Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association
-
* Corresponding author.
E-mail address: wwzhu@stu.edu.cn (W. Zhu).
Citation:
Hailang Deng, Abebe Reda Woldu, Abdul Qayum, Zanling Huang, Weiwei Zhu, Xiang Peng, Paul K. Chu, Liangsheng Hu. Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association[J]. Chinese Chemical Letters,
;2024, 35(12): 109892.
doi:
10.1016/j.cclet.2024.109892
B. Zhang, S. Yu, Y. Dai, et al., Nat. Commun. 12 (2021) 6969.
doi: 10.1038/s41467-021-27299-0
J.H. Kim, D. Hansora, P. Sharma, et al., Chem. Soc. Rev. 48 (2019) 1908–1971.
doi: 10.1039/c8cs00699g
S. Zhao, B. Liu, G. Zhang, et al., Trans. Tianjin Univ. 29 (2023) 473–481.
doi: 10.1007/s12209-023-00374-x
J. Zhu, L. Hu, P. Zhao, et al., Chem. Rev. 120 (2020) 851–918.
doi: 10.1021/acs.chemrev.9b00248
H. Sun, C.W. Tung, Y. Qiu, et al., J. Am. Chem. Soc. 144 (2021) 1174–1186.
doi: 10.1109/icip42928.2021.9506288
Y. Xiao, C. Feng, J. Fu, et al., Nat. Catal. 3 (2020) 932–940.
doi: 10.1038/s41929-020-00522-9
R.T. Gao, N.T. Nguyen, T. Nakajima, et al., Sci. Adv. 9 (2023) eade4589.
doi: 10.1126/sciadv.ade4589
R.T. Gao, L. Liu, Y. Li, et al., Proc. Natl. Acad. Sci. U. S. A. 120 (2023) e2300493120.
doi: 10.1073/pnas.2300493120
T.W. Kim, K.S. Choi, Science 343 (2014) 990–994.
doi: 10.1126/science.1246913
Y. Kuang, Q. Jia, G. Ma, et al., Nat. Energy 2 (2016) 16191.
doi: 10.1038/nenergy.2016.191
D.K. Lee, K.S. Choi, Nat. Energy 3 (2018) 53–60.
D. Lee, W. Wang, C. Zhou, et al., Nat. Energy 6 (2021) 287–294.
doi: 10.1038/s41560-021-00777-x
J. Huang, Y. Wang, K. Chen, et al., Chin. Chem. Lett. 33 (2022) 2060–2064.
doi: 10.1016/j.cclet.2021.08.082
L. Wang, X. Shi, Y. Jia, et al., Chin. Chem. Lett. 32 (2021) 1869–1878.
doi: 10.1016/j.cclet.2020.11.065
B. Liu, X. Wang, Y. Zhang, et al., Angew. Chem. Int. Ed. 62 (2023) e202217346.
doi: 10.1002/anie.202217346
R.T. Gao, L. Wang, Angew. Chem. Int. Ed. 59 (2020) 23094–23099.
doi: 10.1002/anie.202010908
F.M. Toma, J.K. Cooper, V. Kunzelmann, et al., Nat. Commun. 7 (2016) 12012.
doi: 10.1038/ncomms12012
R. Lei, Y. Tang, W. Qiu, et al., Nano Lett. 23 (2023) 11785–11792.
doi: 10.1021/acs.nanolett.3c03743
Y. Shi, Y. Yu, Y. Yu, et al., ACS Energy Lett. 3 (2018) 1648–1654.
doi: 10.1021/acsenergylett.8b00855
Q. Shi, S. Murcia-López, P. Tang, et al., ACS Catal. 8 (2018) 3331–3342.
doi: 10.1021/acscatal.7b04277
J. Eichhorn, S.E. Reyes-Lillo, S. Roychoudhury, et al., Small 16 (2020) 2001600.
doi: 10.1002/smll.202001600
S. Wang, G. Liu, L. Wang, Chem. Rev. 119 (2019) 5192–5247.
doi: 10.1021/acs.chemrev.8b00584
C. Zhou, S. Wang, Z. Zhao, et al., Adv. Funct. Mater. 28 (2018) 1801214.
doi: 10.1002/adfm.201801214
L. Jiang, H. Du, L. Li, et al., Trans. Tianjin Univ. 29 (2023) 462–472.
doi: 10.1007/s12209-023-00376-9
W. Wang, P.J. Strohbeen, D. Lee, et al., Chem. Mater. 32 (2020) 2899–2909.
doi: 10.1021/acs.chemmater.9b05047
S. Wang, T. He, P. Chen, et al., Adv. Mater. 32 (2020) 2001385.
doi: 10.1002/adma.202001385
D. Kong, J. Qi, D. Liu, et al., Trans. Tianjin Univ. 25 (2019) 340–347.
doi: 10.1007/s12209-019-00202-1
X. Wang, Chem. Mater. 33 (2021) 6251–6268.
doi: 10.1021/acs.chemmater.1c01507
Y. Zhang, L. Xu, B. Liu, et al., ACS Catal. 13 (2023) 5938–5948.
doi: 10.1021/acscatal.3c00444
J.B. Pan, B.H. Wang, S. Shen, et al., Angew. Chem. Int. Ed. 62 (2023) e202307246.
