Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces
-
* Corresponding authors.
E-mail addresses: zhaochenxu@xatu.edu.cn (C. Zhao), ful263@nenu.edu.cn (L. Fu).
Citation:
Chaozheng He, Menghui Xi, Chenxu Zhao, Ran Wang, Ling Fu, Jinrong Huo. Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces[J]. Chinese Chemical Letters,
;2025, 36(3): 109671.
doi:
10.1016/j.cclet.2024.109671
L. Fu, R. Wang, C.X. Zhao, et al., Chem. Eng. J. 414 (2021) 128857.
doi: 10.1016/j.cej.2021.128857
J. Huo, L. Fu, C. Zhao, et al., Chin. Chem. Lett. 32 (2021) 2269–2273.
doi: 10.1016/j.cclet.2020.12.059
R. Wang, C. He, W. Chen, et al., Chin. Chem. Lett. 32 (2021) 3821–3824.
doi: 10.1016/j.cclet.2021.05.024
J. Li, S. Chen, F. Quan, et al., Chem 6 (2020) 885–901.
doi: 10.3390/polym12040885
V. Rosca, M. Duca, M.T. de Groot, et al., Chem. Rev. 109 (2009) 2209–2244.
doi: 10.1021/cr8003696
S. Licht, B. Cui, B. Wang, et al., Science 345 (2014) 637–640.
doi: 10.1126/science.1254234
X. Lu, J. Zhang, W.K. Chen, et al., Nanoscale Adv. 3 (2021) 1624–1632.
doi: 10.1039/d1na00015b
Z. Huang, M. Rafiq, A.R. Woldu, et al., Coord. Chem. Rev. 478 (2023) 214981.
doi: 10.1016/j.ccr.2022.214981
Y. Ying, K. Fan, X. Luo, et al., Mater. Adv. 1 (2020) 1285–1292.
doi: 10.1039/d0ma00348d
M. Bat-Erdene, G. Xu, M. Batmunkh, et al., J. Mater. Chem. A 8 (2020) 4735–4739.
doi: 10.1039/c9ta13485a
T. Lan, Y. Zhao, J. Deng, et al., Catal. Sci. Technol. 10 (2020) 5792–5810.
doi: 10.1039/d0cy01137a
C. He, J. Wang, L. Fu, et al., Chin. Chem. Lett. 33 (2022) 1051–1057.
doi: 10.1016/j.cclet.2021.09.009
Z. Chen, J. Zhao, C.R. Cabrera, et al., Small Methods 3 (2018) 1800368.
Z. Chen, J. Zhao, L. Yin, et al., J. Mater. Chem. A 7 (2019) 13284–13292.
doi: 10.1039/c9ta01410a
Z.M. Zhang, X. Yao, X.Y. Lang, et al., Appl. Surf. Sci. 536 (2021) 147706.
