Near-infrared non-fused electron acceptors for efficient organic photovoltaics
-
* Corresponding author.
E-mail address: czli@zju.edu.cn (C.-Z. Li).
1 These authors contributed equally to this work.
Citation:
Wenxiang Ma, Xinyu He, Tianyi Chen, De-Li Ma, Hongzheng Chen, Chang-Zhi Li. Near-infrared non-fused electron acceptors for efficient organic photovoltaics[J]. Chinese Chemical Letters,
;2024, 35(4): 109099.
doi:
10.1016/j.cclet.2023.109099
A. Armin, W. Li, O.J. Sandberg, et al., Adv. Energy Mater. 11 (2021) 2003570.
doi: 10.1002/aenm.202003570
Y. Liu, B. Liu, C.Q. Ma, et al., Sci. China Chem. 65 (2022) 224–268.
doi: 10.1007/s11426-021-1180-6
S. Karuthedath, J. Gorenflot, Y. Firdaus, et al., Nat. Mater. 20 (2021) 378–384.
doi: 10.1038/s41563-020-00835-x
Q. Shen, C. He, S. Li, et al., Acc. Mater. Res. 3 (2022) 644–657.
doi: 10.1021/accountsmr.2c00052
Q.Q. Zhang, C.Z. Li, Chem. Eng. J. 452 (2023) 139312.
doi: 10.1016/j.cej.2022.139312
J. Yuan, Y. Zhang, L. Zhou, et al., Joule 3 (2019) 1140–1151.
doi: 10.1016/j.joule.2019.01.004
L. Zhu, M. Zhang, J. Xu, et al., Nat. Mater. 21 (2022) 656–663.
doi: 10.1038/s41563-022-01244-y
J. Gao, N. Yu, Z. Chen, et al., Adv. Sci. 9 (2022) 2203606.
doi: 10.1002/advs.202203606
L. Zhan, S. Li, Y. Li, et al., Adv. Energy Mater. 12 (2022) 2201076.
doi: 10.1002/aenm.202201076
T. Chen, S. Li, Y. Li, et al., Adv. Mater. 35 (2023) 2300400.
doi: 10.1002/adma.202300400
X. Xu, W. Jing, H. Meng, et al., Adv. Mater. 35 (2023) 2208997.
doi: 10.1002/adma.202208997
C.J. Traverse, R. Pandey, M.C. Barr, R.R. Lunt, Nat. Energy 2 (2017) 849–860.
doi: 10.1038/s41560-017-0016-9
D. Wang, H. Liu, Y. Li, et al., Joule 5 (2021) 945–957.
doi: 10.1016/j.joule.2021.02.010
D. Wang, Y. Li, G. Zhou, et al., Energy Environ. Sci. 15 (2022) 2629–2637.
doi: 10.1039/D2EE00977C
J. Ren, X. Shu, Y. Wang, et al., Chin. Chem. Lett. 33 (2022) 1650–1658.
doi: 10.1016/j.cclet.2021.10.052
X. Li, R. Xia, K. Yan, et al., ACS Energy Lett. 5 (2020) 3115–3123.
doi: 10.1021/acsenergylett.0c01554
Y. Li, C. He, L. Zuo, et al., Adv. Energy Mater. 11 (2021) 2003408.
doi: 10.1002/aenm.202003408
H. Yao, Y. Chen, Y. Qin, et al., Adv. Mater. 28 (2016) 8283–8287.
doi: 10.1002/adma.201602642
H. Yao, Y. Cui, R. Yu, et al., Angew. Chem. Int. Ed. 56 (2017) 3045–3049.
doi: 10.1002/anie.201610944
F.X. Chen, J.Q. Xu, Z.X. Liu, et al., Adv. Mater. 30 (2018) 1803769.
