Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides
-
* Corresponding authors.
E-mail addresses: wangkaikaii@163.com (K.-K. Wang), xlhe1021@sina.com (X.-L. He).
Citation:
Yan-Li Li, Zhi-Ming Li, Kai-Kai Wang, Xiao-Long He. Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides[J]. Chinese Chemical Letters,
;2024, 35(7): 109322.
doi:
10.1016/j.cclet.2023.109322
K. Zheng, X. Liu, X. Feng, Chem. Rev. 118 (2018) 7586–7656.
doi: 10.1021/acs.chemrev.7b00692
S.K. Saha, A. Bera, S. Singh, et al., Eur. J. Org. Chem. 26 (2023) e202201470.
B.E. Rossiter, N.M. Swingle, Chem. Rev. 92 (1992) 771–806.
doi: 10.1021/cr00013a002
P. Wadhwa, A. Kharbanda, A. Sharma, Asian. J. Org. Chem. 7 (2018) 634–661.
doi: 10.1002/ajoc.201700609
T.P. Pathak, M.S. Sigman, J. Org. Chem. 76 (2011) 9210–9215.
doi: 10.1021/jo201789k
N.J. Willis, C.D. Bray, Chem. Eur. J. 18 (2012) 9160–9173.
doi: 10.1002/chem.201200619
Y.H. Ma, X.Y. He, Q.Q. Yang, et al., Asian J. Org. Chem. 10 (2021) 1233–1250.
doi: 10.1002/ajoc.202100141
B. Yang, S. Gao, Chem. Soc. Rev. 47 (2018) 7926–7953.
doi: 10.1039/C8CS00274F
M. Zurro, A. Maestro, ChemCatChem 15 (2023) e202300500.
H. Wang, S. Yang, Y. Zhang, et al., Chin. J. Org. Chem. 43 (2023) 974–999.
doi: 10.6023/cjoc202211022
X. Li, Z. Li, J. Sun, Nat. Synth. 1 (2022) 426–438.
doi: 10.1038/s44160-022-00072-x
O. El-Sepelgy, S. Haseloff, S.K. Alamsetti, et al., Angew. Chem. Int. Ed. 53 (2014) 7923–7927.
doi: 10.1002/anie.201403573
W. Guo, B. Wu, X. Zhou, et al., Angew. Chem. Int. Ed. 54 (2015) 4522–4526.
doi: 10.1002/anie.201409894
W. Zhao, Z. Wang, B. Chu, et al., Angew. Chem. Int. Ed. 54 (2015) 1910–1913.
doi: 10.1002/anie.201405252
S. Saha, S.K. Alamsetti, C. Schneider, Chem. Commun. 51 (2015) 1461–1464.
doi: 10.1039/C4CC08559K
H.H. Liao, S. Miñoza, S.C. Lee, et al., Chem. Eur. J. 28 (2022) e202201112.
A. Chatupheeraphat, H.H. Liao, S. Mader, et al., Angew. Chem. Int. Ed. 55 (2016) 4803–4807.
doi: 10.1002/anie.201511179
M. Kretzschmar, T. Hodík, C. Schneider, Angew. Chem. Int. Ed. 55 (2016) 9788–9792.
doi: 10.1002/anie.201604201
H. Liao, A. Chatupheeraphat, C. Hsiao, et al., Angew. Chem. Int. Ed. 54 (2015) 15540–15544.
doi: 10.1002/anie.201505981
L.Z. Li, C.S. Wang, W.F. Guo, et al., J. Org. Chem. 83 (2018) 614–623.
doi: 10.1021/acs.joc.7b02533
Q.Q. Yang, Q. Wang, J. An, et al., Chem. Eur. J. 19 (2013) 8401–8404.
doi: 10.1002/chem.201300988
A. Lee, A. Younai, C.K. Price, et al., J. Am. Chem. Soc. 136 (2014) 10589–10592.
doi: 10.1021/ja505880r
M.R. Cerón, M. Izquierdo, N. Alegret, et al., Chem. Commun. 52 (2016) 64–67.
doi: 10.1039/C5CC07416A
M.Y. Hao, M.H. Huang, X.Y. Gu, et al., J. Org. Chem. 87 (2022) 1518–1525.
doi: 10.1021/acs.joc.1c02299
Z. Li, P.X. Zhang, Z.Z. Li, et al., Org. Lett. 24 (2022) 6863–6868.
doi: 10.1021/acs.orglett.2c02830
G. Singh, R. Pandey, Y.A. Pankhade, et al., Chem. Rec. 21 (2021) 4150–4173.
doi: 10.1002/tcr.202100137
J.Y. Wang, W.J. Hao, S.J. Tu, et al., Org. Chem. Front. 7 (2020) 1743–1778.
