Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells
-
* Corresponding author.
E-mail address: clzhan@imnu.edu.cn (C. Zhan).
Citation:
Zhiyang Zhang, Yi Chen, Yingnan Zhang, Chuanlang Zhan. Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells[J]. Chinese Chemical Letters,
;2025, 36(1): 110083.
doi:
10.1016/j.cclet.2024.110083
H. Sun, P.Y. Zhang, Y.N. Zhang, C.L. Zhan, Chem. J. Chin. Univ. 44 (2023) 20230076.
Y. Wang, Q. Chen, S. Liang, et al., Chin. Chem. Lett. 35 (2024) 109164.
doi: 10.1016/j.cclet.2023.109164
W. Feng, T. Chen, Y. Li, et al., Angew. Chem. Int. Ed. 63 (2024) e202316698.
doi: 10.1002/anie.202316698
C. He, Q. Shen, B. Wu, et al., Adv. Energy Mater. 13 (2023) 2204154.
doi: 10.1002/aenm.202204154
G. Cai, Z. Chen, T. Li, et al., J. Mater. Chem. A 10 (2022) 21061–21071.
doi: 10.1039/D2TA05817K
Y. Li, Y. Cai, Y. Xie, et al., Energy Environ. Sci. 14 (2021) 5009–5016.
doi: 10.1039/D1EE01864G
T. Huang, Z. Zhang, Q. Liao, et al., Small 19 (2023) 2303399.
doi: 10.1002/smll.202303399
B. Pang, C. Liao, X. Xu, et al., Adv. Mater. 35 (2023) 2300631.
doi: 10.1002/adma.202300631
L. Zhan, S. Li, Y. Li, et al., Adv. Energy Mater. 12 (2022) 2201076.
doi: 10.1002/aenm.202201076
M. Deng, X. Xu, Y. Duan, et al., Adv. Mater. 35 (2023) 2210760.
doi: 10.1002/adma.202210760
J. Gao, X. Zhu, H. Bao, et al., Chin. Chem. Lett. 34 (2023) 107968.
doi: 10.1016/j.cclet.2022.107968
J. Wang, Y. Wang, P. Bi, et al., Adv. Mater. 35 (2023) 2301583.
doi: 10.1002/adma.202301583
J. Song, C. Zhang, C. Li, et al., Angew. Chem. Int. Ed. 63 (2024) e202404297.
doi: 10.1002/anie.202404297
S. Luo, C. Li, J. Zhang, et al., Nat. Commun. 14 (2023) 6964.
doi: 10.1038/s41467-023-41978-0
T. Chen, S. Li, Y. Li, et al., Adv. Mater. 35 (2023) 2300400.
doi: 10.1002/adma.202300400
K. Chong, X. Xu, H. Meng, et al., Adv. Mater. 34 (2022) 2109516.
doi: 10.1002/adma.202109516
Z. Zheng, J. Wang, P. Bi, et al., Joule 6 (2022) 171–184.
doi: 10.1016/j.joule.2021.12.017
F. Zhao, C. Wang, X. Zhan, Adv. Energy Mater. 8 (2018) 1703147.
doi: 10.1002/aenm.201703147
G. Zhang, F.R. Lin, F. Qi, et al., Chem. Rev. 122 (2022) 14180–14274.
doi: 10.1021/acs.chemrev.1c00955
L. Zhu, M. Zhang, W. Zhong, et al., Energy Environ. Sci. 14 (2021) 4341–4357.
doi: 10.1039/D1EE01220G
W. Chen, T. Xu, F. He, et al., Nano Lett. 11 (2011) 3707–3713.
doi: 10.1021/nl201715q
S. Guo, E.M. Herzig, A. Naumann, et al., J. Phys. Chem. B 118 (2014) 344–350.
doi: 10.1021/jp410075a
I. Burgués-Ceballos, F. Machui, J. Min, et al., Adv. Funct. Mater. 24 (2014) 1449–1457.
doi: 10.1002/adfm.201301509
C. McDowell, M. Abdelsamie, M.F. Toney, G.C. Bazan, Adv. Mater. 30 (2018) 1707114.
doi: 10.1002/adma.201707114
J. Mao, J. Iocozzia, J. Huang, et al., Energy Environ. Sci. 11 (2018) 772–799.
doi: 10.1039/C7EE03031B
K. Yang, M. Lv, Y. Chang, K. Lu, Z. Wei, Chin. Chem. Lett. 35 (2024) 109018.
doi: 10.1016/j.cclet.2023.109018
W. Zhang, J. Huang, X. Lv, et al., Chin. Chem. Lett. 34 (2023) 107436.
doi: 10.1016/j.cclet.2022.04.034
S.H. Park, A. Roy, S. Beaupré, et al., Nature Photon 3 (2009) 297–302.
