Indole derivatives as agrochemicals: An overview
-
* Corresponding authors.
E-mail addresses: yangzhaokai@cau.edu.cn (Z. Yang), jwu6@gzu.edu.cn (J. Wu).
Citation:
Ping Sun, Yuanqin Huang, Shunhong Chen, Xining Ma, Zhaokai Yang, Jian Wu. Indole derivatives as agrochemicals: An overview[J]. Chinese Chemical Letters,
;2024, 35(7): 109005.
doi:
10.1016/j.cclet.2023.109005
B. Zdrazil, R. Guha, J. Med. Chem. 61 (2018) 4688–4703.
doi: 10.1021/acs.jmedchem.7b00954
T. Chen, H. Xiong, J.F. Yang, et al., J. Agric. Food Chem. 68 (2020) 9839–9877.
doi: 10.1021/acs.jafc.0c03369
F.R. De Sá Alves, E.J. Barreiro, C.A. Fraga, Mini Rev. Med. Chem. 9 (2009) 782–793.
doi: 10.2174/138955709788452649
B.E. Evans, K.E. Rittle, M.G. Bock, et al., J. Med. Chem. 31 (1988) 2235–2246.
doi: 10.1021/jm00120a002
M.E. Welsch, S.A. Snyder, B.R. Stockwell, Curr. Opin. Chem. Biol. 14 (2010) 347–361.
doi: 10.1016/j.cbpa.2010.02.018
N.K. Kaushik, N. Kaushik, P. Attri, Molecules 18 (2013) 6620–6662.
doi: 10.3390/molecules18066620
R.E. Dolle, K.H. Nelson, J. Comb. Chem. 1 (1999) 235–282.
doi: 10.1021/cc9900192
R.G. Franzén, J. Comb. Chem. 2 (2000) 195–214.
doi: 10.1021/cc000002f
R.E. Dolle, J. Comb. Chem. 3 (2001) 477–517.
doi: 10.1021/cc010049g
T.N. Akhaja, J.P. Raval, Chin. Chem. Lett. 23 (2012) 785–788.
doi: 10.1016/j.cclet.2012.05.004
Z.N. Xu, Y.Q. Wang, Y.C. Zheng, et al., Org. Chem. Front. 7 (2020) 3709–3714.
doi: 10.1039/D0QO01120G
S.Y. Zhou, G.L. Huang, G.Y. Chen, Bioorg. Med. Chem. Lett. 41 (2021) 128009.
doi: 10.1016/j.bmcl.2021.128009
A. Hilgeroth, K. Yasrebi, S. Suzen, et al., Med. Chem. 15 (2019) 833–839.
doi: 10.2174/1573406415666190208170126
Y. Liu, Y. Cui, L.Y. Lu, et al., Arch. Pharm. 353 (2020) e2000120.
Q.Q. Tan, Y.Z. Li, T.T. Li, et al., Microporous Mesoporous Mater. 325 (2021) 111342.
doi: 10.1016/j.micromeso.2021.111342
M. Budovská, R. Michalková, J. Mojžiš, Tetrahedron 143 (2023) 133573.
doi: 10.1016/j.tet.2023.133573
H.Y. Sun, K.P. Sun, J.Y. Sun, Molecules 28 (2023) 2204.
doi: 10.3390/molecules28052204
C.L. Wei, L. Zhao, Z.R. Sun, et al., Pestic. Biochem. Physiol. 166 (2020) 104568.
doi: 10.1016/j.pestbp.2020.104568
Y.B. Sun, H. Wu, W.N. Zhou, et al., Pestic. Biochem. Physiol. 183 (2022) 105077.
doi: 10.1016/j.pestbp.2022.105077
G.Y. Yang, J.M. Dai, Q.L. Mi, et al., Phytochemistry 198 (2022) 113137.
doi: 10.1016/j.phytochem.2022.113137
Y.N. Zhu, M.X. Liu, B.B. Cai, et al., Chem. Nat. Compd. 58 (2022) 712–716.
doi: 10.1007/s10600-022-03774-y
X.H. Gao, X.L. Pan, P.Y. Wang, et al., Org. Chem. Front. 9 (2022) 5790–5797.
doi: 10.1039/D2QO01091G
H. Guo, Eur. J. Med. Chem. 164 (2019) 678–688.
doi: 10.1016/j.ejmech.2018.12.017
H. Wu, M.L. Qin, K. Fan, et al., J. Asian Nat. Prod. Res. 25 (2022) 429–437.
Y.H. Zhang, L. Li, Y.Q. Li, et al., J. Nat. Prod. 85 (2022) 1880–1885.
