 6 (2022) 2200144.
doi: 10.1002/adsu.202200144
K. Fuku, R. Takioka, K. Iwamura, et al., Appl. Catal. B: Environ. 272 (2020) 119003.
doi: 10.1016/j.apcatb.2020.119003
D. Dai, X. Bao, Q. Zhang, et al., Chem. Eur. J. 29 (2023) e202203765.
doi: 10.1002/chem.202203765
M. Sun, X. Wang, H. Pan, et al., J. Colloid Interf. Sci. 629 (2023) 215–224.
doi: 10.1016/j.jcis.2022.08.142
L. Wei, S. Liu, H.P. Wang, ACS Appl. Nano Mater. 5 (2022) 15378–15388.
doi: 10.1021/acsanm.2c03420
Y. Zeng, H. Fu, L. Liu, et al., ChemistrySelect 8 (2023) e202204286.
doi: 10.1002/slct.202204286
Y. Xu, H. Fu, L. Zhao, et al., New J. Chem. 45 (2021) 3335–3342.
doi: 10.1039/d0nj05506a
Y. Gong, Y. Yuan, B. Wang, et al., Mater. Lett. 351 (2023) 135122.
doi: 10.1016/j.matlet.2023.135122
W. Wang, X. Li, F. Deng, et al., Chin. Chem. Lett. 33 (2022) 5200–5207.
doi: 10.1016/j.cclet.2022.01.058
X. Li, J. Xiong, X. Gao, et al., J. Hazard. Mater. 387 (2020) 121690.
doi: 10.1016/j.jhazmat.2019.121690
S. Shen, X. Li, Y. Zhou, et al., J. Mater. Sci. Technol. 155 (2023) 148–159.
doi: 10.1016/j.jmst.2023.03.006
H. Zhang, J. Liu, Y. Zhang, et al., J. Mater. Sci. Technol. 166 (2023) 241–249.
doi: 10.1016/j.jmst.2023.05.030
X. Zhao, Y. You, S. Huang, et al., Appl. Catal. B: Environ. 278 (2020) 119251.
doi: 10.1016/j.apcatb.2020.119251
R. An, Y. Zhao, H. Bai, et al., J. Solid State Chem. 306 (2022) 122722.
doi: 10.1016/j.jssc.2021.122722
J. Wang, Y. Gong, M. Gao, et al., ACS Appl. Nano Mater. 7 (2023) 1067–1077.
A. Kudo, K. Omori, H. Kato, J. Am. Chem. Soc. 121 (1999) 11459–11467.
doi: 10.1021/ja992541y
Z. Xing, J. Hu, M. Ma, et al., J. Am. Chem. Soc. 141 (2019) 19715–19727.
doi: 10.1021/jacs.9b08651
J. Sheng, X. Li, Y. Xu, ACS Catal. 4 (2014) 732–737.
doi: 10.1021/cs400927w
Y. Ding, S. Maitra, S. Halder, et al., Matter 5 (2022) 2119–2167.
doi: 10.1016/j.matt.2022.05.011
J. Li, H. Li, G. Zhan, L. Zhang, Acc. Chem. Res. 50 (2017) 112–121.
doi: 10.1021/acs.accounts.6b00523
H. Li, J. Li, Z. Ai, et al., Angew. Chem. Int. Ed. 57 (2018) 122–138.
doi: 10.1002/anie.201705628
L. Ding, H. Chen, Q. Wang, et al., Chem. Commun. 52 (2016) 994–997.
doi: 10.1039/C5CC08146G
X. Xiong, L. Ding, Q. Wang, et al., Appl. Catal. B: Environ. 188 (2016) 283–291.
doi: 10.1016/j.apcatb.2016.02.018
J. Li, L. Cai, J. Shang, et al., Adv. Mater. 28 (2016) 4059–4064.
doi: 10.1002/adma.201600301
Z. Zhao, Y. Zhou, F. Wang, et al., ACS Appl. Mater. Interfaces 7 (2015) 730–737.
doi: 10.1021/am507089x
Z. Ni, Y. Sun, Y. Zhang, F. Dong, Appl. Surf. Sci. 365 (2016) 314–335.
doi: 10.1016/j.apsusc.2015.12.231
H. Ou, P. Yang, L. Lin, et al., Angew. Chem. Int. Ed. 56 (2017) 10905–10910.
doi: 10.1002/anie.201705926
Z. Wei, M. Liu, Z. Zhang, et al., Energy Environ. Sci. 11 (2018) 2581–2589.
doi: 10.1039/c8ee01316k
B. Feng, Y. Liu, K. Wan, et al., Angew. Chem. Int. Ed. 63 (2024) e202401884.
doi: 10.1002/anie.202401884
Y. Shiraishi, S. Kanazawa, Y. Sugano, et al., ACS Catal. 4 (2014) 774–780.
doi: 10.1021/cs401208c
J. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater. 8 (2017) 1701503.