doi: 10.1002/adma.201803769
Z. Xiao, X. Jia, D. Li, et al., Sci. Bull. 62 (2017) 1494–1496.
doi: 10.1016/j.scib.2017.10.017
Z. Jia, S. Qin, L. Meng, et al., Nat. Commun. 12 (2021) 178.
doi: 10.1038/s41467-020-20431-6
W. Liu, S. Sun, S. Xu, et al., Adv. Mater. 34 (2022) 2200337.
doi: 10.1002/adma.202200337
J. Li, H. Li, L. Ma, S. Zhang, J. Hou, Chin. J. Chem. 41 (2023) 424–430.
doi: 10.1002/cjoc.202200579
H. Li, J. Li, C. Yang, et al., J. Mater. Chem. C 11 (2023) 6155–6161.
doi: 10.1039/D3TC00625E
Z. Jia, Q. Ma, Z. Chen, et al., Nat. Commun. 14 (2023) 1236.
doi: 10.1038/s41467-023-36917-y
T. Li, S. Dai, Z. Ke, et al., Adv. Mater. 30 (2018) 1705969.
doi: 10.1002/adma.201705969
Z. Yao, X. Liao, K. Gao, et al., J. Am. Chem. Soc. 140 (2018) 2054–2057.
doi: 10.1021/jacs.7b13239
Y. Li, X. Liu, F.P. Wu, et al., J. Mater. Chem. A 4 (2016) 5890–5897.
doi: 10.1039/C6TA00612D
S. Liu, J. Yuan, W. Deng, et al., Nat. Photonics 14 (2020) 300–305.
C. He, Y. Li, Y. Liu, et al., J. Mater. Chem. A 8 (2020) 18154–18161.
doi: 10.1039/D0TA06907H
Y. Zhou, M. Li, H. Lu, et al., Adv. Funct. Mater. 31 (2021) 2101742.
doi: 10.1002/adfm.202101742
X. Wang, R. Zeng, H. Lu, et al., Chin. J. Chem. 41 (2023) 665–671.
doi: 10.1002/cjoc.202200673
Y. Liu, Z. Zhang, S. Feng, et al., J. Am. Chem. Soc. 139 (2017) 3356–3359.
doi: 10.1021/jacs.7b00566
S. Li, L. Zhan, F. Liu, et al., Adv. Mater. 30 (2018) 1705208.
doi: 10.1002/adma.201705208
Z. Zhang, S. Zhang, Z. Liu, et al., Acta Phys. Chim. Sin. 35 (2019) 394–400.
doi: 10.3866/PKU.WHXB201805091
Z.P. Yu, Z.X. Liu, F.X. Chen, et al., Nat. Commun. 10 (2019) 2152.
doi: 10.1038/s41467-019-10098-z
H. Huang, Q. Guo, S. Feng, et al., Nat. Commun. 10 (2019) 3038.
doi: 10.1038/s41467-019-11001-6
T.J. Wen, Z.X. Liu, Z. Chen, et al., Angew. Chem. Int. Ed. 60 (2021) 12964–12970.
doi: 10.1002/anie.202101867
L. Ma, S. Zhang, J. Zhu, et al., Nat. Commun. 12 (2021) 5093.
doi: 10.1038/s41467-021-25394-w
M. Yang, W. Wei, X. Zhou, Z. Wang, C. Duan, Energy Mater. 1 (2021) 100008.
S.Y. Liu, D. Wang, T.J. Wen, et al., Chin. J. Polym. Sci. 40 (2022) 944–950.
doi: 10.1007/s10118-022-2750-0
T.J. Wen, J. Xiang, N. Jain, et al., J. Energy Chem. 70 (2022) 576–582.
doi: 10.1016/j.jechem.2022.03.030
R. Hou, M. Li, X. Ma, et al., ACS Appl. Mater. Interfaces 12 (2020) 46220–46230.
doi: 10.1021/acsami.0c13993
X. Zhang, L. Qin, J. Yu, et al., Angew. Chem. Int. Ed. 60 (2021) 12475–12481.
doi: 10.1002/anie.202100390
Q. Shen, C. He, B. Wu, et al., Chem. Eng. J. 471 (2023) 144472.
doi: 10.1016/j.cej.2023.144472
D.L. Ma, Q.Q. Zhang, C.Z. Li, Angew. Chem. Int. Ed. 62 (2023) e202214931.
doi: 10.1002/anie.202214931
L. Ma, S. Zhang, J. Ren, et al., Angew. Chem. Int. Ed. 62 (2022) e202214088.
Y. Shao, R. Sun, W. Wang, et al., Sci. China Chem. 66 (2023) 1101–1110.
doi: 10.1007/s11426-022-1502-3
C. Li, X. Zhang, N. Yu, et al., Adv. Funct. Mater. 32 (2021) 2108861.
C. He, Y. Li, S. Li, et al., ACS Appl. Mater. Interfaces 12 (2020) 16700–16706.
doi: 10.1021/acsami.0c00837
T.J. Wen, D. Wang, L. Tao, et al., ACS Appl. Mater. Interfaces 12 (2020) 39515–39523.
doi: 10.1021/acsami.0c12100
Q. Wen, Q. Cai, P. Fu, et al., Chin. Chem. Lett. 34 (2023) 107592.
doi: 10.1016/j.cclet.2022.06.015
Y. Sakamoto, S. Komatsu, T. Suzuki, J. Am. Chem. Soc. 123 (2001) 4643–4644.
doi: 10.1021/ja015712j
S. Feng, M. Li, N. Tang, et al., ACS Appl. Mater. Interfaces 12 (2020) 4638–4648.
doi: 10.1021/acsami.9b18076
Z.X. Liu, Z.P. Yu, Z. Shen, et al., Nat. Commun. 12 (2021) 3049.