doi: 10.1021/acs.jnatprod.2c00322
X.J. Zhao, L.Z. Zhao, Y. Zhao, et al., Viruses 13 (2021) 1433.
doi: 10.3390/v13081433
S. Jin, H.K. Do, C. Hwang, et al., Int. J. Environ. Sci. 30 (2021) 369–378.
doi: 10.5322/JESI.2021.30.5.369
P.D. Miranda de Menezes Neves, B.M. Coelho Ferreira, S. Mohrbacher, et al., Lancet Infect. Dis. 20 (2020) 1215-1215.
doi: 10.1016/S1473-3099(20)30323-6
Y.H. Xie, Y. Song, Z.W. Cong, Chem. Biodivers. 19 (2022) e202200731.
doi: 10.1002/cbdv.202200731
L.J. Funkhouser-Jones, R. Xu, G. Wilke, et al., Cell Rep. 42 (2023) 112680.
doi: 10.1016/j.celrep.2023.112680
D.R. Duca, B.R. Glick, Appl. Microbiol. Biotechnol. 104 (2020) 8607–8619.
doi: 10.1007/s00253-020-10869-5
K.I. Hayashi, K. Arai, Y. Aoi, et al., Nat. Commun. 12 (2021) 6752.
doi: 10.1038/s41467-021-27020-1
M.H. Ma, E. Batsaikhan, C.M. Wu, et al., J. Chin. Chem. Soc. 70 (2023) 1200–1207.
doi: 10.1002/jccs.202300023
Q. Yin, J. Zhang, S. Wang, Hortic. Res. 8 (2021) 229.
doi: 10.1038/s41438-021-00658-0
S.K. Jaiswal, M. Mohammed, F.Y.I. Ibny, et al., Front. Sustain. Food Syst. 4 (2021) 619676.
doi: 10.3389/fsufs.2020.619676
K.G. Thanuja, B. Annadurai, S. Thankappan, et al., Arch. Microbiol. 202 (2020) 2739–2749.
doi: 10.1007/s00203-020-01983-z
X. Sun, N. Wang, P. Li, et al., Plant Cell Environ. 43 (2020) 358–373.
doi: 10.1111/pce.13667
G. Gomes, K. Scortecci, Plant Biol. 23 (2021) 894–904.
doi: 10.1111/plb.13303
M.R.A. de Figueiredo, L.C. Strader, Trends Biochem. Sci. 47 (2022) 865–874.
doi: 10.1016/j.tibs.2022.06.004
B. Kloosterman, R.G.F. Visser, C.W.B. Bachem, Plant Physiol. Biochem. 44 (2006) 766–775.
doi: 10.1016/j.plaphy.2006.10.026
S. Piya, S.K. Shrestha, B. Binder, et al., Front. Plant Sci. 5 (2014) 744.
S. Damodaran, L.C. Strader, Front. Plant Sci. 10 (2019) 851.
doi: 10.3389/fpls.2019.00851
H.Q. Dong, M.C. Guo, Y. Liang, et al., Mater. Sci. Eng. 89 (2018) 175–181.
doi: 10.1016/j.msec.2018.04.004
S. Aihebaier, T. Muhammad, A. Wei, et al., ACS Omega 4 (2019) 16789–16793.
doi: 10.1021/acsomega.9b01550
L. Fattorini, A. Veloccia, F. Della Rovere, et al., BMC Plant Biol. 17 (2017) 121.
doi: 10.1186/s12870-017-1071-x
R.M. Napier, Auxin receptors and perception, in: E. Zažímalová, J. Petrášek, E. Benková (Eds. ), Auxin and Its Role in Plant Development, Springer Vienna, Vienna, 2014, pp. 101–116.
S. Marumo, H. Hattori, H. Abe, et al., Nature 219 (1968) 959–960.
C.P.A. Jayasinghege, J.A. Ozga, K.D. Waduthanthri, et al., J. Exp. Bot. 68 (2017) 4137–4151.
doi: 10.1093/jxb/erx217
K. Dziurka, M. Dziurka, M. Warchoł, et al., In Vitro Cell. Dev. Biol. Plant 55 (2019) 221–229.
X. Cao, H.L. Yang, C.Q. Shang, et al., Int. J. Mol. Sci. 20 (2019) 6343.
doi: 10.3390/ijms20246343
M.M. Pérez-Alonso, P. Ortiz-García, J. Moya-Cuevas, et al., J. Exp. Bot. 72 (2020) 459–475.
