Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds
-
* Corresponding authors.
E-mail addresses: luxi@mail.ustc.edu.cn (X. Lu), fuyao@ustc.edu.cn (Y. Fu).
Citation:
Lei Wan, Yizhou Tong, Xi Lu, Yao Fu. Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds[J]. Chinese Chemical Letters,
;2024, 35(7): 109283.
doi:
10.1016/j.cclet.2023.109283
S. Chen, Y. Zhao, Chin. J. Chem. 38 (2020) 952–958.
doi: 10.1002/cjoc.202000084
C.W. Cheung, F.E. Zhurkin, X. Hu, J. Am. Chem. Soc. 137 (2015) 4932–4935.
doi: 10.1021/jacs.5b01784
W.D. Chu, F. Guo, L. Yu, et al., Chin. J. Chem. 36 (2018) 217–222.
doi: 10.1002/cjoc.201700633
S. Fan, C. Zheng, K. Zheng, et al., Org. Lett. 23 (2021) 3190–3194.
doi: 10.1021/acs.orglett.1c00906
V.J. Geiger, G. Lefèvre, I. Fleischer, Chem. Eur. J. 28 (2022) e202202212.
doi: 10.1002/chem.202202212
S. Mondal, T. Pinkert, C.G. Daniliuc, et al., Angew. Chem. Int. Ed. 60 (2021) 5688–5692.
doi: 10.1002/anie.202015249
L. Qi, X. Pang, K. Yin, et al., Chin. Chem. Lett. 33 (2022) 5061–5064.
doi: 10.1016/j.cclet.2022.03.070
R. Sakamoto, T. Kato, S. Sakurai, et al., Org. Lett. 20 (2018) 1400–1403.
doi: 10.1021/acs.orglett.8b00173
X. Tian, J. Kaur, S. Yakubov, et al., ChemSusChem 15 (2022) e202200906.
doi: 10.1002/cssc.202200906
Q. Yang, N.R. Babij, S. Good, Org. Process Res. Dev. 23 (2019) 2608–2626.
doi: 10.1021/acs.oprd.9b00377
Y. Zhao, J.T. Merrett, J. Jin, et al., Org. Chem. Front. 10 (2023) 759–766.
doi: 10.1039/d2qo01581a
M. Amatore, C. Gosmini, Chem. Eur. J. 16 (2010) 5848–5852.
doi: 10.1002/chem.201000178
M. Corpet, X.Z. Bai, C. Gosmini, Adv. Synth. Catal. 356 (2014) 2937–2942.
doi: 10.1002/adsc.201400369
C. Dorval, E. Dubois, Y. Bourne-Branchu, et al., Adv. Synth. Catal. 361 (2019) 1777–1780.
doi: 10.1002/adsc.201801577
C. Dorval, M. Tricoire, J.M. Begouin, et al., ACS Catal. 10 (2020) 12819–12827.
doi: 10.1021/acscatal.0c03903
C. Gosmini, J.M. Bégouin, A. Moncomble, Chem. Commun. (2008) 3221–3233.
doi: 10.1039/b805142a
X. Qian, A. Auffrant, A. Felouat, et al., Angew. Chem. Int. Ed. 50 (2011) 10402–10405.
doi: 10.1002/anie.201104390
L. Huang, A.M. Olivares, D.J. Weix, Angew. Chem. Int. Ed. 56 (2017) 11901–11905.
doi: 10.1002/anie.201706781
K. Kang, N.L. Loud, T.A. DiBenedetto, et al., J. Am. Chem. Soc. 143 (2021) 21484–21491.
doi: 10.1021/jacs.1c10907
J.M. Mouat, J.K. Widness, D.G. Enny, et al., ACS Catal. 13 (2023) 9018–9024.
doi: 10.1021/acscatal.3c01984
D.C. Salgueiro, B.K. Chi, I.A. Guzei, et al., Angew. Chem. Int. Ed. 61 (2022) e202205673.
doi: 10.1002/anie.202205673
Q. Lin, H. Gong, F. Wu, Org. Lett. 24 (2022) 8996–9000.
doi: 10.1021/acs.orglett.2c03598
Q. Lin, G. Ma, H. Gong, ACS Catal. 11 (2021) 14102–14109.
doi: 10.1021/acscatal.1c04239
D. Sun, G. Ma, X. Zhao, et al., Chem. Sci. 12 (2021) 5253–5258.
doi: 10.1039/d1sc00283j
C. Hu, J. Mena, I.V. Alabugin, Nat. Rev. Chem. 7 (2023) 405–423.
doi: 10.1038/s41570-023-00479-w
S. Kolle, S. Batra, Org. Biomol. Chem. 14 (2016) 11048–11060.
doi: 10.1039/C6OB01912A
Z. Zhao, F. Zhang, D. Wang, et al., Chin. J. Chem. 41 (2023) 3063–3081.
doi: 10.1002/cjoc.202300276
D.B. Biradar, H.M. Gau, Chem. Commun. 47 (2011) 10467–10469.
