Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching
-
* Corresponding authors.
E-mail addresses: honglei.wang@163.com (H. Wang), zhouxinguilmy@163.com (X. Zhou).
Citation:
Lian Sun, Honglei Wang, Ming Ma, Tingting Cao, Leilei Zhang, Xingui Zhou. Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching[J]. Chinese Chemical Letters,
;2024, 35(9): 109188.
doi:
10.1016/j.cclet.2023.109188
G. Fisseha, Y. Hu, Y. Yu, et al., Chin. Chem. Lett. (2023) 108445.
L. Gao, T. Sun, X. Tan, et al., Appl. Catal. B 303 (2022) 120918.
doi: 10.1016/j.apcatb.2021.120918
L. Gao, X. Li, Z. Yao, et al., J. Am. Chem. Soc. 141 (2019) 18083–18090.
doi: 10.1021/jacs.9b07238
C. Li, N. Clament Sagaya Selvam, J. Fang, Nano-Micro Lett. 15 (2023) 83.
doi: 10.2307/jj.2430613.11
L. Tan, N. Yang, X. Huang, et al., Chem. Commun. 55 (2019) 14482–14485.
doi: 10.1039/c9cc06132k
W. Long, J. Wang, F. Xu, et al., Chin. Chem. Lett. 31 (2020) 269–274.
doi: 10.1016/j.cclet.2019.03.044
L. Bu, J. Ding, S. Guo, et al., Adv. Mater. 27 (2015) 7204–7212.
doi: 10.1002/adma.201502725
C. Xiao, N. Tian, W. Li, et al., CrystEngComm 23 (2021) 6655–6660.
doi: 10.1039/d1ce00949d
C. Xiao, B. Lu, P. Xue, et al., Joule 4 (2020) 2562–2598.
doi: 10.1016/j.joule.2020.10.002
Z. Wang, B. Zhang, S. Liu, et al., Adv. Funct. Mater. 32 (2022) 2200893.
doi: 10.1002/adfm.202200893
B. Jiang, D. Tian, Y. Qiu, et al., Nano-Micro Lett. 14 (2021) 40.
M. Liu, B. Lu, G. Yang, et al., Adv. Sci. 9 (2022) 2200147.
doi: 10.1002/advs.202200147
N. Tian, Z. Zhou, S. Sun, et al., Science 316 (2007) 732–735.
doi: 10.1126/science.1140484
N. Tian, Z. Zhou, N. Yu, et al., J. Am. Chem. Soc. 132 (2010) 7580–7581.
doi: 10.1021/ja102177r
S. Hu, N. Tian, M. Li, et al., Chem. Synth. 3 (2023) 4.
doi: 10.20517/cs.2022.32
L. Liang, Q. Feng, X. Wang, et al., Angew. Chem. Int. Ed. 62 (2023) e202218039.
doi: 10.1002/anie.202218039
P. Chen, J.S. Du, B. Meckes, et al., J. Am. Chem. Soc. 139 (2017) 9876–9884.
doi: 10.1021/jacs.7b03163
L. Huang, M. Liu, H. Lin, et al., Science 365 (2019) 1159–1163.
doi: 10.1126/science.aax5843
L. Huang, H. Lin, C.Y. Zheng, et al., J. Am. Chem. Soc. 142 (2020) 4570–4575.
doi: 10.1021/jacs.0c00045
C. Wang, L. Zhang, H. Yang, et al., Nano Lett. 17 (2017) 2204–2210.
doi: 10.1021/acs.nanolett.6b04731
L. Zhang, J. Shi, M. Liu, et al., Chem. Commun. 50 (2014) 192–194.
doi: 10.1039/C3CC46423G
H. Zhang, X. Xia, W. Li, et al., Angew. Chem. Int. Ed. 49 (2010) 5296–5300.
doi: 10.1002/anie.201002546
L. Zhang, L. Roling, X. Wang, et al., Science 349 (2015) 412–416.
doi: 10.1126/science.aab0801
H. Du, S. Luo, K. Wang, et al., Chem. Mater. 29 (2017) 9613–9617.
doi: 10.1021/acs.chemmater.7b03406
Q. Zhang, W. Li, L. Wen, et al., Chem. Eur. J. 16 (2010) 10234–10239.
doi: 10.1002/chem.201000341
X. Han, Q. Kuang, M. Jin, et al., J. Am. Chem. Soc. 131 (2009) 3152–3153.
doi: 10.1021/ja8092373
W. Gong, Z. Jiang, R. Wu, et al., Appl. Catal. B 246 (2019) 277–283.
doi: 10.1016/j.apcatb.2019.01.061
L. Sun, Q. Wang, M. Ma, et al., Nano Energy 103 (2022) 107800.
doi: 10.1016/j.nanoen.2022.107800
L. Ma, C. Wang, M. Gong, et al., ACS Nano 6 (2012) 9797–9806.
doi: 10.1021/nn304237u
Q. Li, M. Rellán-Piñeiro, N. Almora-Barrios, et al., Nanoscale 9 (2017) 13089–13094.
doi: 10.1039/C7NR03889E
X.X. Wang, S. Hwang, Y. Pan, et al., Nano Lett. 18 (2018) 4163–4171.
doi: 10.1021/acs.nanolett.8b00978
Z. Zhao, Z. Liu, A. Zhang, et al., Nat. Nanotechnol. 17 (2022) 968–975.
doi: 10.1038/s41565-022-01170-9
M. Xie, Z. Lyu, R. Chen, et al., J. Am. Chem. Soc. 143 (2021) 8509–8518.
doi: 10.1021/jacs.1c04160
C. Li, S. Kwon, X. Chen, et al., Nano Lett. 23 (2023) 3476–3483.
doi: 10.1021/acs.nanolett.3c00567
Z. Zhang, X. Tian, B. Zhang, et al., Nano Energy 34 (2017) 224–232.
doi: 10.1016/j.nanoen.2017.02.023
Y. Li, H. Li, G. Li, et al., Nanoscale 14 (2022) 14199–14211.
doi: 10.1039/d2nr04316e
F. Yang, J. Ye, L. Gao, et al., Adv. Energy Mater. 13 (2023) 2301408.
doi: 10.1002/aenm.202301408
J. Cui, P. Ma, W. Li, et al., Nano Res. 14 (2021) 4714–4718.
doi: 10.1007/s12274-021-3410-y
I. Pašti, N. Gavrilov, S. Mentus, Electrochim. Acta 130 (2014) 453–463.
doi: 10.1016/j.electacta.2014.03.041
H. Ke, C. Taylor, J. Electrochem. Soc. 167 (2020) 111502.
doi: 10.1149/1945-7111/aba44e
K. Li, X. Li, H. Huang, et al., J. Am. Chem. Soc. 140 (2018) 16159–16167.
doi: 10.1021/jacs.8b08836
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Hongliang Zeng , Yuan Ji , Jinfeng Wen , Xu Li , Tingting Zheng , Qiu Jiang , Chuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686
Dan-Ying Xing , Xiao-Dan Zhao , Chuan-Shu He , Bo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Jing Wang , Zhongliao Wang , Jinfeng Zhang , Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Yan Guo , Hongtao Bian , Le Yu , Jiani Ma , Yu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971
Xiangyu Chen , Aihao Xu , Dong Wei , Fang Huang , Junjie Ma , Huibing He , Jing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175
Ruonan Yang , Jiajia Li , Dongmei Zhang , Xiuqi Zhang , Xia Li , Han Yu , Zhanhu Guo , Chuanxin Hou , Gang Lian , Feng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429