doi: 10.1002/anie.202307246
M.A. Gaikwad, U.V. Ghorpade, U.P. Suryawanshi, et al., ACS Appl. Mater. Interfaces 15 (2023) 21123–21133.
doi: 10.1021/acsami.3c01877
B. Zhang, X. Huang, Y. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 18990–18995.
doi: 10.1002/anie.202008198
B. Zhang, L. Wang, Y. Zhang, et al., Angew. Chem. Int. Ed. 57 (2018) 2248–2252.
doi: 10.1002/anie.201712499
A.M. Hilbrands, S. Zhang, C. Zhou, et al., J. Am. Chem. Soc. 145 (2023) 23639–23650.
doi: 10.1021/jacs.3c07722
H. Du, J. Fan, C. Miao, et al., Trans. Tianjin Univ. 27 (2021) 24–41.
doi: 10.1007/s12209-020-00277-1
W. Zhang, J. Ma, L. Xiong, et al., ACS Appl. Energy Mater. 3 (2020) 5927–5936.
doi: 10.1021/acsaem.0c00834
N. Clament Sagaya Selvam, S.J. Kwak, G.H. Choi, et al., ACS Energy Lett. 6 (2021) 4345–4354.
doi: 10.1021/acsenergylett.1c01983
S. Anantharaj, S. Kundu, S. Noda, Nano Energy 80 (2021) 105514.
doi: 10.1016/j.nanoen.2020.105514
S. Lee, L. Bai, X. Hu, Angew. Chem. Int. Ed. 59 (2020) 8072–8077.
doi: 10.1002/anie.201915803
Z. Huang, S. Zhu, Y. Duan, et al., J. Energy Chem. 89 (2024) 99–109.
doi: 10.1016/j.jechem.2023.10.036
Z. Huang, A.Reda Woldu, X. Peng, et al., Chem. Eng. J. 477 (2023) 147155.
doi: 10.1016/j.cej.2023.147155
F. Yang, M. Lopez Luna, F.T. Haase, et al., J. Am. Chem. Soc. 145 (2023) 21465–21474.
doi: 10.1021/jacs.3c07158
C. Kuai, C. Xi, A. Hu, et al., J. Am. Chem. Soc. 143 (2021) 18519–18526.
doi: 10.1021/jacs.1c07975
Q. Sun, K. Ren, L. Qi, ACS Appl. Mater. Interfaces 14 (2022) 37833–37842.
doi: 10.1021/acsami.2c10741
G. Fang, Z. Liu, C. Han, et al., ACS Appl. Energy Mater. 4 (2021) 3842–3850.
doi: 10.1021/acsaem.1c00247
S. Chen, B. Li, D. Huang, et al., ACS Appl. Mater. Interfaces 13 (2021) 17586–17598.
doi: 10.1021/acsami.1c01998
R.T. Gao, J. Zhang, T. Nakajima, et al., Nat. Commun. 14 (2023) 2640.
doi: 10.1038/s41467-023-38343-6
H. Duan, H. Wu, H. Zhong, et al., J. Phys. Chem. C 126 (2022) 7688–7695.
doi: 10.1021/acs.jpcc.2c00433
H. Wu, S. Qu, Z. Xie, et al., ACS Appl. Energy Mater. 5 (2022) 8419–8427.
doi: 10.1021/acsaem.2c00963
Q. Wang, L. Wu, Z. Zhang, et al., ACS Appl. Mater. Interfaces 14 (2022) 26642–26652.
doi: 10.1021/acsami.2c02790
R.T. Gao, D. He, L. Wu, et al., Angew. Chem. Int. Ed. 59 (2020) 6213–6218.