doi: 10.1039/D0QO00387E
L. Caruana, F. Kniep, T.K. Johansen, et al., J. Am. Chem. Soc. 136 (2014) 15929–15932.
doi: 10.1021/ja510475n
W.D. Chu, L.F. Zhang, X. Bao, et al., Angew. Chem. Int. Ed. 52 (2013) 9229–9233.
doi: 10.1002/anie.201303928
P.Z. Zi, X.B. Liu, Q.H. Zhao, et al., Green Syn. Catal. (2022), doi:10.1016/j.gresc. 2022.12.003.
doi: 10.1016/j.gresc.2022.12.003
Z. Yue, F. Fang, Y. Xia, et al., Adv. Synth. Catal. 365 (2023) 1926–1933.
doi: 10.1002/adsc.202300246
D. Qian, L. Wu, Z. Lin, et al., Nat. Commun. 8 (2017) 567.
doi: 10.1038/s41467-017-00251-x
L. Wang, Y. Chen, J. Xiao, Asian J. Org. Chem. 3 (2014) 1036–1052.
doi: 10.1002/ajoc.201402093
A. Palmieri, M. Petrini, R.R. Shaikh, Org. Biomol. Chem. 8 (2010) 1259–1270.
doi: 10.1039/B919891A
G.J. Mei, F. Shi, J. Org. Chem. 82 (2017) 7695–7707.
doi: 10.1021/acs.joc.7b01458
A. Palmieri, M. Petrini, Chem. Rec. 16 (2016) 1353–1379.
doi: 10.1002/tcr.201500291
H. Zhang, F. Shi, Chin. J. Org. Chem. 42 (2022) 3351.
doi: 10.6023/cjoc202203018
M. Petrini, Adv. Synth. Catal. 362 (2020) 1214–1232.
doi: 10.1002/adsc.201901245
C. Yue, F. Na, X. Fang, et al., Angew. Chem. Int. Ed. 57 (2018) 11004–11008.
doi: 10.1002/anie.201804330
D. Parmar, E. Sugiono, S. Raja, et al., Chem. Rev. 114 (2014) 9047–9153.
doi: 10.1021/cr5001496
J.K. Cheng, S.H. Xiang, B. Tan, Acc. Chem. Res. 55 (2022) 2920–2937.
doi: 10.1021/acs.accounts.2c00509
P. Wu, X.Y. Yan, S. Jiang, et al., Chem. Synth. 3 (2023) 6.
doi: 10.20517/cs.2022.42
Y.W. Liu, Y.H. Chen, J.K. Cheng, et al., Chem. Synth. 3 (2023) 11.
doi: 10.20517/cs.2022.46
Z. Wang, Y.F. Wong, J. Sun, Angew. Chem. Int. Ed. 54 (2015) 13711–13714.
doi: 10.1002/anie.201506701
Y.F. Wong, Z. Wang, J. Sun, Org. Biomol. Chem. 14 (2016) 5751–5754.
doi: 10.1039/C6OB00125D
J. Yan, M. Chen, H.H.Y. Sung, et al., Chem. Eur. J. 13 (2018) 2440–2444.
Z. Wang, F. Ai, Z. Wang, et al., J. Am. Chem. Soc. 137 (2015) 383–389.
doi: 10.1021/ja510980d
M. Chen, J. Sun, Angew. Chem. Int. Ed. 56 (2017) 11966–11970.
doi: 10.1002/anie.201706579
Y.J. Fan, L. Zhou, S. Li, Org. Chem. Front. 5 (2018) 1820–1824.
doi: 10.1039/C8QO00211H
M. Chen, J. Sun, Angew. Chem. Int. Ed. 56 (2017) 4583–4587.
doi: 10.1002/anie.201701947
F. Li, X. Chen, S. Liang, et al., Org. Chem. Front. 7 (2020) 3446–3451.
doi: 10.1039/D0QO00888E
T. Xiong, H. Yuan, F. Yang, et al., Green Syn. Catal. 3 (2022) 46–52.
doi: 10.1016/j.gresc.2021.10.005
M. Zurro, L. Ge, S.R. Harutyunyan, Org. Lett. 24 (2022) 6686–6691.
doi: 10.1021/acs.orglett.2c02786
Z. Wang, Y. Zhu, X. Pan, et al., Angew. Chem. Int. Ed. 59 (2020) 3053–3057.
doi: 10.1002/anie.201912739
Z. Li, Y. Li, X. Li, et al., Chem. Sci. 12 (2021) 11793–11798.
doi: 10.1039/D1SC03324G
H.B. Hepburn, L. Dell'Amico, P. Melchiorre, Chem. Rec. 16 (2016) 1787–1806.