R. Du, K. Xiao, B. Li, et al., Chem. Eng. J. 441 (2022) 135999.
doi: 10.1016/j.cej.2022.135999
Y. Shiraishi, S. Kanazawa, Y. Kofuji, et al., Angew. Chem. Int. Ed. 53 (2014) 13454–13459.
doi: 10.1002/anie.201407938
Y. Kofuji, S. Ohkita, Y. Shiraishi, et al., ACS Catal. 6 (2016) 7021–7029.
doi: 10.1021/acscatal.6b02367
Y. Kofuji, S. Ohkita, Y. Shiraishi, et al., ACS Sustain. Chem. Eng. 5 (2017) 6478–6485.
doi: 10.1021/acssuschemeng.7b00575
Y. Kofuji, Y. Isobe, Y. Shiraishi, et al., J. Am. Chem. Soc. 138 (2016) 10019–10025.
doi: 10.1021/jacs.6b05806
Y. Kofuji, Y. Isobe, Y. Shiraishi, et al., ChemCatChem 10 (2018) 2070–2077.
doi: 10.1002/cctc.201701683
X. Zeng, Y. Liu, Y. Kang, et al., ACS Catal. 10 (2020) 3697–3706.
doi: 10.1021/acscatal.9b05247
S. Yao, T. Tang, Y. Shen, et al., Sci. China Mater. 66 (2022) 672–678.
H. Che, X. Gao, J. Chen, et al., Angew. Chem. Int. Ed. 60 (2021) 25546–25550.
doi: 10.1002/anie.202111769
Y. Peng, L. Wang, Y. Liu, et al., Eur. J. Inorg. Chem. 2017 (2017) 4797–4802.
doi: 10.1002/ejic.201700930
P. Ren, T. Zhang, N. Jain, et al., J. Am. Chem. Soc. 145 (2023) 16584–16596.
doi: 10.1021/jacs.3c03785
H. Liang, A. Wang, R. Cheng, et al., Small 19 (2023) 2303813.
doi: 10.1002/smll.202303813
Y. Ye, C. Wen, J. Pan, et al., Appl. Catal. B: Environ. 285 (2021) 119726.
doi: 10.1016/j.apcatb.2020.119726
S. Kim, G. Moon, H. Kim, et al., J. Catal. 357 (2018) 51–58.
doi: 10.1016/j.jcat.2017.10.002
P. Sha, L. Huang, J. Zhao, et al., ACS Catal. 13 (2023) 10474–10486.
doi: 10.1021/acscatal.3c02118
J. Cai, J. Huang, S. Wang, et al., Adv. Mater. 31 (2019) 1806314.
doi: 10.1002/adma.201806314
G. Moon, M. Fujitsuka, S. Kim, et al., ACS Catal. 7 (2017) 2886–2895.
doi: 10.1021/acscatal.6b03334
Y. Zhao, Y. Liu, J. Cao, et al., Appl. Catal. B: Environ. 278 (2020) 119289.
doi: 10.1016/j.apcatb.2020.119289
Y. Yang, G. Zeng, D. Huang, et al., Appl. Catal. B: Environ. 272 (2020) 118970.
doi: 10.1016/j.apcatb.2020.118970
Z. Teng, Q. Zhang, H. Yang, et al., Nat. Catal. 4 (2021) 374–384.
doi: 10.1038/s41929-021-00605-1
L. Zhou, J. Feng, B. Qiu, et al., Appl. Catal. B: Environ. 267 (2020) 118396.
doi: 10.1016/j.apcatb.2019.118396
P. Zhang, Y. Tong, Y. Liu, et al., Angew. Chem. Int. Ed. 59 (2020) 16209–16217.
doi: 10.1002/anie.202006747
L. Chen, C. Chen, Z. Yang, et al., Adv. Funct. Mater. 31 (2021) 2105731.
doi: 10.1002/adfm.202105731
W. Liu, P. Wang, J. Chen, et al., Adv. Funct. Mater. 32 (2022) 2205119.
doi: 10.1002/adfm.202205119