Z.Y. Han, H. Ghanizadeh, H.T. Zhang, et al., J. Fungi 8 (2022) 1166.
doi: 10.3390/jof8111166
D. Szymaniak, T. Kleiber, M. Wojcieszak, et al., ChemistrySelect 6 (2021) 5614–5621.
doi: 10.1002/slct.202101084
P. Staswick, M. Rowe, E.P. Spalding, et al., Front. Plant Sci. 8 (2017) 736.
doi: 10.3389/fpls.2017.00736
S. Park, K. Back, J. Pineal Res. 53 (2012) 385–389.
doi: 10.1111/j.1600-079X.2012.01008.x
M. Zhang, C.X. Gao, L. Xu, et al., Cells 11 (2022) 3250.
doi: 10.3390/cells11203250
H.Y. Lee, K. Lee, K. Back, Biomolecules 9 (2019) 712.
doi: 10.3390/biom9110712
H.B. Zhao, T. Su, L.Q. Huo, et al., J. Pineal Res. 59 (2015) 255–266.
doi: 10.1111/jpi.12258
C. de Meester, Mutat. Res. 339 (1995) 139–153.
doi: 10.1016/0165-1110(95)90008-X
J.C. Callaway, J. Psychoact. Drugs 37 (2005) 151–155.
doi: 10.1080/02791072.2005.10399796
Z.Z. Wang, D.D. Xie, X.H. Gan, et al., Bioorg. Med. Chem. Lett. 27 (2017) 4096–4100.
doi: 10.1016/j.bmcl.2017.07.038
Y.M. Ma, X.A. Liang, Y. Kong, et al., J. Agric. Food Chem. 64 (2016) 6659–6671.
doi: 10.1021/acs.jafc.6b01772
B.E.M. El-Gendy, M.E. Rateb, Bioorg. Med. Chem. Lett. 25 (2015) 3125–3128.
doi: 10.1016/j.bmcl.2015.06.010
X.P. Zhang, W.B. Huang, X. Lu, et al., J. Agric. Food Chem. 69 (2021) 7458–7466.
doi: 10.1021/acs.jafc.1c00897
J.L. Xie, W.T. Xu, H.J. Song, et al., J. Agric. Food Chem. 68 (2020) 5555–5571.
doi: 10.1021/acs.jafc.0c00875
H.Q. Wang, H.J. Song, J. Agric. Food Chem. 68 (2020) 2631–2638.
doi: 10.1021/acs.jafc.9b07694
X. Lv, M.T. Yuan, Y.H. Pei, et al., J. Agric. Food Chem. 69 (2021) 4992–5002.
doi: 10.1021/acs.jafc.1c00941
C.L. Wei, J. Zhang, J. Shi, et al., J. Agric. Food Chem. 67 (2019) 13882–13891.
doi: 10.1021/acs.jafc.9b05357
C.L. Wei, X. Yang, S.J. Shi, et al., J. Agric. Food Chem. 71 (2023) 267–275.
doi: 10.1021/acs.jafc.2c06881
K.B. Oh, W. Mar, S. Kim, et al., Bioorg. Med. Chem. Lett. 15 (2005) 4927–4931.
doi: 10.1016/j.bmcl.2005.08.021
X.F. Ji, Z.W. Wang, J. Dong, et al., J. Agric. Food Chem. 64 (2016) 9143–9151.
doi: 10.1021/acs.jafc.6b04020
J.C. Guo, Y.A. Hao, X.F. Ji, et al., J. Agric. Food Chem. 67 (2019) 10018–10031.
doi: 10.1021/acs.jafc.9b04093
T.A. Wang, L. Li, Y.A. Zhou, et al., J. Agric. Food Chem. 69 (2021) 10093–10103.
doi: 10.1021/acs.jafc.1c04098
A.D. Lu, T.A. Wang, H. Hui, et al., J. Agric. Food Chem. 67 (2019) 2148–2156.
doi: 10.1021/acs.jafc.8b06859
L.J. Yu, A.L. Dai, W. Zhang, et al., J. Agric. Food Chem. 70 (2022) 10693–10707.
doi: 10.1021/acs.jafc.2c02301
L.W. Chen, Y.X. Liu, H.J. Song, et al., Mol. Divers. 21 (2017) 61–68.
doi: 10.1007/s11030-016-9697-4
Q.M. Wang, Q. Wang, Y. Qu, et al., Patent, CN111269237A, 2020.
