Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?
-
* Corresponding author.
E-mail address: xulei@ncepu.edu.cn (L. Xu).
Citation:
Xubin Qian, Lei Xu, Xu Ge, Zhun Liu, Cheng Fang, Jianbing Wang, Junfeng Niu. Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?[J]. Chinese Chemical Letters,
;2024, 35(7): 109218.
doi:
10.1016/j.cclet.2023.109218
C. Liu, K.Y. Gin, V.W. Chang, B.P. Goh, M. Reinhard, Environ. Sci. Technol. 45 (2011) 9758–9764.
doi: 10.1021/es202078n
C.A. Moody, J.A. Field, Environ. Sci. Technol. 34 (2000) 3864–3870.
doi: 10.1021/es991359u
M. Houde, J.W. Martin, R.J. Letcher, K.R. Solomon, D.C. Muir, Environ. Sci. Technol. 40 (2006) 3463–3473.
doi: 10.1021/es052580b
D. Ellis, J. Martin, S. Mabury, et al., Environ. Sci. Technol. 37 (2003) 3816–3820.
doi: 10.1021/es034136j
V. Barry, A. Winquist, K. Steenland, Environ. Health Perspect. 121 (2013) 1313–1318.
doi: 10.1289/ehp.1306615
S.S. White, S.E. Fenton, E.P. Hines, J. Steroid Biochem. 127 (2011) 16–26.
doi: 10.1016/j.jsbmb.2011.03.011
N. Onishchenko, C. Fischer, W.N.W. Ibrahim, et al., Neurotox. Res. 19 (2011) 452–461.
doi: 10.1007/s12640-010-9200-4
Y.L. Mak, S. Taniyasu, L.W.Y. Yeung, et al., Environ. Sci. Technol. 43 (2009) 4824–4829.
doi: 10.1021/es900637a
G.B. Post, J.B. Louis, K.R. Cooper, B.J. Boros-Russo, R.L. Lippincott, Environ. Sci. Technol. 43 (2009) 4547–4554.
doi: 10.1021/es900301s
C.A. Moody, J.A. Field, Environ. Sci. Technol. 33 (1999) 2800–2806.
doi: 10.1021/es981355+
B.D. Key, R.D. Howell, C.S. Criddle, Environ. Sci. Technol. 31 (1997) 2445–2454.
doi: 10.1021/es961007c
S. Takagi, F. Adachi, K. Miyano, et al., Water Res. 45 (2011) 3925–3932.
doi: 10.1016/j.watres.2011.04.052
J. Lin, C. Hu, S. Lo, Ultrason. Sonochem. 28 (2016) 130–135.
doi: 10.1016/j.ultsonch.2015.07.007
X. Li, P. Zhang, L. Jin, et al., Environ. Sci. Technol. 46 (2012) 5528–5534.
doi: 10.1021/es204279u
X. Li, P. Zhang, L. Jin, et al., Chin. Chem. Lett. 30 (2019) 2225–2230.
doi: 10.1016/j.cclet.2019.07.058
Y. Wang, P. Zhang, G. Pan, H. Chen, Chin. Chem. Lett. 19 (2008) 371–374.
doi: 10.1016/j.cclet.2007.11.007
H. Hori, Y. Nagaoka, A. Yamamoto, et al., Environ. Sci. Technol. 40 (2006) 1049–1054.
doi: 10.1021/es0517419
Y. Lee, S. Lo, P. Chiueh, D. Chang, Water Res. 43 (2009) 2811–2816.
doi: 10.1016/j.watres.2009.03.052
L. Xu, X. Qian, K. Wang, C. Fang, J. Niu, J. Clean. Prod. 263 (2020) 121546.
doi: 10.1016/j.jclepro.2020.121546
D. Guo, S. You, F. Li, Y. Liu, Chin. Chem. Lett. 33 (2022) 1–10.
doi: 10.1016/j.cclet.2021.06.027
L. Xu, X. Cui, J. Liao, et al., Chin. Chem. Lett. 33 (2022) 3701–3704.
doi: 10.1016/j.cclet.2021.10.065
S. Tnag, Z. Luo, J. Liao, et al., Chin. Chem. Lett. 34 (2022) 108090.
J. Niu, H. Lin, C. Gong, X. Sun, Environ. Sci. Technol. 47 (2013) 14341–14349.
doi: 10.1021/es402987t
S. Liang, R.D. Pierce Jr, H. Lin, S.Y. Chiang, Q.J. Huang, Remediation 28 (2018) 127–134.
doi: 10.1002/rem.21554
H. Lin, J. Niu, S. Ding, L. Zhang, Water Res. 46 (2012) 2281–2289.
doi: 10.1016/j.watres.2012.01.053
F. Liu, S. Jiang, S. You, Y. Liu, Front. Environ. Sci. Eng. 17 (2023) 18.
doi: 10.1007/s11783-023-1618-z
J. Niu, H. Lin, J. Xu, H. Wu, Y. Li, Environ. Sci. Technol. 46 (2012) 10191–10198.
doi: 10.1021/es302148z
Y. Liu, F. Li, Q. Xia, et al., Nanoscale 10 (2018) 4771–4778.
doi: 10.1039/C7NR09435C
L. Xu, X. Ma, J. Niu, J. Chen, C. Zhou, J. Hazard. Mater. 379 (2019) 120692.
doi: 10.1016/j.jhazmat.2019.05.085
C. Trellu, B.P. Chaplin, C. Coetsier, et al., Chemosphere 208 (2018) 159–175.
doi: 10.1016/j.chemosphere.2018.05.026
L. Xu, J. Niu, H. Xie, et al., J. Hazard. Mater. 402 (2021) 123530.
doi: 10.1016/j.jhazmat.2020.123530
L. Yang, W. Yang, S. Lv, et al., Environ. Res. 204 (2022) 111995.
doi: 10.1016/j.envres.2021.111995
T.X.H. Le, H. Haflich, A.D. Shah, B.P. Chaplin, Environ. Sci. Technol. Lett. 6 (2019) 504–510.