D. Li, C. Wen, J. Huang, et al., Appl. Catal. B: Environ. 307 (2022) 121099.
doi: 10.1016/j.apcatb.2022.121099
S. Wu, H. Yu, S. Chen, X. Quan, ACS Catal. 10 (2020) 14380–14389.
doi: 10.1021/acscatal.0c03359
X. Zhang, P. Ma, C. Wang, et al., Energy Environ. Sci. 15 (2022) 830–842.
doi: 10.1039/d1ee02369a
Z. Zhu, H. Pan, M. Murugananthan, et al., Appl. Catal. B: Environ. 232 (2018) 19–25.
doi: 10.1504/ijipt.2018.10012654
S. Li, G. Dong, R. Hailili, et al., Appl. Catal. B: Environ. 190 (2016) 26–35.
doi: 10.1016/j.apcatb.2016.03.004
Y. Shiraishi, Y. Kofuji, H. Sakamoto, et al., ACS Catal. 5 (2015) 3058–3066.
doi: 10.1021/acscatal.5b00408
L. Shi, L. Yang, W. Zhou, et al., Small 14 (2018) 1703142.
doi: 10.1002/smll.201703142
X. Li, J. Zhang, F. Zhou, et al., Chin. J. Catal. 39 (2018) 1090–1098.
doi: 10.1016/S1872-2067(18)63046-3
Q. He, J. Ding, H. Tsai, et al., J. Colloid. Interf. Sci. 651 (2023) 18–26.
doi: 10.1016/j.jcis.2023.07.168
Y. Xie, Y. Li, Z. Huang, et al., Appl. Catal. B: Environ. 265 (2020) 118581.
doi: 10.1016/j.apcatb.2019.118581
J. Chen, W. Gao, Y. Lu, et al., ACS Appl. Nano Mater. 6 (2023) 3927–3935.
doi: 10.1021/acsanm.3c00092
Y. Wang, D. Meng, X. Zhao, Appl. Catal. B: Environ. 273 (2020) 119064.
doi: 10.1016/j.apcatb.2020.119064
H. Fattahimoghaddam, T. Mahvelati-Shamsabadi, B. Lee, ACS Sustain. Chem. Eng. 9 (2021) 4520–4530.
doi: 10.1021/acssuschemeng.0c08884
Y. Zheng, Y. Luo, Q. Ruan, et al., Appl. Catal. B: Environ. 311 (2022) 121372.
doi: 10.1016/j.apcatb.2022.121372
J. Yang, Z. Ji, S. Zhang, ACS Appl. Energy Mater. 6 (2023) 3401–3412.
doi: 10.1021/acsaem.2c04124
J. Lei, B. Chen, W. Lv, et al., ACS Sustain. Chem. Eng. 7 (2019) 16467–16473.
doi: 10.1021/acssuschemeng.9b03678
H. Xie, Y. Zheng, X. Guo, et al., ACS Sustain. Chem. Eng. 9 (2021) 6788–6798.
doi: 10.1021/acssuschemeng.1c01012
Q. Li, Y. Jiao, Y. Tang, et al., J. Am. Chem. Soc. 145 (2023) 20837–20848.
doi: 10.1021/jacs.3c05234
Y. Zhu, X. Liu, H. Liu, et al., SusMat 2 (2022) 617–629.
doi: 10.1002/sus2.83
R. Li, Q. Deng, A. Chen, et al., ChemSusChem 16 (2023) e202300763.
doi: 10.1002/cssc.202300763
L. Yang, G. Dong, D. Jacobs, et al., J. Catal. 352 (2017) 274–281.
doi: 10.1016/j.jcat.2017.05.010
X. Zhang, J. Yu, W. Macyk, et al., Adv. Sustain. Syst. 7 (2022) 2200113.
X. Li, J. Liu, J. Huang, et al., Acta Phys. Chim. Sin. 37 (2020) 2010030.
doi: 10.3866/pku.whxb202010030
B. Li, Z. Guo, Y. Feng, et al., ACS Appl. Mater. Interfaces 14 (2022) 43328–43338.
doi: 10.1021/acsami.2c12038