L.W. Chen, Y.K. Hao, H.J. Song, et al., J. Agric. Food Chem. 68 (2020) 10618–10625.
doi: 10.1021/acs.jafc.0c04488
Q. Wang, H. Song, Q. Wang, Chin. Chem. Lett. 33 (2022) 859–862.
doi: 10.1016/j.cclet.2021.08.005
Q.M. Wang, H.J. Song, L.W. Chen, C.L. Li, G.Q. Yu, Patent, CN107353292A, 2017.
Q.M. Wang, Q. Wang, Y. Qu, Patent, CN111264542A, 2020.
F.Z. Xu, Y.Y. Wang, F. He, et al., Green Chem. Lett. Rev. 15 (2022) 139–152.
doi: 10.1080/17518253.2021.2023660
H. Gadegoni, S. Manda, Chin. Chem. Lett. 24 (2013) 127–130.
doi: 10.1016/j.cclet.2013.01.001
Z.J. Zhang, Y. Zeng, Z.Y. Jiang, et al., Pest Manag. Sci. 74 (2018) 1736–1746.
doi: 10.1002/ps.4873
J.M. Xi, Z.J. Zhang, Q. Zhu, G.H. Zhong, Int. J. Mol. Sci. 19 (2018) 4044.
doi: 10.3390/ijms19124044
Y.X. Liu, H.J. Song, Y.Q. Huang, et al., J. Agric. Food Chem. 62 (2014) 9987–9999.
doi: 10.1021/jf503794g
Z.J. Zhang, Z.Y. Jiang, Q. Zhu, G.H. Zhong, J. Agric. Food Chem. 66 (2018) 9598–9607.
doi: 10.1021/acs.jafc.8b02124
X.Y. Zhao, A.C. Liao, F. Zhang, et al., J. Heterocycl. Chem. 57 (2020) 761–767.
doi: 10.1002/jhet.3817
G.P. Ouyang, Z.C. Wang, W.N. Hu, Y.Y. Qi, W. Li, Patent, CN111285860A, 2020.
B. Liu, R. Li, Y.A. Li, et al., J. Agric. Food Chem. 67 (2019) 1795–1806.
doi: 10.1021/acs.jafc.8b06175
Z.Y. Yu, H. Jiang, L. Wang, et al., Front. Chem. 8 (2020) 717.
doi: 10.3389/fchem.2020.00717
Y. Gao, D.C. Huang, C. Liu, et al., Bioorg. Med. Chem. 35 (2021) 116073.
doi: 10.1016/j.bmc.2021.116073
K.L. Keel, J.J. Tepe, Org. Lett. 23 (2021) 5368–5372.
doi: 10.1021/acs.orglett.1c01681
J. Zeng, Z.J. Zhang, Q. Zhu, Z.Y. Jiang, G.H. Zhong, Molecules 25 (2020) 1189.
doi: 10.3390/molecules25051189
L.W. Chen, J.L. Xie, H.J. Song, et al., J. Agric. Food Chem. 64 (2016) 6508–6516.
doi: 10.1021/acs.jafc.6b02683
B. Jia, Y.M. Ma, B. Liu, et al., Front. Chem. 7 (2019) 837.
doi: 10.3389/fchem.2019.00837
Y. Wang, S. Guo, L. Yu, et al., Chin. Chem. Lett. 35 (2024) 108207.
doi: 10.1016/j.cclet.2023.108207
M. Zhang, L. Chen, J.K. Hong, Y.T. Shen, L.Q. Yang, Patent, CN113735871A, 2021.
L.Q. Yang, L. Chen, M. Zhang, M. Xia, T. Zhao, Patent, CN112898311A, 2021.
H.D. Li, S. Wu, X. Yang, et al., J. Agric. Food Chem. 70 (2022) 12341–12354.
doi: 10.1021/acs.jafc.2c04213
R.R. King, L.A. Calhoun, Phytochemistry 70 (2009) 833–841.
doi: 10.1016/j.phytochem.2009.04.013
H.B. Zhang, Q.P. Wang, X. Ning, H. Hang, et al., J. Agric. Food Chem. 63 (2015) 3734–3741.
doi: 10.1021/jf506153t
H. Li, J. Xiao, Y.Q. Gao, et al., J. Agric. Food Chem. 62 (2014) 3734–3741.
doi: 10.1021/jf500390h
J.M. de Souza, B.R. Fazolo, J.W. Ferreira Lacerda, et al., Photochem. Photobiol. 96 (2020) 1233–1242.
doi: 10.1111/php.13295
M.C. da Silva Mendes, B.R. Fazolo, J.M. de Souza, et al., Photochem. Photobiol. Sci. 18 (2019) 1350–1358.
doi: 10.1039/c8pp00506k
W. Chotpatiwetchkul, N. Chotsaeng, C. Laosinwattana, P. Charoenying, ACS Omega 7 (2022) 29002–29012.
doi: 10.1021/acsomega.2c02704
J.B. Liu, Y.B. Shi, W. Wen, et al. Patent, CN113354645, 2021.