doi: 10.1002/tcr.201600030
C. Curti, L. Battistini, A. Sartori, F. Zanardi, Chem. Rev. 120 (2020) 2448–2612.
doi: 10.1021/acs.chemrev.9b00481
G. Casiraghi, L. Battistini, C. Curti, et al., Chem. Rev. 111 (2011) 3076–3154.
doi: 10.1021/cr100304n
P. Zhang, Q. Huang, Y. Cheng, et al., Org. Lett. 21 (2019) 503–507.
doi: 10.1021/acs.orglett.8b03801
L. Zhang, Y. Han, A. Huang, et al., Org. Lett. 21 (2019) 7415–7419.
doi: 10.1021/acs.orglett.9b02726
M. Chen, D. Qian, J. Sun, Org. Lett. 21 (2019) 8127–8131.
doi: 10.1021/acs.orglett.9b03224
J.Y. Wang, S. Zhang, X.Y. Yu, et al., Tetrahedron Chem. 1 (2022) 100007.
doi: 10.1016/j.tchem.2022.100007
M. Liu, B. Shen, C. Liu, et al., Am. Chem. Soc. 145 (2023) 14562–14569.
doi: 10.1021/jacs.3c05107
S. Liu, K.L. Chan, Z. Lin, et al., J. Am. Chem. Soc. 145 (2023) 12802–12811.
doi: 10.1021/jacs.3c03557
J.F. Bai, L. Zhao, F. Wang, et al., Org. Lett. 22 (2020) 5439–5445.
doi: 10.1021/acs.orglett.0c01812
X.Z. Zhang, Z.W. Qiu, G.H. Wen, et al., Synthesis 52 (2020) 3640–3649.
doi: 10.1055/s-0040-1707348
P. Wu, L. Yu, C.H. Gao, et al., Fundament. Res. 3 (2023) 237–248.
doi: 10.1016/j.fmre.2022.01.002
P. Basu, R. Sikdar, T. Kumar, et al., Eur. J. Org. Chem. 2018 (2018) 5735–5743.
doi: 10.1002/ejoc.201801132
J.Y. Liu, X.C. Yang, H. Lu, et al., Org. Lett. 20 (2018) 2190–2194.
doi: 10.1021/acs.orglett.8b00503
P.H. Poulsen, K.S. Feu, B.M. Paz, et al., Angew. Chem. Int. Ed. 54 (2015) 8203–8207.
doi: 10.1002/anie.201503370
X.Z. Zhang, B.Q. Li, Z.W. Qiu, et al., J. Org. Chem. 85 (2020) 13306–13316.
doi: 10.1021/acs.joc.0c01791
Z.W. Qiu, X.T. Xu, H.P. Pan, et al., Org. Chem. 86 (2021) 6075–6089.
doi: 10.1021/acs.joc.0c02844
Z.W. Qiu, B.Q. Li, H.F. Liu, et al., J. Org. Chem. 86 (2021) 7490–7499.
doi: 10.1021/acs.joc.1c00484
X. Liu, J. Zhang, L. Bai, et al., Chem. Sci. 11 (2020) 671–676.
doi: 10.1039/C9SC05320D
W.T. Wu, L. Zhang, S.L. You, Chem. Soc. Rev. 45 (2016) 1570–1580.
doi: 10.1039/C5CS00356C
G. Bertuzzi, L. Lenti, D. Giorgiana Bisag, et al., Adv. Synth. Catal. 360 (2018) 1296–1302.
doi: 10.1002/adsc.201701558
W.R. Zhu, Q. Su, H.J. Diao, et al., Org. Lett. 22 (2020) 6873–6878.
doi: 10.1021/acs.orglett.0c02386
W. Xiao, J. Wu, Org. Chem. Front. 9 (2022) 5053–5073.
doi: 10.1039/D2QO00994C
W.R. Zhu, Q. Su, X.Y. Deng, et al., Chem. Sci. 13 (2022) 170–177.