X. Wang, Z. Han, L. Yu, et al., ACS Sustain. Chem. Eng. 6 (2018) 14542–14553.
doi: 10.1021/acssuschemeng.8b03171
W. Zhang, S. Zhao, Y. Xing, et al., Chem. Eng. J. 442 (2022) 136151.
doi: 10.1016/j.cej.2022.136151
K. Das, S. Mansingh, R. Mohanty, et al., J. Phys. Chem. C 127 (2022) 22–40.
P. Zhou, M. Luo, S. Guo, Nat. Rev. Chem. 6 (2022) 823–838.
doi: 10.1038/s41570-022-00434-1
P. Zhou, H. Chen, Y. Chao, et al., Nat. Commun. 12 (2021) 4412.
doi: 10.1038/s41467-021-24702-8
Z. Teng, W. Cai, W. Sim, et al., Appl. Catal. B: Environ. 282 (2021) 119589.
doi: 10.1016/j.apcatb.2020.119589
G. Chakraborty, I. Park, R. Medishetty, J. Vittal, Chem. Rev. 121 (2021) 3751–3891.
doi: 10.1021/acs.chemrev.0c01049
J. Choi, B. Check, X. Fang, et al., J. Am. Chem. Soc. 146 (2024) 11319–11327.
M. Alvaro, E. Carbonell, B. Ferrer, et al., Chem. Eur. J. 13 (2007) 5106–5112.
doi: 10.1002/chem.200601003
S. Rojas, P. Horcajada, Chem. Rev. 120 (2020) 8378–8415.
doi: 10.1021/acs.chemrev.9b00797
S. Navalon, A. Dhakshinamoorthy, M. Alvaro, et al., Chem. Rev. 123 (2023) 445–490.
doi: 10.1021/acs.chemrev.2c00460
K. Sun, Y. Qian, H. Jiang, Angew. Chem. Int. Ed. 62 (2023) e202217565.
doi: 10.1002/anie.202217565
W. Huang, M. Chai, R. Lin, et al., Ind. Eng. Chem. Res. 62 (2023) 14130–14143.
doi: 10.1021/acs.iecr.3c02177
Y. Fu, D. Sun, Y. Chen, et al., Angew. Chem. Int. Ed. 51 (2012) 3364–3367.
doi: 10.1002/anie.201108357
M. Wen, K. Mori, Y. Kuwahara, H. Yamashita, ACS Energy Lett. 2 (2016) 1–7.
Y. Horiuchi, T. Toyao, M. Saito, et al., J. Phys. Chem. C 116 (2012) 20848–20853.
doi: 10.1021/jp3046005
C. Hendon, D. Tiana, M. Fontecave, et al., J. Am. Chem. Soc. 135 (2013) 10942–10945.
doi: 10.1021/ja405350u
T. Wang, M. Chen, Y. Lai, et al., ACS Sustain. Chem. Eng. 11 (2023) 6465–6473.
doi: 10.1021/acssuschemeng.3c00742
Q. Lan, S. Jin, B. Yang, et al., Trans. Tianjin Univ. 28 (2022) 214–225.
doi: 10.1007/s12209-022-00324-z
Y. Isaka, Y. Kondo, Y. Kawase, et al., Chem. Commun. 54 (2018) 9270–9273.
doi: 10.1039/c8cc02679c
K. Yue, X. Zhang, S. Jiang, et al., J. Mol. Liq. 335 (2021) 116108.
doi: 10.1016/j.molliq.2021.116108
X. Chen, Y. Kondo, Y. Kuwahara, et al., Phys. Chem. Chem. Phys. 22 (2020) 14404–14414.
doi: 10.1039/d0cp01759k
Y. Kondo, Y. Kuwahara, K. Mori, H. Yamashita, Chem 8 (2022) 2924–2938.
doi: 10.1016/j.chempr.2022.10.007
Y. Isaka, Y. Kawase, Y. Kuwahara, et al., Angew. Chem. Int. Ed. 58 (2019) 5402–5406.
doi: 10.1002/anie.201901961
Y. Kawase, Y. Isaka, Y. Kuwahara, et al., Chem. Commun. 55 (2019) 6743–6746.