doi: 10.1002/anie.201915671
Z. Wang, Y. Guo, M. Liu, et al., Adv. Mater. 34 (2022) e2201594.
doi: 10.1002/adma.202201594
W. Fang, L. Fu, A. Qin, et al., ACS Appl. Energy Mater. 5 (2022) 6313–6323.
doi: 10.1021/acsaem.2c00477
T. Zhou, S. Chen, J. Wang, et al., Chem. Eng. J. 403 (2021) 126350.
doi: 10.1016/j.cej.2020.126350
M. Pradhan, S. Maji, A.K. Sinha, et al., J. Mater. Chem. A 3 (2015) 10254–10257.
doi: 10.1039/C5TA01427A
Y. Hu, J. Zhou, L. Li, et al., J. Mater. Chem. A 10 (2022) 602–610.
doi: 10.1039/d1ta08938b
X. Xiong, C. Zhang, X. Zhang, et al., Electrochim. Acta 389 (2021) 138795.
doi: 10.1016/j.electacta.2021.138795
G. Zhang, Z. Li, J. Zeng, et al., Appl. Catal. B: Environ. 319 (2022) 121921.
doi: 10.1016/j.apcatb.2022.121921
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Lin Zhang , Jianlong Li , Maoyuan Hu , Yao Xu , Xiaoli Xiong , Zhaoyu Jin . MOF-derived beaded stream-like nitrogen and phosphorus-codoped carbon-coated Fe3O4 nanocomposites via lattice-oxygen-mediated mechanism for efficient water oxidation. Chinese Chemical Letters, 2025, 36(8): 111123-. doi: 10.1016/j.cclet.2025.111123
Shuai Liu , Wen Wu , Peili Zhang , Yunxuan Ding , Chang Liu , Yu Shan , Ke Fan , Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Jiawei Ge , Xian Wang , Heyuan Tian , Hao Wan , Wei Ma , Jiangying Qu , Junjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Liwei Hou , Xianyun Peng , Siliu Lyu , Zhongjian Li , Bin Yang , Qinghua Zhang , Qinggang He , Lecheng Lei , Yang Hou . Advancements in MXene-based nanohybrids for electrochemical water splitting. Chinese Chemical Letters, 2025, 36(6): 110392-. doi: 10.1016/j.cclet.2024.110392
Qing Li , Bing Wang , Qi Xu , Ruiyou Liu , Chen Li , Fang Luo , Yifei Li , Yingjie Yu , Zehui Yang . Pt dopants in ruthenium/iridium oxides promote catalytic activity in overall acidic water splitting. Chinese Chemical Letters, 2025, 36(12): 111658-. doi: 10.1016/j.cclet.2025.111658
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Genxiang Wang , Linfeng Fan , Peng Wang , Junfeng Wang , Fen Qiao , Zhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498
Chupeng Luo , Keying Su , Shan Yang , Yujia Liang , Yawen Tang , Xiaoyu Qiu . Ultrathin NiS2 nanocages with hierarchical-flexible walls and rich grain boundaries for efficient oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(5): 109940-. doi: 10.1016/j.cclet.2024.109940
Weibin Shen , Jie Liu , Gongyu Wen , Shuai Li , Binhui Yu , Shuangyu Song , Bojie Gong , Rongyang Zhang , Shibao Liu , Hongpeng Wang , Yao Wang , Yujing Liu , Huadong Yuan , Jianming Luo , Shihui Zou , Xinyong Tao , Jianwei Nai . Formation of FeNi-based nanowire-assembled superstructures with tunable anions for electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(7): 110184-. doi: 10.1016/j.cclet.2024.110184
Qianqing Xu , Qu Jiang , Haoyue Zhang , Fang Song . Deciphering the active species of anodically activated carbon-based electrocatalysts for oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(11): 111417-. doi: 10.1016/j.cclet.2025.111417
Xiaoke Xi , Xinpeng Li , Yang Liu , Yucheng Zhang , Linmei Li , Jianming Li , Xu Jin , Shuhong Jiao , Zhanwu Lei , Ruiguo Cao . Monolithic medium-entropy alloy electrode enables efficient and stable oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(12): 110535-. doi: 10.1016/j.cclet.2024.110535
Fenglin Wang , Chengwei Kuang , Zhicheng Zheng , Dan Wu , Hao Wan , Gen Chen , Ning Zhang , Xiaohe Liu , Renzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989
Gen Zhang , Ying Gu , Lin Li , Fuli Ma , Dan Yue , Xiaoguang Zhou , Chungui Tian . Anion-modulated HER and OER activity of 1D Co-Mo based interstitial compound heterojunctions for the effective overall water splitting. Chinese Chemical Letters, 2025, 36(7): 110110-. doi: 10.1016/j.cclet.2024.110110
Jinhui Zhang , Jianglin Liu , Jie Ran , Xuliang Lin , Huan Wang , Xueqing Qiu . Oxidative ammonolysis modified lignin-derived nitrogen-doped carbon-supported Co/Fe composites as bifunctional electrocatalyst for Zn-air batteries. Chinese Chemical Letters, 2025, 36(10): 110403-. doi: 10.1016/j.cclet.2024.110403
Guo-Hong Gao , Run-Ze Zhao , Ya-Jun Wang , Xiao Ma , Yan Li , Jian Zhang , Ji-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181
Qing Li , Yumei Feng , Yingjie Yu , Yazhou Chen , Yuhua Xie , Fang Luo , Zehui Yang . Engineering eg filling of RuO2 enables a robust and stable acidic water oxidation. Chinese Chemical Letters, 2025, 36(3): 110612-. doi: 10.1016/j.cclet.2024.110612