Activatable photoacoustic bioprobe for visual detection of aging in vivo
-
* Corresponding author.
E-mail address: weiyinglin2013@163.com (W. Lin).
Citation:
Zihong Li, Jie Cheng, Ping Huang, Guoliang Wu, Weiying Lin. Activatable photoacoustic bioprobe for visual detection of aging in vivo[J]. Chinese Chemical Letters,
;2024, 35(4): 109153.
doi:
10.1016/j.cclet.2023.109153
C. Debes, A. Papadakis, S. Gronke, O. Karalay, L.S. Tain, et al., Nature 616 (2023) 814–821.
doi: 10.1038/s41586-023-05922-y
T. Niccoli, L. Partridge, Curr. Biol. 22 (2012) 741–752.
doi: 10.1016/j.cub.2012.07.024
J.L. Schneider, J.H. Rowe, C. Garcia-de-Alba, et al., Cell 184 (2021) 1990–2019.
doi: 10.1016/j.cell.2021.03.005
A.V. Poznyak, N.K. Sadykhov, A.G. Kartuesov, et al., Int. J. Mol. Sci. 23 (2022) 13.
T.W. Wang, Y. Johmura, N. Suzuki, S. Omori, et al., Nature 611 (2022) 358.
doi: 10.1038/s41586-022-05388-4
A.L. Roy, F. Sierra, K. Howcroft, et al., Cell 183 (2020) 1143–1146.
doi: 10.1016/j.cell.2020.10.032
K. Evangelou, P.V.S. Vasileiou, A. Papaspyropoulos, et al., Physiol. Rev. 103 (2023) 40.
D. Carmona-Gutierrez, A.L. Hughes, F. Madeo, C. Ruckenstuhl, Ageing Res. Rev. 32 (2016) 2–12.
doi: 10.1016/j.arr.2016.04.009
R. Waziry, C.P. Ryan, D.L. Corcoran, et al., Nat. Aging 3 (2023) 248–257.
doi: 10.1038/s43587-022-00357-y
G.E. Neurohr, R.L. Terry, J. Lengefeld, et al., Cell 176 (2019) 1083.
doi: 10.1016/j.cell.2019.01.018
J. Campisi, P. Kapahi, G.J. Lithgow, et al., Nature 571 (2019) 183–192.
doi: 10.1038/s41586-019-1365-2
A. Santoro, E. Bientinesi, D. Monti, Ageing Res. Rev. 71 (2021) 19.
P. Hari, F.R. Millar, N. Tarrats, et al., Sci. Adv. 5 (2019) 14.
S. Wang, S. Hu, Y. Mao, Aging Med. 4 (2021) 153–158.
doi: 10.1002/agm2.12151
J.M. Harland, Early Mediev. Eur. 29 (2021) 636–639.
doi: 10.1111/emed.12508
G. Katsuumi, I. Shimizu, M. Suda, Y. Yoshida, et al., Eur. Heart J. 41 (2020) 3746.
S.H. He, N.E. Sharpless, Cell 169 (2017) 1000–1011.
doi: 10.1016/j.cell.2017.05.015
A. Hernandez-Segura, J. Nehme, M. Demaria, Trends Cell Biol. 28 (2018) 436–453.
doi: 10.1016/j.tcb.2018.02.001
C.D. Camell, M.J. Yousefzadeh, Y. Zhu, et al., Science 373 (2021) 47.
doi: 10.1126/science.abj1003
X. Li, W. Qiu, J. Li, et al., Chem. Sci. 11 (2020) 7292–7301.
doi: 10.1039/d0sc01234c
Y. Su, B. Yu, S. Wang, H. Cong, Y. Shen, Biomaterials 271 (2021) 120717.
doi: 10.1016/j.biomaterials.2021.120717
Y.L. Qi, H.R. Wang, L.L. Chen, et al., Coord. Chem. Rev. 445 (2021) 214068.
doi: 10.1016/j.ccr.2021.214068
L. Fu, Y. Tan, Y. Ding, W. Qing, Y. Wang, Chin. Chem. Lett. 35 (2024) 108886.
doi: 10.1016/j.cclet.2023.108886
Z. Wang, J. Li, J. Chen, et al., Chin. Chem. Lett. 34 (2023) 108507.
doi: 10.1016/j.cclet.2023.108507
R. Chen, W. Li, R. Li, et al., Chin. Chem. Lett. 34 (2023) 107845.
doi: 10.1016/j.cclet.2022.107845
L. Wu, J. Liu, P. Li, B. Tang, T.D. James, Coord. Chem. Rev. 50 (2021) 702–734.
doi: 10.1039/d0cs00861c
J. Krämer, R. Kang, L.M. Grimm, et al., Chem. Rev. 122 (2022) 3459–3636.
doi: 10.1021/acs.chemrev.1c00746
J. Huang, K. Pu, Angew. Chem. Int. Ed. 59 (2020) 11717–11731.
doi: 10.1002/anie.202001783
L.V. Wang, S. Hu, Science 335 (2012) 1458–1462.
doi: 10.1126/science.1216210
L.L. Zeng, G.C. Ma, J. Lin, P. Huang, Small 14 (2018) 18.