doi: 10.1016/j.apsusc.2020.147706
C. He, H. Wang, L. Fu, et al., Chin. Chem. Lett. 33(2022) 990–994.
doi: 10.1016/j.cclet.2021.09.049
X. Lv, W. Wei, B. Huang, et al., Nano Lett. 21 (2021) 1871–1878.
doi: 10.1021/acs.nanolett.0c05080
D. Ma, Y. Wang, L. Liu, et al., Phys. Chem. Chem. Phys. 23 (2021) 4018–4029.
doi: 10.1039/d0cp04843g
H. Shen, C. Choi, J. Masa, et al., Chem 7 (2021) 1708–1754.
doi: 10.1016/j.chempr.2021.01.009
X. Zheng, Y. Liu, Y. Yao, Chem. Eng. J. 426 (2021) 130745.
doi: 10.1016/j.cej.2021.130745
Y. Meng, T. Wang, J. Chen, et al., Appl. Surf. Sci. 640 (2023) 158470.
doi: 10.1016/j.apsusc.2023.158470
X. Liu, Y. Geng, R. Hao, et al., Progr. Chem. 33 (2021) 1074–1091.
L. Niu, L. An, X. Wang, et al., J. Energy Chem. 61 (2021) 304–318.
doi: 10.1016/j.jechem.2021.01.018
C. He, R. Sun, L. Fu, et al., Chin. Chem. Lett. 33 (2022) 527–532.
doi: 10.1016/j.cclet.2021.05.072
L. Lin, L. Yan, L. Fu, et al., Fuel 308 (2022) 122068.
doi: 10.1016/j.fuel.2021.122068
L. Han, X. Liu, J. Chen, et al., Angew. Chem. Int. Ed. 58 (2019) 2321–2325.
doi: 10.1002/anie.201811728
S. Assad, T. Tariq, M. Zaeem Idrees, et al., J. Electroanal. Chem. 931 (2023) 117174.
doi: 10.1016/j.jelechem.2023.117174
M.A. Mushtaq, M. Arif, G. Yasin, et al., Renew. Sust. Energy Rev.176 (2023) 113197.
doi: 10.1016/j.rser.2023.113197
G. Kour, X. Mao, A. Du, J. Mater. Chem. A 10 (2022) 6204–6215.
doi: 10.1039/d1ta08246a
Q. Qin, T. Heil, M. Antonietti, et al., Small Methods. 2 (2018) 1800202.
doi: 10.1002/smtd.201800202
C.Z. He, H. Wang, L.Y. Huai, et al., J. Chem. Phys. 138 (2013) 144703.
doi: 10.1063/1.4798970
Y. Doi, M. Haneda, Catal. Today 303 (2018) 8–12.
doi: 10.1016/j.cattod.2017.07.023
D.L.S. Nieskens, D. Curulla-Ferré, J.W. Niemantsverdriet, ChemPhysChem 7 (2006) 1075–1080.
doi: 10.1002/cphc.200600005
C. He, H. Wang, H. Huai, J. Liu, et al., Chem. J. Chin. Univ. 34 (2013) 946–951.
A.L. Strickler, R.A. Flores, L.A. King, et al., ACS Appl. Mater. Interfaces 11 (2019) 34059–34066.
doi: 10.1021/acsami.9b13697
C.Z. He, H. Wang, P. Zhu, et al., J. Chem. Phys. 135 (2011) 204707.
doi: 10.1063/1.3663621
W. Song, Z. Fu, X. Liu, et al., J. Mater. Chem. A 10 (2022) 13946–13957.
doi: 10.1039/d2ta02642b
W. Song, W. Peng, P. Ma, et al., SSRN Electron. J. 597 (2022) 153678.
C. Wang, B. Yan, J. Zheng, et al., Adv. Powder Mater. 1 (2022) 100018.
doi: 10.1016/j.apmate.2021.11.005
J. Yu, C. He, J. Huo, et al., Int. J. Hydrog. Energy 47 (2022) 7738–7750.
doi: 10.1016/j.ijhydene.2021.12.095
J. Yu, C. He, C. Pu, et al., Chin. Chem. Lett. 32 (2021) 3149–3154.
doi: 10.1016/j.cclet.2021.02.046
D. Ma, W. Ju, Y. Tang, et al., Appl. Surf. Sci. 426 (2017) 244–252.
doi: 10.1016/j.apsusc.2017.07.198
C. He, R. Wang, H. Yang, et al., Appl. Surf. Sci. 507 (2020) 145076.
doi: 10.1016/j.apsusc.2019.145076
J.R. Huo, J. Wang, H.Y. Yang, et al., J. Mol. Model. 27 (2021) 38.
doi: 10.1007/s00894-020-04628-6
C. He, R. Wang, D. Xiang, et al., Appl. Surf. Sci. 509 (2020) 145392.
doi: 10.1016/j.apsusc.2020.145392
G.R. Xu, H. Li, A.S.R. Bati, et al., J. Mater. Chem. A 8 (2020) 15875–15883.
doi: 10.1039/d0ta03237a
M. Gao, Da. Wen, Guo. Cao, et al., Appl. Surf. Sci. 640 (2023) 158286.
doi: 10.1016/j.apsusc.2023.158286
L. Fu, L. Yan, L. Lin, et al., J. Alloys Compd. 875 (2021) 159907.
doi: 10.1016/j.jallcom.2021.159907
F. Rao, G. Zhu, W. Zhang, et al., ACS Catal. 11 (2021) 7735–7749.
doi: 10.1021/acscatal.1c01251
I.A. Erikat, B.A. Hamad, J.M. Khalifeh, Eur. Phys. J. B 87 (2014) 48.