doi: 10.1038/s41467-021-23389-1
X. Zhang, C. Li, L. Qin, et al., Angew. Chem. Int. Ed. 60 (2021) 17720–17725.
doi: 10.1002/anie.202106753
X. Zhang, G. Li, S. Mukherjee, et al., Adv. Energy Mater. 12 (2021) 2102172.
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
Yupeng Liu , Hui Wang , Songnan Qu . Review on near-infrared absorbing/emissive carbon dots: From preparation to multi-functional application. Chinese Chemical Letters, 2025, 36(5): 110618-. doi: 10.1016/j.cclet.2024.110618
Yudi Cheng , Xiao Wang , Jiao Chen , Zihan Zhang , Jiadong Ou , Mengyao She , Fulin Chen , Jianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156
Dandan Tang , Ningge Xu , Yuyang Fu , Wei Peng , Jinsheng Wu , Heng Liu , Fabiao Yu . Rationally designed an innovative proximity labeling near-infrared fluorogenic probe for imaging of peroxynitrite in acute lung injury. Chinese Chemical Letters, 2025, 36(5): 110082-. doi: 10.1016/j.cclet.2024.110082
Meiling Zhao , Yao Lu , Yutao Zhang , Haoyun Xue , Zhiqian Guo . Ultra-high signal-to-noise ratio near-infrared chemiluminescent probe for in vivo sensing singlet oxygen. Chinese Chemical Letters, 2025, 36(5): 110105-. doi: 10.1016/j.cclet.2024.110105
Keliang Li , Guoqiang Dong , Shanchao Wu , Chunquan Sheng . Discovery of an activatable near-infrared fluorescent and theranostic PROTAC for tumor-targeted detecting and degrading of BRD4. Chinese Chemical Letters, 2025, 36(6): 110280-. doi: 10.1016/j.cclet.2024.110280
Xianzhu Luo , Feifei Yu , Rui Wang , Tian Su , Pan Luo , Pengfei Wen , Fabiao Yu . A near-infrared two-photon fluorescent probe for the detection of HClO in inflammatory and tumor-bearing mice. Chinese Chemical Letters, 2025, 36(7): 110531-. doi: 10.1016/j.cclet.2024.110531
Xu Qu , Baohua Ji , Haocheng Gong , Guangwei Wang , Liang-Liang Gao , Jing Zhang , Jianjian Zhang , Yuan Guo . Dual-emissive near-infrared fluorogenic probe with enhanced cellular uptake capability for sensitive tracking of cellular polarity. Chinese Chemical Letters, 2025, 36(10): 110766-. doi: 10.1016/j.cclet.2024.110766
Wenping Dong , Mo Ma , Jingkang Li , Lanlan Xu , Dejiang Gao , Pinyi Ma , Daqian Song . Near-infrared fluorescent probe with large Stokes shift and long emission wavelength for rapid diagnosis of lung cancer via aerosol inhalation delivery. Chinese Chemical Letters, 2025, 36(5): 110147-. doi: 10.1016/j.cclet.2024.110147
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587
Jingyuan Yang , Xinyu Tian , Liuzhong Yuan , Yu Liu , Yue Wang , Chuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
Ziling Jiang , Chen Liu , Jie Yang , Xia Li , Chaochao Wei , Qiyue Luo , Zhongkai Wu , Lin Li , Liping Li , Shijie Cheng , Chuang Yu . Designing F-doped Li3InCl6 electrolyte with enhanced stability for all-solid-state lithium batteries in a wide voltage window. Chinese Chemical Letters, 2025, 36(6): 109741-. doi: 10.1016/j.cclet.2024.109741
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Zihong Li , Jie Cheng , Ping Huang , Guoliang Wu , Weiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153
Gongcheng Ma , Qihang Ding , Yuding Zhang , Yue Wang , Jingjing Xiang , Mingle Li , Qi Zhao , Saipeng Huang , Ping Gong , Jong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293
Shupeng Han , Caiting Deng , Meichen Zheng , Linwei Yang , Hancun Kong , Yongchao He , Yinuo Zheng , Guowei Deng , Yu Ren , Feifei An . A GSH-responsive NIR-BODIPY fluorophore with large Stokes-shift for tumor specific fluorescence imaging and surgical guidance. Chinese Chemical Letters, 2025, 36(7): 110459-. doi: 10.1016/j.cclet.2024.110459
Zhouze Chen , Yujie Yan , Jun Luo , Pengnian Shan , Changyu Lu , Feng Guo , Weilong Shi . Piezoelectric effect synergistically boosted NIR-driven photothermal-assisted photocatalytic hydrogen evolution. Chinese Chemical Letters, 2025, 36(10): 111302-. doi: 10.1016/j.cclet.2025.111302