doi: 10.1039/c9cc02380a
L. Yuan, Y. Zou, L. Zhao, et al., Appl. Catal. B: Environ. 318 (2022) 121859.
doi: 10.1016/j.apcatb.2022.121859
Y. Li, Y. Liu, Z. Wang, et al., Chin. J. Catal. 45 (2023) 132–140.
doi: 10.3390/cryst13010132
X. Chen, Y. Kuwahara, K. Mori, et al., J. Mater. Chem. A 9 (2021) 2815–2821.
doi: 10.1039/d0ta10944d
X. Chen, Y. Kondo, S. Li, et al., J. Mater. Chem. A 9 (2021) 26371–26380.
doi: 10.1039/d1ta08036a
Y. Hao, L. Chen, J. Li, et al., Nat. Commun. 12 (2021) 2682.
doi: 10.1038/s41467-021-22991-7
Y. Li, Y. Guo, D. Luan, et al., Angew. Chem. Int. Ed. 62 (2023) e202310847.
doi: 10.1002/anie.202310847
X. Chen, Y. Kuwahara, K. Mori, et al., J. Mater. Chem. A 8 (2020) 1904–1910.
doi: 10.1039/C9TA11120D
X. Chen, Y. Kuwahara, K. Mori, et al., ACS Appl. Energy Mater. 4 (2021) 4823–4830.
doi: 10.1021/acsaem.1c00371
Y. Li, F. Ma, L. Zheng, et al., Mater. Horiz. 8 (2021) 2842–2850.
doi: 10.1039/d1mh00869b
B. Yan, S. Hu, C. Bu, et al., ChemNanoMat 9 (2023) e202300079.
doi: 10.1002/cnma.202300079
Y. Kondo, Y. Kuwahara, K. Mori, H. Yamashita, J. Phys. Chem. C 125 (2021) 27909–27918.
doi: 10.1021/acs.jpcc.1c07735
Y. Kondo, K. Honda, Y. Kuwahara, et al., ACS Catal. 12 (2022) 14825–14835.
doi: 10.1021/acscatal.2c04940
C. Liu, T. Bao, L. Yuan, et al., Adv. Funct. Mater. 32 (2022) 2111404.
doi: 10.1002/adfm.202111404
R. Bariki, S. Pradhan, S. Panda, et al., Langmuir 39 (2023) 7707–7722.
doi: 10.1021/acs.langmuir.3c00519
Y. Wu, X. Li, Q. Yang, et al., Chem. Eng. J. 390 (2020) 124519.
doi: 10.1016/j.cej.2020.124519
A. Côté, A. Benin, N. Ockwig, et al., Science 310 (2005) 1166–1170.
doi: 10.1126/science.1120411
S. Wang, Z. Xie, D. Zhu, et al., Nat. Commun. 14 (2023) 6891.
doi: 10.1038/s41467-023-42720-6
P. Zhou, Y. Li, T. Zeng, et al., Angew. Chem. Int. Ed. 63 (2024) e202402911.
doi: 10.1002/anie.202402911
S. Qi, R. Guo, Z. Bi, et al., Small 19 (2023) 2303632.
doi: 10.1002/smll.202303632
Z. Li, J. Wang, S. Ma, et al., Appl. Catal. B: Environ. 310 (2022) 121335.
doi: 10.1016/j.apcatb.2022.121335
L. Stegbauer, K. Schwinghammer, B. Lotsch, Chem. Sci. 5 (2014) 2789–2793.
doi: 10.1039/C4SC00016A
H. Chen, H. Jena, X. Feng, et al., Angew. Chem. Int. Ed. 61 (2022) e202204938.
doi: 10.1002/anie.202204938
R. Freund, O. Zaremba, G. Arnauts, et al., Angew. Chem. Int. Ed. 60 (2021) 23975–24001.
doi: 10.1002/anie.202106259
T. Banerjee, F. Podjaski, J. Kröger, et al., Nat. Rev. Mater. 6 (2020) 168–190.
doi: 10.1038/s41578-020-00254-z