doi: 10.1039/D1SC05174A
Z. Wang, X. Lin, X. Chen, Org. Chem. Front. 8 (2021) 3469–3474.
doi: 10.1039/D1QO00394A
Y. Wu, Z. Yue, C. Qian, et al., Asian J. Org. Chem. 11 (2022) e202100724.
T. Fu, A. Bonaparte, S.F. Martin, Tetrahedron Lett. 50 (2009) 3253–3257.
doi: 10.1016/j.tetlet.2009.02.018
X. Zhong, Y. Li, F.S. Han, Chem. Eur. J. 18 (2012) 9784–9788.
doi: 10.1002/chem.201201344
S. Qi, C.Y. Liu, J.Y. Ding, et al., Chem. Commun. 50 (2014) 8605.
doi: 10.1039/C4CC03605K
X.X. Sun, H.H. Zhang, G.H. Li, et al., Chem. Eur. J. 22 (2016) 17526–17532.
doi: 10.1002/chem.201603049
M.M. Xu, H.Q. Wang, Y.J. Mao, et al., J. Org. Chem. 83 (2018) 5027–5034.
doi: 10.1021/acs.joc.8b00228
Z.Q. Zhu, Y. Shen, J.X. Liu, et al., Org. Lett. 19 (2017) 1542–1545.
doi: 10.1021/acs.orglett.7b00351
Z.Q. Zhu, Y. Shen, X.X. Sun, et al., Adv. Syn. Catal. 358 (2016) 3797–3808.
doi: 10.1002/adsc.201600931
H.H. Zhang, C.S. Wang, C. Li, et al., Angew. Chem. Int. Ed. 56 (2017) 116–121.
doi: 10.1002/anie.201608150
Y.Y. He, X.X. Sun, G.H. Li, et al., J. Org. Chem. 82 (2017) 2462–2471.
doi: 10.1021/acs.joc.6b02850
C. Hu, G. Hong, Y. He, et al., J. Org. Chem. 83 (2018) 4739–4753.
doi: 10.1021/acs.joc.8b00541
T. Ikeda, T. Masuda, M. Takayama, et al., Org. Biomol. Chem. 14 (2016) 36–39.
doi: 10.1039/C5OB01898F
C.Y. Bian, D. Li, Q. Shi, et al., Synthesis 50 (2018) 295–302.
doi: 10.1055/s-0036-1590929
Y. Mao, Y. Lu, T. Li, et al., Chin. J. Org. Chem. 40 (2020) 3895.
doi: 10.6023/cjoc202005096
X. Huang, Y.I. Jeong, B.K. Moon, et al., Langmuir 29 (2013) 3223–3233.
doi: 10.1021/la305069e
M.R. Franklin, Biochem. Pharmacol. 46 (1993) 683–689.
F. Bonardi, E. Halza, M. Walko, et al., Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 7775–7780.
doi: 10.1073/pnas.1101705108
X. Li, M. Duan, Z. Deng, et al., Nat. Catal. 3 (2020) 1010–1019.
doi: 10.1038/s41929-020-00535-4
X. Li, J. Sun, Angew. Chem. Int. Ed. 59 (2020) 17049–17054.
doi: 10.1002/anie.202006137
B.X. Xiao, R.J. Yan, X.Y. Gao, et al., Org. Lett. 19 (2017) 4652–4655.
doi: 10.1021/acs.orglett.7b02287
B.X. Xiao, X.Y. Gao, W. Du, et al., Chem. Eur. J. 25 (2019) 1607–1613.
doi: 10.1002/chem.201803592
X.L. He, H.R. Zhao, C.Q. Duan, et al., Org. Lett. 20 (2018) 804–807.
doi: 10.1021/acs.orglett.7b03942
J.L. Li, C.Z. Yue, P.Q. Chen, et al., Angew. Chem. Int. Ed. 53 (2014) 5449–5452.
doi: 10.1002/anie.201403082
X. Li, M. Duan, P. Yu, et al., Nat. Commun. 12 (2021) 4881.
doi: 10.1038/s41467-021-25165-7
K. Bera, C. Schneider, Chem. Eur. J. 22 (2016) 7074–7078.
doi: 10.1002/chem.201601020
K. Bera, C. Schneider, Org. Lett. 18 (2016) 5660–5663.
doi: 10.1021/acs.orglett.6b02898
F. Göricke, C. Schneider, Org. Lett. 22 (2020) 6101–6106.
doi: 10.1021/acs.orglett.0c02166
G. Mehta, S. Muthusamy, Tetrahedron 58 (2002) 9477–9504.
doi: 10.1016/S0040-4020(02)01187-0
A. Ford, H. Miel, A. Ring, et al., Chem. Rev. 115 (2015) 9981–10080.
doi: 10.1021/acs.chemrev.5b00121
H.J. Loui, A. Suneja, C. Schneider, Org. Lett. 23 (2021) 2578–2583.
doi: 10.1021/acs.orglett.1c00489
J. Adrio, J.C. Carretero, Chem. Commun. 47 (2011) 6784–6794.
doi: 10.1039/c1cc10779h
R. Narayan, M. Potowski, Z.J. Jia, et al., Acc. Chem. Res. 47 (2014) 1296–1310.
doi: 10.1021/ar400286b
S.V. Kumar, P.J. Guiry, Chem. Eur. J. 29 (2023) e202300296.