doi: 10.1039/c1cc14206b
J.M. Hammann, D. Haas, C.P. Tüllmann, et al., Org. Lett. 18 (2016) 4778–4781.
doi: 10.1021/acs.orglett.6b02119
J.L. Kneebone, W.W. Brennessel, M.L. Neidig, J. Am. Chem. Soc. 139 (2017) 6988–7003.
doi: 10.1021/jacs.7b02363
K. Mashima, H. Tsurugi, Y. Ueda, Synlett 34 (2022) 990–1000.
X. Mo, R. Guo, G. Zhang, Chin. J. Chem. 41 (2022) 481–489.
E. Negishi, L. Anastasia, Chem. Rev. 103 (2003) 1979–2017.
doi: 10.1021/cr020377i
J. Skotnitzki, V. Morozova, P. Knochel, Org. Lett. 20 (2018) 2365–2368.
doi: 10.1021/acs.orglett.8b00699
C. Wu, Q.H. Li, Tetrahedron 96 (2021) 132370.
doi: 10.1016/j.tet.2021.132370
Z. Cao, J. Li, Y. Sun, et al., Chem. Sci. 12 (2021) 4836–4840.
doi: 10.1039/d0sc05883a
R. Chinchilla, C. Nájera, Chem. Soc. Rev. 40 (2011) 5084–5121.
doi: 10.1039/c1cs15071e
M. Eckhardt, G.C. Fu, J. Am. Chem. Soc. 125 (2003) 13642–13643.
doi: 10.1021/ja038177r
Y. Gao, C. Feng, T. Seo, et al., Chem. Sci. 13 (2022) 430–438.
doi: 10.1039/D1SC05257H
M. Karak, L.C.A. Barbosa, G.C. Hargaden, RSC Adv. 4 (2014) 53442–53466.
doi: 10.1039/C4RA09105A
X. Mo, B. Chen, G. Zhang, Angew. Chem. Int. Ed. 59 (2020) 13998–14002.
doi: 10.1002/anie.202000860
P.P. Nair, R.M. Philip, G. Anilkumar, Org. Biomol. Chem. 19 (2021) 4228–4242.
doi: 10.1039/d1ob00280e
X. Zeng, C. Wang, W. Yan, et al., ACS Catal. 13 (2023) 2761–2770.
doi: 10.1021/acscatal.2c05901
X.Y. Dong, Y.F. Zhang, C.L. Ma, et al., Nat. Chem. 11 (2019) 1158–1166.
doi: 10.1038/s41557-019-0346-2
X. Li, M. Jiang, X. Zhu, et al., Org. Chem. Front. 9 (2022) 386–393.
doi: 10.1039/d1qo01548f
J. Yi, X. Lu, Y.Y. Sun, et al., Angew. Chem. Int. Ed. 52 (2013) 12409–12413.
doi: 10.1002/anie.201307069
W. Chen, Y. Cheng, T. Zhang, et al., J. Org. Chem. 86 (2021) 5166–5182.
doi: 10.1021/acs.joc.1c00079
Y. Dai, F. Wang, S. Zhu, et al., Chin. Chem. Lett. 33 (2022) 4074–4078.
doi: 10.1016/j.cclet.2021.12.050
M. Duan, Y. Wang, S. Zhu, Tetrahedron Lett. 114 (2023) 154247.
doi: 10.1016/j.tetlet.2022.154247
X. Jiang, B. Han, Y. Xue, et al., Nat. Commun. 12 (2021) 3792.
doi: 10.1038/s41467-021-24094-9
H. Wang, X. Wu, T. Xu, Angew. Chem. Int. Ed. 62 (2023) e202218299.
doi: 10.1002/anie.202218299
J. Yang, J. Zhang, L. Qi, et al., Chem. Commun. 51 (2015) 5275–5278.
doi: 10.1039/C4CC06344A
Y.L. Zheng, M. Ye, Chin. J. Chem. 38 (2020) 489–493.
doi: 10.1002/cjoc.201900543
C. Zhu, S.C. Lee, H. Chen, et al., Angew. Chem. Int. Ed. 61 (2022) e202204212.
doi: 10.1002/anie.202204212
J. Guo, Y. Wang, Y. Li, et al., Adv. Synth. Catal. 362 (2020) 3898–3904.
doi: 10.1002/adsc.202000777
E. Le Du, J. Waser, Chem. Commun. 59 (2023) 1589–1604.
doi: 10.1039/D2CC06168F
Q.Q. Zhou, W. Guo, W. Ding, et al., Angew. Chem. Int. Ed. 54 (2015) 11196–11199.
doi: 10.1002/anie.201504559
A.R. Tripathy, A. Kumar, R. Rahmathulla A, et al., Org. Lett. 24 (2022) 5186–5191.
doi: 10.1021/acs.orglett.2c02018
L. Xia, M. Jin, Y. Jiao, et al., Org. Lett. 24 (2021) 364–368.
Y. Yamamoto, E. Kuroyanagi, H. Suzuki, et al., Adv. Synth. Catal. 363 (2021) 4932–4940.
doi: 10.1002/adsc.202100846
A. Guérinot, J. Cossy, Acc. Chem. Res. 53 (2020) 1351–1363.
doi: 10.1021/acs.accounts.0c00238
J.A. Killion, W.T. Darrow, M.R. Brennan, et al., Organometallics 41 (2021) 1769–1776.