K. Geng, T. He, R. Liu, et al., Chem. Rev. 120 (2020) 8814–8933.
doi: 10.1021/acs.chemrev.9b00550
L. Chen, L. Wang, Y. Wan, et al., Adv. Mater. 32 (2020) 1904433.
doi: 10.1002/adma.201904433
C. Krishnaraj, H. Jena, L. Bourda, et al., J. Am. Chem. Soc. 142 (2020) 20107–20116.
doi: 10.1021/jacs.0c09684
D. Tan, R. Zhuang, R. Chen, et al., Adv. Funct. Mater. 34 (2024) 2311655.
doi: 10.1002/adfm.202311655
Y. Cong, X. Li, S. Zhang, et al., ACS Appl. Mater. Interfaces 15 (2023) 43799–43809.
doi: 10.1021/acsami.3c09039
M. Kou, Y. Wang, Y. Xu, et al., Angew. Chem. Int. Ed. 61 (2022) e202200413.
doi: 10.1002/anie.202200413
Q. Zhi, W. Liu, R. Jiang, et al., J. Am. Chem. Soc. 144 (2022) 21328–21336.
doi: 10.1021/jacs.2c09482
W. Zhao, P. Yan, B. Li, et al., J. Am. Chem. Soc. 144 (2022) 9902–9909.
doi: 10.1021/jacs.2c02666
G. Pan, X. Hou, Z. Liu, et al., ACS Catal. 12 (2022) 14911–14917.
doi: 10.1021/acscatal.2c03878
J. Yue, L. Song, Y. Fan, et al., Angew. Chem. Int. Ed. 62 (2023) e202309624.
doi: 10.1002/anie.202309624
Q. Liao, Q. Sun, H. Xu, et al., Angew. Chem. Int. Ed. 62 (2023) e202310556.
doi: 10.1002/anie.202310556
C. Wu, Z. Teng, C. Yang, et al., Adv. Mater. 34 (2022) 2110266.
doi: 10.1002/adma.202110266
Y. Luo, B. Zhang, C. Liu, et al., Angew. Chem. Int. Ed. 62 (2023) e202305355.
doi: 10.1002/anie.202305355
X. Di, X. Lv, H. Wang, et al., Chem. Eng. J. 455 (2023) 140124.
doi: 10.1016/j.cej.2022.140124
P. Das, G. Chakraborty, J. Roeser, et al., J. Am. Chem. Soc. 145 (2023) 2975–2984.
doi: 10.1021/jacs.2c11454
P. Das, J. Roeser, A. Thomas, Angew. Chem. Int. Ed. 62 (2023) e202304349.
doi: 10.1002/anie.202304349
P. Gao, C. Wu, S. Wang, et al., J. Colloid. Interf. Sci. 650 (2023) 40–46.
doi: 10.1016/j.jcis.2023.06.186
H. Hu, Y. Tao, D. Wang, et al., J. Colloid. Interf. Sci. 629 (2023) 750–762.
doi: 10.1016/j.jcis.2022.09.111
C. Shao, Q. He, M. Zhang, et al., Chin. J. Catal. 46 (2023) 28–35.
doi: 10.1016/S1872-2067(22)64205-0
L. Li, L. Xu, Z. Hu, J. Yu, Adv. Funct. Mater. 31 (2021) 2106120.
doi: 10.1002/adfm.202106120
Q. Shang, Y. Liu, J. Ai, et al., J. Mater. Chem. A 11 (2023) 21109–21122.
doi: 10.1039/d3ta03966h
S. Zhou, H. Hu, H. Hu, et al., Sci. China Mater. 66 (2023) 1837–1846.
doi: 10.1007/s40843-022-2337-7
Y. Yang, J. Kang, Y. Li, et al., New J. Chem. 46 (2022) 21605–21614.
doi: 10.1039/d2nj03744k
M. Deng, J. Sun, A. Laemont, et al., Green Chem. 25 (2023) 3069–3076.
doi: 10.1039/d2gc04459e
Y. Liu, W. Han, W. Chi, et al., Appl. Catal. B: Environ. 331 (2023) 122691.