J.B. Liu, Y.B. Shi, Z.C. Tian, et al., J. Agric. Food Chem. 70 (2022) 5197–5206.
doi: 10.1021/acs.jafc.1c08297
J.H. Lee, Y.G. Kim, M. Kim, et al., Environ. Microbiol. 19 (2017) 1776–1790.
doi: 10.1111/1462-2920.13649
S.K. Rajasekharan, J.H. Lee, V. Ravichandran, J. Lee, Sci. Rep. 7 (2017) 6803.
doi: 10.1038/s41598-017-07074-2
S.K. Rajasekharan, J.H. Lee, V. Ravichandran, et al., Sci. Rep. 9 (2019) 2010.
doi: 10.1038/s41598-019-38561-3
S.K. Rajasekharan, S. Kim, J.C. Kim, J. Lee, Pestic. Biochem. Physiol. 163 (2020) 76–83.
doi: 10.1016/j.pestbp.2019.10.012
Â. C. Costa, S.C. Cavalcanti, A.S. Santana, et al., Ecotoxicology 28 (2019) 973–982.
doi: 10.1007/s10646-019-02095-1
J. Zhang, R.J. Song, S. Wu, et al., J. Agric. Food Chem. 70 (2022) 5349–5356.
doi: 10.1021/acs.jafc.2c00838
J. Cassayre, L.P. Molleyres, P. Maienfisch, F. Cederbaum, Patent, US8309567, 2012.
J. Cassayre, L.P. Molleyres, P. Maienfisch, F. Cederbaum, Patent, US8299058, 2012.
Wei Sun , Anjing Liao , Li Lei , Xu Tang , Ya Wang , Jian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855
Ali Dai , Zhiguo Zheng , Liusheng Duan , Jian Wu , Weiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462
Tao Yu , Vadim A. Soloshonok , Zhekai Xiao , Hong Liu , Jiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901
Anjing Liao , Wei Sun , Yaming Liu , Han Yan , Zhi Xia , Jian Wu . Pyrrole and pyrrolidine analogs: The promising scaffold in discovery of pesticides. Chinese Chemical Letters, 2025, 36(3): 110094-. doi: 10.1016/j.cclet.2024.110094
Xiaofang Luo , Ye Wu , Xiaokun Zhang , Min Tang , Feiye Ju , Zuodong Qin , Gregory J Duns , Wei-Dong Zhang , Jiang-Jiang Qin , Xin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724
Jia JI , Zhaoyang GUO , Wenni LEI , Jiawei ZHENG , Haorong QIN , Jiahong YAN , Yinling HOU , Xiaoyan XIN , Wenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344
Jian Song , Shenghui Wang , Qiuge Liu , Xiao Wang , Shuo Yuan , Hongmin Liu , Saiyang Zhang . N-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678
Hongling Liu , Yue Xia , Guang Xu , Yafei Yang , Chunhua Qu . Bitter Cold Medicine, Good for Healing. University Chemistry, 2025, 40(3): 328-332. doi: 10.12461/PKU.DXHX202405039
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
Guangyao Wang , Zhitong Xu , Ye Qi , Yueguang Fang , Guiling Ning , Junwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503
Hualei Xu , Manman Han , Haiqiang Liu , Liang Qin , Lulu Chen , Hao Hu , Ran Wu , Chenyu Yang , Hua Guo , Jinrong Li , Jinxiang Fu , Qichen Hao , Yijun Zhou , Jinchao Feng , Xiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095
Hai-Ling Wang , Zhong-Hong Zhu , Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372
Teng Wang , Jiachun Cao , Juan Li , Didi Li , Zhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
Fangping Yang , Jin Shi , Yuansong Wei , Qing Gao , Jingrui Shen , Lichen Yin , Haoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746
Chong Liu , Ling Li , Jiahui Gao , Yanwei Li , Nazhen Zhang , Jing Zang , Cong Liu , Zhaopei Guo , Yanhui Li , Huayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118
Di ZHANG , Tianxiang XIE , Xu HE , Wanyu WEI , Qi FAN , Jie QIAO , Gang JIN , Ningbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
Anqiu LIU , Long LIN , Dezhi ZHANG , Junyu LEI , Kefeng WANG , Wei ZHANG , Junpeng ZHUANG , Haijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424