X.G. Liu, C.J. Zhou, E. Lin, et al., Angew. Chem. Int. Ed. 57 (2018) 13096–13100.
doi: 10.1002/anie.201806799
Y. Li, D. Liu, L. Wan, et al., J. Am. Chem. Soc. 144 (2022) 13961–13972.
doi: 10.1021/jacs.2c06279
Y. Li, W. Nie, Z. Chang, et al., Nat. Catal. 4 (2021) 901–911.
doi: 10.1038/s41929-021-00688-w
B. Liu, D. Liu, X. Rong, et al., Angew. Chem. Int. Ed. 62 (2023) e202218544.
doi: 10.1002/anie.202218544
Z.L. Zhang, Z. Li, Y.T. Xu, et al., Angew. Chem. Int. Ed. 62 (2023) e202306381.
doi: 10.1002/anie.202306381
X. Ying, Y. Li, L. Li, et al., Angew. Chem. Int. Ed. 62 (2023) e202304177.
doi: 10.1002/anie.202304177
H.Y. Lu, Z.T. He, Chin. Chem. Lett. 34 (2023) 108105.
doi: 10.1016/j.cclet.2022.108105
L. Zhu, Z. Wang, S. Liu, et al., Chin. Chem. Lett. 30 (2019) 889–894.
doi: 10.1016/j.cclet.2019.03.024
W. Wu, J. Wang, Y. Wang, et al., Angew. Chem. Int. Ed. 56 (2017) 10476–10480.
doi: 10.1002/anie.201705620
H.P.R. Mangunuru, J.R. Yerabolu, G. Wang, Tetrahedron Lett. 56 (2015) 3361–3364.
doi: 10.1016/j.tetlet.2015.02.123
F. Jiang, Q. Ren, J. Organomet. Chem. 757 (2014) 72–78.
doi: 10.1016/j.jorganchem.2013.12.047
R.F. Turro, J.L.H. Wahlman, Z.J. Tong, et al., J. Am. Chem. Soc. 145 (2023) 14705–14715.
doi: 10.1021/jacs.3c02649
X. Zhang, J. Wang, S. -D. Yang, ACS Catal. 11 (2021) 14008–14015.
doi: 10.1021/acscatal.1c04128
H. Wang, X. Li, T. Xu, Sci. China Chem. 66 (2023) 2621–2625.
doi: 10.1007/s11426-023-1726-1
L. Xi, L. Du, Z. Shi, Chin. Chem. Lett. 33 (2022) 4287–4292.
doi: 10.1016/j.cclet.2022.01.077
Y. Xiao, W. Huang, Q. Shen, Chin. Chem. Lett. 33 (2022) 4277–4280.
doi: 10.1016/j.cclet.2022.01.020
Peng Guo , Shicheng Dong , Xiang-Gui Zhang , Bing-Bin Yang , Jun Zhu , Ke-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
Guoju Guo , Xufeng Li , Jie Ma , Yongjia Shi , Jian Lv , Daoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024
Long Jin , Jian Han , Dongmei Fang , Min Wang , Jian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212
Yu Yao , Jinqiang Zhang , Yantao Wang , Kunsheng Hu , Yangyang Yang , Zhongshuai Zhu , Shuang Zhong , Huayang Zhang , Shaobin Wang , Xiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
Rui Cheng , Tingting Zhang , Xin Huang , Jian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886
Bohan Zhang , Bingzhe Wang , Guichuan Xing , Zikang Tang , Songnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358
Liliang Chu , Xiaoyan Zhang , Jianing Li , Xuelei Deng , Miao Wu , Ya Cheng , Weiping Zhu , Xuhong Qian , Yunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Shimei Wu , Yining Li , Lantao Chen , Yufei Zhang , Lingxing Zeng , Haosen Fan . Hexapod cobalt phosphosulfide nanorods encapsulating into multiple hetero-atom doped carbon frameworks for advanced sodium/potassium ion battery anodes. Chinese Chemical Letters, 2025, 36(4): 109796-. doi: 10.1016/j.cclet.2024.109796
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
Binyang Qin , Mengqi Wang , Shimei Wu , Yining Li , Chilin Liu , Yufei Zhang , Haosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921
Meijuan Chen , Liyun Zhao , Xianjin Shi , Wei Wang , Yu Huang , Lijuan Fu , Lijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336
Jiahao Xie , Jin Liu , Bin Liu , Xin Meng , Zhuang Cai , Xiaoqin Xu , Cheng Wang , Shijie You , Jinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236
Yi Luo , Lin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Xiaoling WANG , Hongwu ZHANG , Daofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214