X.X. Sun, C. Li, Y.Y. He, et al., Adv. Synth. Catal. 359 (2017) 2660–2670.
doi: 10.1002/adsc.201700203
C. Li, H. Lu, X.X. Sun, et al., Org. Biomol. Chem. 15 (2017) 4794–4797.
doi: 10.1039/C7OB01059A
Q. Song, P. Zhang, S. Liang, et al., Org. Lett. 22 (2020) 7859–7863.
doi: 10.1021/acs.orglett.0c02769
X. Lin, B. Shen, Z. Wang, et al., Org. Lett. 24 (2022) 4914–4918.
doi: 10.1021/acs.orglett.2c01794
Z. Wang, Y. Cheng, Z. Yue, et al., Asian J. Org. Chem. 11 (2022) e202200399.
X. Wang, Q. Song, X. Chen, et al., Chin. J. Org. Chem. 42 (2022) 1722–1734.
doi: 10.6023/cjoc202112023
F. Li, Z. Yang, Y. Yang, et al., Adv. Synth. Catal. 363 (2021) 2557–2561.
doi: 10.1002/adsc.202100039
Z. Yue, B. Shen, J. Cao, et al., Org. Chem. Front. 10 (2023) 3662–3668.
doi: 10.1039/D3QO00577A
Yi Luo , Lin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648
Guihuang Fang , Wei Chen , Hongwei Yang , Haisheng Fang , Chuang Yu , Maoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799
Yu-Hang Miao , Zheng-Xu Zhang , Xu-Yi Huang , Yuan-Zhao Hua , Shi-Kun Jia , Xiao Xiao , Min-Can Wang , Li-Ping Xu , Guang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830
Mengxing Liu , Jing Liu , Hongxing Zhang , Jianan Tao , Peiwen Fan , Xin Lv , Wei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994
Pengfei Zhang , Qingxue Ma , Zhiwei Jiang , Xiaohua Xu , Zhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361
Jian Han , Li-Li Zeng , Qin-Yu Fei , Yan-Xiang Ge , Rong-Hui Huang , Fen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
Cunjun Li , Wencong Liu , Xianlei Chen , Liang Li , Shenyu Lan , Mingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652
Yu Yao , Jinqiang Zhang , Yantao Wang , Kunsheng Hu , Yangyang Yang , Zhongshuai Zhu , Shuang Zhong , Huayang Zhang , Shaobin Wang , Xiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633
Chunxiu Yu , Zelin Wu , Hongle Shi , Lingyun Gu , Kexin Chen , Chuan-Shu He , Yang Liu , Heng Zhang , Peng Zhou , Zhaokun Xiong , Bo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334
Yinyin Xu , Yuanyuan Li , Jingbo Feng , Chen Wang , Yan Zhang , Yukun Wang , Xiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838
Ruonan Guo , Heng Zhang , Changsheng Guo , Ningqing Lv , Beidou Xi , Jian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413
Qiuyun Li , Yannan Zhu , Yining Wang , Gang Qi , Wen-Juan Hao , Kelu Yan , Bo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494
Boqiang Wang , Yongzhuo Xu , Jiajia Wang , Muyang Yang , Guo-Jun Deng , Wen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502
Lin Li , Bingjun Sun , Jin Sun , Lin Chen , Zhonggui He . Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109538-. doi: 10.1016/j.cclet.2024.109538
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499
Chao Chen , Wenwen Yu , Guangen Huang , Xuelian Ren , Xiangli Chen , Yixin Li , Shenggui Liang , Mengmeng Xu , Mingyue Zheng , Yaxi Yang , He Huang , Wei Tang , Bing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574
Ruru Li , Qian Liu , Hui Li , Fengbin Sun , Zhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679
Yunkang Tong , Haiqiao Huang , Haolan Li , Mingle Li , Wen Sun , Jianjun Du , Jiangli Fan , Lei Wang , Bin Liu , Xiaoqiang Chen , Xiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663
Mengmeng Ao , Jian Wei , Chuan-Shu He , Heng Zhang , Zhaokun Xiong , Yonghui Song , Bo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882