doi: 10.1140/epjb/e2014-40566-x
Z. Zhao, T. Yu, S. Zhang, et al., J. Mater. Chem. A 7 (2019) 405–411.
doi: 10.1039/c8ta09155b
H. Wu, Q.Q. Luo, R.Q. Zhang, et al., Chin. J. Chem. Phys. 31 (2018) 641–648.
doi: 10.1063/1674-0068/31/cjcp1804063
W. Luo, Y. Wang, C. Cheng, Mater. Today Phys. 15 (2020) 100274.
doi: 10.1016/j.mtphys.2020.100274
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
Zunjie Zhang , Mengran Liu , Bingcheng Ge , Tianfang Yang , Shuaitong Wang , Yang Liu , Shuyan Gao . In-situ reconstructed Cu/NiO nanosheets synergistically boosting nitrate electroreduction to ammonia. Chinese Chemical Letters, 2025, 36(8): 110657-. doi: 10.1016/j.cclet.2024.110657
Mingxing Chen , Xue Li , Nian Liu , Zihe Du , Zhitao Wang , Jing Qi . A zinc-nitrate battery for efficient ammonia electrosynthesis and energy output by a high entropy hydroxide catalyst. Chinese Chemical Letters, 2025, 36(10): 111294-. doi: 10.1016/j.cclet.2025.111294
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Yanhui Lu , Chengang Pei , Wenqiang Li , Qing Liu , Huan Pang , Xu Yu . Tailoring active sites of cerium and nitrogen Co-doped rhenium disulfide for enhanced hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(12): 111646-. doi: 10.1016/j.cclet.2025.111646
Mianfeng Li , Haozhi Wang , Zijun Yang , Zexiang Yin , Yuan Liu , Yingmei Bian , Yang Wang , Xuerong Zheng , Yida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199
Fanjun Kong , Yixin Ge , Shi Tao , Zhengqiu Yuan , Chen Lu , Zhida Han , Lianghao Yu , Bin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552
Min Jie Wang , Jiao Yang , Lishan Peng , Yongjie Bai , Zehui Liu , Xiaoliang Yang , Huijuan Lu , Bingjie Zhou , Ningtao Jiang , Guoxu He , Han-Ming Zhang , Liwei Mi , Yonghui Deng . Optimizing the size and electronic effects of core-shell heterostructures via well-constructed Ru clusters encapsulated in N-doped carbon layers. Chinese Chemical Letters, 2025, 36(12): 110573-. doi: 10.1016/j.cclet.2024.110573
Yu-Hang Li , Shuai Gao , Lu Zhang , Hanchun Chen , Chong-Chen Wang , Haodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894
Yuwei Liu , Yihui Zhu , Weijian Duan , Yizhuo Yang , Haorui Tuo , Chunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347
Jieyu Liu , Junze Zhang , Haigang Deng , Shuoao Wang , Xingxing Jiang , Li Wang , Changhong Wang . Understanding the activity origin of Pd-anchored single-atom alloy catalysts for NO-to-NH3 conversion by DFT studies and machine learning. Chinese Chemical Letters, 2025, 36(12): 110656-. doi: 10.1016/j.cclet.2024.110656
Lingling Su , Qunyan Wu , Congzhi Wang , Jianhui Lan , Weiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Ze Zhang , Lei Yang , Jin-Ru Liu , Hao Hu , Jian-Li Mi , Chao Su , Bei-Bei Xiao , Zhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013
Teng Wang , Jiachun Cao , Juan Li , Didi Li , Zhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078
Yubang Liu , Jiaxin Lin , Huayu Liang , Yinwu Li , Zhuofeng Ke . Computational insights into three-centre four-electron bridging hydride bond in boryl type PBP-M dihydride complexes✰ ✩. Chinese Chemical Letters, 2025, 36(5): 110291-. doi: 10.1016/j.cclet.2024.110291