doi: 10.1021/acs.estlett.9b00397
X. Qian, K. Peng, L. Xu, et al., Chem. Eng. J. 429 (2022) 132309.
doi: 10.1016/j.cej.2021.132309
H. Lin, J. Niu, S. Liang, et al., Chem. Eng. J. 354 (2018) 1058–1067.
doi: 10.1016/j.cej.2018.07.210
G. Chen, Sep. Purif. Technol. 38 (2004) 11–41.
doi: 10.1016/j.seppur.2003.10.006
H. Liu, A. Vajpayee, C.D. Vecitis, ACS Appl. Mater. Interfaces 5 (2013) 10054–10066.
doi: 10.1021/am402621v
A.M. Zaky, B.P. Chaplin, Environ. Sci. Technol. 47 (2013) 6554–6563.
doi: 10.1021/es401287e
L. Jin, S. You, N. Ren, B. Din, Y. Liu, Environ. Sci. Technol. 56 (2022) 11750–11759.
doi: 10.1021/acs.est.2c03904
X. Qian, L. Xu, Y. Zhu, H. Yu, J. Niu, Chem. Eng. J. 420 (2021) 127615.
doi: 10.1016/j.cej.2020.127615
L. Guo, Y. Jing, B.P. Chaplin, Environ. Sci. Technol. 50 (2016) 1428–1436.
doi: 10.1021/acs.est.5b04366
H. Liu, C.D. Vecitis, J. Phys. Chem. C 116 (2012) 374–383.
doi: 10.1021/jp209390b
K. Yang, H. Lin, S. Liang, et al., RSC Adv. 8 (2018) 13933–13944.
doi: 10.1039/C8RA00603B
Y. Li, G. Yang, S. Yu, et al., Int. J. Hydrog. Energy 44 (2019) 28283–28293.
doi: 10.1016/j.ijhydene.2019.09.044
A. Urtiaga, C. Fernández-González, S. Gómez-Lavín, I. Ortiz, Chemosphere 129 (2015) 20–26.
doi: 10.1016/j.chemosphere.2014.05.090
J. Cai, M. Zhou, Y. Pan, X. Du, X. Lu, Appl. Catal. B 257 (2019) 117902.
doi: 10.1016/j.apcatb.2019.117902
Z. Zhang, J.J. Chen, X.J. Lyu, H. Yin, G.P. Sheng, Sci. Rep. 4 (2014) 1–6.
S.M. Mitchell, M. Ahmad, A.L. Teel, R.J. Watts, Environ. Sci. Technol. Lett. 1 (2014) 117–121.
doi: 10.1021/ez4000862
Y. Yuan, L. Feng, X. He, et al., J. Hazard. Mater. 423 (2022) 127176.
doi: 10.1016/j.jhazmat.2021.127176
S. Sühnholz, A. Gawel, F.D. Kopinke, K. Mackenzie, Chem. Eng. J. 423 (2021) 130102.
doi: 10.1016/j.cej.2021.130102
Y. Liu, X. Fan, X. Quan, et al., Environ. Sci. Technol. 53 (2019) 5195–5201.
doi: 10.1021/acs.est.8b06130
Y. Wang, H. Shi, C. Li, Q. Huang, Environ. Sci. Water Res. 6 (2020) 144–152.
doi: 10.1039/C9EW00759H
K. Wang, D. Huang, W. Wang, et al., Sci. Total Environ. 758 (2021) 143666.
doi: 10.1016/j.scitotenv.2020.143666
Y. Chen, M. Bhati, B.W. Walls, et al., Environ. Sci. Technol. 56 (2022) 8942–8952.
doi: 10.1021/acs.est.2c01637
X. Meng, Z. Liu, X. Qian, et al., J. Clean. Prod. 383 (2023) 135419.
doi: 10.1016/j.jclepro.2022.135419
Yang Yang , Jing-Li Luo , Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Xinghui Yao , Zhouyu Wang , Da-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Tong Li , Leping Pan , Yan Zhang , Jihu Su , Kai Li , Kuiliang Li , Hu Chen , Qi Sun , Zhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897
Qian-Qian Tang , Li-Fang Feng , Zhi-Peng Li , Shi-Hao Wu , Long-Shuai Zhang , Qing Sun , Mei-Feng Wu , Jian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454
Tinghui Yang , Min Kuang , Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350
Jie Zhou , Chuanxiang Zhang , Changchun Hu , Shuo Li , Yuan Liu , Zhu Chen , Song Li , Hui Chen , Rokayya Sami , Yan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561
Hai-Yang Song , Jun Jiang , Yu-Hang Song , Min-Hang Zhou , Chao Wu , Xiang Chen , Wei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246
Xun Zhu , Chenchen Zhang , Yingying Li , Yin Lu , Na Huang , Dawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753
Jiqing Liu , Qi Dang , Liting Wang , Dejin Wang , Liang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277
Kailong Zhang , Chao Zhang , Luanhui Wu , Qidong Yang , Jiadong Zhang , Guang Hu , Liang Song , Gaoran Li , Wenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618
Chuang LIU , Lichao SUN , Qingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
Fengyu Zhang , Yali Liang , Zhangran Ye , Lei Deng , Yunna Guo , Ping Qiu , Peng Jia , Qiaobao Zhang , Liqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655
Zhengzheng LIU , Pengyun ZHANG , Chengri WANG , Shengli HUANG , Guoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039