doi: 10.1038/nphoton.2009.69
H. Tan, W. Zhang, P. Zhang, et al., Solar RRL 6 (2022) 2200147.
doi: 10.1002/solr.202200147
P. Ding, D. Yang, S. Yang, Z. Ge, Chem. Soc. Rev. 53 (2024) 2350–2387.
doi: 10.1039/D3CS00492A
Y. Su, Z. Ding, R. Zhang, et al., Sci. China Chem. 66 (2023) 2380–2388.
doi: 10.1007/s11426-023-1608-6
Z. Zhang, J. Wang, Z. Hu, et al., Chin. Chem. Lett. 34 (2023) 108527.
doi: 10.1016/j.cclet.2023.108527
P. Zhang, Z. Zhang, H. Sun, et al., Chin. Chem. Lett. 35 (2024) 108802.
doi: 10.1016/j.cclet.2023.108802
C.C. Tong, K.C. Hwang, J. Phys. Chem. C 111 (2007) 3490–3494.
doi: 10.1021/jp066116k
M. Shao, J. Keum, J. Chen, et al., Nat. Commun. 5 (2014) 3180.
doi: 10.1038/ncomms4180
E.M. Russak, E.M. Bednarczyk, Ann. Pharmacother. 53 (2019) 211–216.
doi: 10.1177/1060028018797110
L.R. Pohl, G. Rriehna, Life Sci. 23 (1978) 1067–1072.
doi: 10.1016/0024-3205(78)90668-9
M. Ahmadizadeh, C.H. Kuo, J.B. Hook, J. Toxicol. Environ. Health 8 (1981) 105–111.
doi: 10.1080/15287398109530054
L. Li, J. Jakowski, C. Do, K. Hong, Macromolecules 54 (2021) 3555–3584.
doi: 10.1021/acs.macromol.0c02284
A. Wang, Y. Kang, C. Hou, et al., Sci. Bull. 68 (2023) 1153–1161.
doi: 10.1016/j.scib.2023.05.005
M. Deng, X. Xu, Y. Duan, et al., Adv. Funct. Mater. 33 (2023) 2212290.
doi: 10.1002/adfm.202212290
A. Lan, Y. Lv, J. Zhu, et al., ACS Energy Lett. 7 (2022) 2845–2855.
doi: 10.1021/acsenergylett.2c01438
K. Li, Y. Wu, Y. Tang, et al., Adv. Energy Mater. 9 (2019) 1901728.
doi: 10.1002/aenm.201901728
X. Li, M.A. Pan, T.K. Lau, et al., Chem. Mater. 32 (2020) 5182–5191.
doi: 10.1021/acs.chemmater.0c01245
L. Zhong, H. Bin, Y. Li, et al., J. Mater. Chem. A 6 (2018) 24814–24822.
doi: 10.1039/C8TA08406H
Yawen Guo , Dawei Li , Yang Gao , Cuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007
Chengcheng Xie , Chengyi Xiao , Hongshuo Niu , Guitao Feng , Weiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849
Jun-Ting Mo , Zheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360
Yuhuan Meng , Long Zhang , Lequan Wang , Junming Kang , Hongbin Lu . 20 nm-ultra-thin fluorosiloxane interphase layer enables dendrite-free, fast-charging, and flexible aqueous zinc metal batteries. Chinese Chemical Letters, 2024, 35(12): 110025-. doi: 10.1016/j.cclet.2024.110025
Min Chen , Boyu Peng , Xuyun Guo , Ye Zhu , Hanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051
Yanrui Liu , Paramaguru Ganesan , Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
Sheng Tang , Mingyue Liao , Weihai Sun , Jihuai Wu , Jiamin Lu , Yiming Xie . Optimizing CsPbBr3 perovskite solar cell interface and performance through tetraphenylethene derivatives. Chinese Chemical Letters, 2025, 36(6): 110838-. doi: 10.1016/j.cclet.2025.110838
Jing Wang , Zhongliao Wang , Jinfeng Zhang , Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202
Haowen Shang , Yujie Yang , Bingjie Xue , Yikai Wang , Zhiyi Su , Wenlong Liu , Youzhi Wu , Xinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511
Peipei CUI , Yawen ZHENG , Pan LI , Peiyan GUAN , Zhaohong QIAN . Praseodymium-organic framework with 4, 4′-oxybis(benzoic acid): Rare broken layer structure, antibacterial activity, and sensing for Cd2+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1641-1649. doi: 10.11862/CJIC.20250152
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277
Yuling Ma , Dongqing Liu , Tao Zhang , Chengjie Song , Dongmei Liu , Peizhi Wang , Wei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000
Le-Tian Zhang , Bin Xia , Nan Lu , Quan-Wen Li , Xia Zhang , Na Li , Xian-He Bu . A novel naphthalenediimide-based metal-organic framework for inkless erasable printing with ultra-long cycling performance. Chinese Chemical Letters, 2025, 36(12): 110534-. doi: 10.1016/j.cclet.2024.110534
Yikun Wang , Qiaomei Chen , Shijie Liang , Dongdong Xia , Chaowei Zhao , Christopher R. McNeill , Weiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164
Jinge Zhu , Ailing Tang , Leyi Tang , Peiqing Cong , Chao Li , Qing Guo , Zongtao Wang , Xiaoru Xu , Jiang Wu , Erjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233
Peng Gao , Yuanyuan Chen , Qianlin He , Xue Liu , Echuan Tan , Zhiqiang Yu , Hui Wang . Highly efficient adoptive cell therapy of metastatic triple negative breast cancer with bioactive covalent organic framework-engineered macrophages. Chinese Chemical Letters, 2025, 36(8): 110585-. doi: 10.1016/j.cclet.2024.110585