Y. Wu, S. Huang, J. Wang, et al., Nat. Commun. 9 (2018) 3983.
doi: 10.1038/s41467-018-06499-1
R.S. Mezrich, Radiology 291 (2019) 50–51.
Z.X. Zhao, C.B. Swartchick, J. Chan, Chem. Soc. Rev. 51 (2022) 829–868.
doi: 10.1039/d0cs00771d
E. Fitsiou, A. Soto-Gamez, M. Demaria, Semin. Cancer Biol. 81 (2022) 5–13.
doi: 10.1016/j.semcancer.2021.03.021
S. Wang, B. Zhu, B. Wang, et al., Chin. Chem. Lett. 32 (2021) 1795–1798.
doi: 10.1016/j.cclet.2020.12.039
D. Ma, S. Hou, C. Bae, et al., Chin. Chem. Lett. 32 (2021) 3886–3889.
doi: 10.1016/j.cclet.2021.05.048
J.C. Acosta, J. Gil, Trends Cell Biol. 22 (2012) 211–219.
doi: 10.1016/j.tcb.2011.11.006
Yudi Cheng , Xiao Wang , Jiao Chen , Zihan Zhang , Jiadong Ou , Mengyao She , Fulin Chen , Jianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156
Wenxiang Ma , Xinyu He , Tianyi Chen , De-Li Ma , Hongzheng Chen , Chang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Gongcheng Ma , Qihang Ding , Yuding Zhang , Yue Wang , Jingjing Xiang , Mingle Li , Qi Zhao , Saipeng Huang , Ping Gong , Jong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293
Xuejian Xing , Pan Zhu , E Pang , Shaojing Zhao , Yu Tang , Zheyu Hu , Quchang Ouyang , Minhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452
Botao QU , Qian WANG , Xiaogang NING , Yuxin ZHOU , Ruiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416
Yang Liu , Leilei Zhang , Kaixuan Liu , Ling-Ling Wu , Hai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759
Huamei Zhang , Jingjing Liu , Mingyue Li , Shida Ma , Xucong Zhou , Aixia Meng , Weina Han , Jin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020
Hui Peng , Xiao Wang , Weiguo Huang , Shuiyue Yu , Linghang Kong , Qilin Wei , Jialong Zhao , Bingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462
Lei Wang , Jun-Jie Wu , Chang-Cun Yan , Wan-Ying Yang , Zong-Lu Che , Xin-Yu Xia , Xue-Dong Wang , Liang-Sheng Liao . Near-infrared organic lasers with ultra-broad emission bands by simultaneously harnessing four-level and six-level systems. Chinese Chemical Letters, 2024, 35(8): 109365-. doi: 10.1016/j.cclet.2023.109365
Ying Zhao , Yin-Hang Chai , Tian Chen , Jie Zheng , Ting-Ting Li , Francisco Aznarez , Li-Long Dang , Lu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298
Yikun Wang , Qiaomei Chen , Shijie Liang , Dongdong Xia , Chaowei Zhao , Christopher R. McNeill , Weiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164
Xuan Zhu , Lin Zhou , Xiao-Yun Huang , Yan-Ling Luo , Xin Deng , Xin Yan , Yan-Juan Wang , Yan Qin , Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272
Fuzheng Zhang , Chao Shi , Jiale Li , Fulin Jia , Xinyu Liu , Feiyang Li , Xinyu Bai , Qiuxia Li , Aihua Yuan , Guohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596
Haowen Shang , Yujie Yang , Bingjie Xue , Yikai Wang , Zhiyi Su , Wenlong Liu , Youzhi Wu , Xinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511
Linfang ZHANG , Wenzhu YIN , Gui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405
Yuyang Zhou , Ziwang Mao , Jing-Juan Xu . Recent advances in near infrared (NIR) electrochemiluminescence luminophores. Chinese Chemical Letters, 2024, 35(11): 109622-. doi: 10.1016/j.cclet.2024.109622
Xu Qu , Pengzhao Wu , Kaixuan Duan , Guangwei Wang , Liang-Liang Gao , Yuan Guo , Jianjian Zhang , Donglei Shi . Self-calibrating probes constructed on a unique dual-emissive fluorescence platform for the precise tracking of cellular senescence. Chinese Chemical Letters, 2024, 35(12): 109681-. doi: 10.1016/j.cclet.2024.109681
Ling-Ling Wu , Xiangchuan Meng , Qingyang Zhang , Xiaowan Han , Feiya Yang , Qinghua Wang , Hai-Yu Hu , Nianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663
Jinyu Guo , Yandai Lin , Shaohua He , Yueqing Chen , Fenglu Li , Renjie Ruan , Gaoxing Pan , Hexin Nan , Jibin Song , Jin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537