doi: 10.1016/j.apcatb.2023.122691
J. Chu, Z. Liu, T. Yang, A. Kong, Appl. Surf. Sci. 611 (2023) 155717.
doi: 10.1016/j.apsusc.2022.155717
T. Yang, Y. Wang, Y. Chen, et al., CrystEngComm 25 (2023) 4511–4520.
doi: 10.1039/d3ce00607g
J. Sun, H. Jena, C. Krishnaraj, et al., Angew. Chem. Int. Ed. 62 (2023) e202216719.
doi: 10.1002/anie.202216719
L. Wang, J. Sun, M. Deng, et al., Catal. Sci. Technol. 13 (2023) 6463–6471.
doi: 10.1039/D3CY01175E
T. Yang, Y. Chen, Y. Wang, et al., ACS Appl. Mater. Interfaces 15 (2023) 8066–8075.
doi: 10.1021/acsami.2c20506
F. Hao, C. Yang, X. Lv, et al., Angew. Chem. Int. Ed. 62 (2023) e202315456.
doi: 10.1002/anie.202315456
Z. Zhou, M. Sun, Y. Zhu, et al., App. Catal. B: Environ. 334 (2023) 122862.
doi: 10.1016/j.apcatb.2023.122862
X. Yu, B. Viengkeo, Q. He, et al., Adv. Sustain. Syst. 5 (2021) 2100184.
doi: 10.1002/adsu.202100184
H. Wang, C. Yang, F. Chen, et al., Angew. Chem. Int. Ed. 61 (2022) e202202328.
doi: 10.1002/anie.202202328
Y. Liu, L. Li, H. Tan, et al., J. Am. Chem. Soc. 145 (2023) 19877–19884.
doi: 10.1021/jacs.3c05914
G. Xia, J. Qiu, L. Zhang, et al., Colloid Surf. A: Physicochem. Eng. Asp. 664 (2023) 131124.
doi: 10.1016/j.colsurfa.2023.131124
Y. Yang, J. Liu, M. Gu, et al., Appl. Catal. B: Environ. 333 (2023) 122780.
doi: 10.1016/j.apcatb.2023.122780
Y. Zhang, J. Qiu, B. Zhu, et al., Chem. Eng. J. 444 (2022) 136584.
doi: 10.1016/j.cej.2022.136584
Y. Yang, Y. Li, X. Ma, et al., Catal. Sci. Technol. 13 (2023) 5599–5609.
doi: 10.1039/d3cy00878a
H. Chen, S. Gao, G. Huang, et al., Appl. Catal. B: Environ. 343 (2024) 123545.
doi: 10.1016/j.apcatb.2023.123545
L. Zhai, Z. Xie, C. Cui, et al., Chem. Mater. 34 (2022) 5232–5240.
doi: 10.1021/acs.chemmater.2c00910
S. Chai, X. Chen, X. Zhang, et al., Environ. Sci. 9 (2022) 2464–2469 Nano.
doi: 10.1039/d2en00135g
X. Zhang, J. Zhang, J. Miao, et al., Chem. Eng. J. 466 (2023) 143085.
doi: 10.1016/j.cej.2023.143085
J. Chang, J. Shi, Q. Li, et al., Angew. Chem. Int. Ed. 62 (2023) e202303606.
doi: 10.1002/anie.202303606
R. Liu, Y. Chen, H. Yu, et al., Nat. Catal. 7 (2024) 195–206.
doi: 10.1038/s41929-023-01102-3
C. Shu, X. Yang, L. Liu, et al., Angew. Chem. Int. Ed. 63 (2024) e202403926.
doi: 10.1002/anie.202403926
H. Li, H. Li, S. Xun, J. Brédas, Chem. Mater. 32 (2020) 9228–9237.
doi: 10.1021/acs.chemmater.0c02913
Z. Lan, M. Wu, Z. Fang, et al., Angew. Chem. Int. Ed. 60 (2021) 16355–16359.
doi: 10.1002/anie.202103992
Z. Luo, X. Chen, Y. Hu, et al., Angew. Chem. Int. Ed. 62 (2023) e202304875.
doi: 10.1002/anie.202304875
Y. Qian, Y. Han, X. Zhang, et al., Nat. Commun. 14 (2023) 3083.
doi: 10.1038/s41467-023-38884-w
Y. Wan, L. Wang, H. Xu, et al., J. Am. Chem. Soc. 142 (2020) 4508–4516.
doi: 10.1021/jacs.0c00564
X. Wang, X. Yang, C. Zhao, et al., Angew. Chem. Int. Ed. 62 (2023) e202302829.
doi: 10.1002/anie.202302829
L. Liu, F. Chen, J. Wu, et al., Proc. Natl. Acad. Sci. U. S. A. 120 (2023) e2215305120.
doi: 10.1073/pnas.2215305120
A. Gopakumar, P. Ren, J. Chen, et al., J. Am. Chem. Soc. 144 (2022) 2603–2613.
doi: 10.1021/jacs.1c10786
Y. Zheng, Z. Yu, H. Ou, et al., Adv. Funct. Mater. 28 (2018) 1705407.
doi: 10.1002/adfm.201705407
B. Sheng, Y. Xie, Q. Zhao, et al., Energy Environ. Sci. 16 (2023) 4612–4619.
doi: 10.1039/d3ee02200e
T. Freese, J. Meijer, B. Feringa, S. Beil, Nat. Catal. 6 (2023) 553–558.
doi: 10.1038/s41929-023-00980-x
H. Tan, P. Zhou, M. Liu, et al., Nat. Synth. 2 (2023) 557–563.
doi: 10.1038/s44160-023-00272-z
C. Zhao, X. Wang, Y. Yin, et al., Angew. Chem. Int. Ed. 62 (2023) e202218318.
doi: 10.1002/anie.202218318
L. Wang, L. Liu, Y. Li, et al., Adv. Energy Mater. 14 (2023) 2303346.
R. Yang, Y. Fan, J. Hu, et al., Chem. Soc. Rev. 52 (2023) 7687–7706.
doi: 10.1039/d2cs00205a
Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 48 (2019) 2109–2125.
doi: 10.1039/C8CS00542G
S. Cao, L. Piao, Angew. Chem. Int. Ed. 59 (2020) 18312–18320.
doi: 10.1002/anie.202009633
L. Liu, M. Gao, H. Yang, et al., J. Am. Chem. Soc. 143 (2021) 19287–19293.
doi: 10.1021/jacs.1c09979
Q. Wang, X. Kong, Y. Wang, et al., ChemSusChem 15 (2022) e202201514.
doi: 10.1002/cssc.202201514
H. Zhao, Q. Jin, M. Khan, et al., Chem. Catal. 2 (2022) 1720–1733.
doi: 10.1016/j.checat.2022.04.015
Y. Li, S. Ouyang, H. Xu, et al., J. Am. Chem. Soc. 138 (2016) 13289–13297.
doi: 10.1021/jacs.6b07272
Q. Lian, Z. Liang, X. Guan, et al., Appl. Catal. B: Environ. 331 (2023) 122724.
doi: 10.1016/j.apcatb.2023.122724
S. Zhou, R. He, J. Pei, et al., Environ. Sci. Technol. 56 (2022) 10474–10482.
doi: 10.1021/acs.est.2c02067
Z. Chu, J. Yang, W. Zheng, et al., Coord. Chem. Rev. 481 (2023) 215049.
doi: 10.1016/j.ccr.2023.215049
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Liyang Qin , Luna Wu , Jinlin Long . Advancements in photocatalytic hydrogen peroxide synthesis: overcoming challenges for a sustainable future. Chinese Journal of Structural Chemistry, 2025, 44(4): 100545-100545. doi: 10.1016/j.cjsc.2025.100545
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348