Pushing the frontiers: Chip-based detection based on micro- and nano-structures
-
* Corresponding author.
E-mail address: wangtie@email.tjut.edu.cn (T. Wang).
Citation:
Meihui Liu, Xinyuan Zhou, Xiao Li, Zhenjie Xue, Tie Wang. Pushing the frontiers: Chip-based detection based on micro- and nano-structures[J]. Chinese Chemical Letters,
;2024, 35(4): 108875.
doi:
10.1016/j.cclet.2023.108875
L. Xue, H. Yamazaki, R. Ren, et al., Nat. Rev. Mater. 5 (2020) 931–951.
doi: 10.1038/s41578-020-0229-6
C.I.L. Justino, A.R. Gomes, A.C. Freitas, A.C. Duarte, T.A.P. Rocha-Santos, Trends Anal. Chem. 91 (2017) 53–66.
doi: 10.1016/j.trac.2017.04.003
A.A. Nayl, A.I. Abd-Elhamid, A.Y. El-Moghazy, et al., Trends Environ. Anal. 26 (2020) e00087.
doi: 10.1016/j.teac.2020.e00087
D. Marzorati, L. Mainardi, G. Sedda, et al., Chemosensors 9 (2021) 209.
doi: 10.3390/chemosensors9080209
X.Y. Zhou, Z.J. Xue, X.Y. Chen, et al., J. Mater. Chem. B 8 (2020) 3231–3248.
doi: 10.1039/c9tb02518a
S. Freddi, A.V. Emelianov, I.I. Bobrinetskiy, et al., Adv. Healthcare Mater. 9 (2020) 2000377.
doi: 10.1002/adhm.202000377
M.A. Boles, M. Engel, D.V. Talapin, Chem. Rev. 116 (2016) 11220–11289.
doi: 10.1021/acs.chemrev.6b00196
Z.M. Wang, R.B. Yu, Adv. Mater. 31 (2019) 1800592.
doi: 10.1002/adma.201800592
J. Park, Y. Lee, J. Hong, et al., ACS Nano 8 (2014) 12020–12029.
doi: 10.1021/nn505953t
Y.B. Zhang, K.F. Chan, B. Wang, P.W.Y. Chiu, L. Zhang, Sens. Actuator. B: Chem. 271 (2018) 128–136.
doi: 10.3390/ijerph15010128
S.Q. Song, C.F. Zhang, W.Z. Li, et al., Nano Energy 100 (2022) 107513.
doi: 10.1016/j.nanoen.2022.107513
N.N. Bai, L. Wang, Q. Wang, et al., Nat. Commun. 11 (2020) 209.
doi: 10.1038/s41467-019-14054-9
C. Zhang, M.L. Qu, X.Q. Fu, J. Lin, Small Methods 6 (2022) 2101384.
doi: 10.1002/smtd.202101384
A.L. Rogach, Angew. Chem. Int. Ed. 43 (2004) 148–149.
doi: 10.1002/anie.200301704
P. Song, Y. Wang, Y. Wang, et al., J. Am. Chem. Soc. 137 (2015) 3069–3075.
doi: 10.1021/ja5127903
S. Guo, S. Dong, J. Mater. Chem. 21 (2011) 16704–16716.
doi: 10.1039/c1jm11382h
L. Wang, L. Xu, H. Kuang, C. Xu, N.A. Kotov, Acc. Chem. Res. 45 (2012) 1916–1926.
doi: 10.1021/ar200305f
S. Ohta, D. Glancy, W.C.W. Chan, Science 351 (2016) 841–845.
doi: 10.1126/science.aad4925
T. Bao, Y. Zou, C. Zhang, C. Yu, C. Liu, Angew. Chem. Int. Ed. 61 (2022) e202209433.
doi: 10.1002/anie.202209433
S. Bhogal, K. Kaur, A.K. Malik, et al., Trends Anal. Chem. 133 (2020) 116043.
doi: 10.1016/j.trac.2020.116043
S. Freddi, M.C.R. Gonzalez, P. Carro, L. Sangaletti, S.D. Feyter, Angew. Chem. Int. Ed. 61 (2022) e202200115.
doi: 10.1002/anie.202200115
J. Dai, O. Ogbeide, N. Macadam, et al., Chem. Soc. Rev. 49 (2020) 1756–1789.
doi: 10.1039/c9cs00459a
M.J. Bezdek, S.X.L. Luo, R.Y. Liu, Q.L. He, T.M. Swager, ACS Cent. Sci. 7 (2021) 1572–1580.
doi: 10.1021/acscentsci.1c00746
H.Y. Li, S.N. Zhao, S.Q. Zang, J. Li, Chem. Soc. Rev. 49 (2020) 6364–6401.
doi: 10.1039/c9cs00778d
H.J. Kim, J.H. Lee, Sens. Actuators. B: Chem. 192 (2014) 607–627.
doi: 10.1016/j.snb.2013.11.005
V. Schroeder, S. Savagatrup, M. He, S. Lin, T.M. Swager, Chem. Rev. 119 (2019) 599–663.
doi: 10.1021/acs.chemrev.8b00340
B. de Lacy Costello, A. Amann, H. Al Kateb, et al., J. Breath Res. 8 (2014) 014001.
doi: 10.1088/1752-7155/8/1/014001
B. Crone, A. Dodabalapur, A. Gelperin, et al., Appl. Phys. Lett. 78 (2001) 2229–2231.
doi: 10.1063/1.1360785
R. Song, X. Zhou, Z. Wang, et al., Org. Electron. 91 (2021) 106083.
doi: 10.1016/j.orgel.2021.106083
S.J. Kim, S.J. Choi, J.S. Jang, et al., Adv. Mater. 29 (2017) 1700737.
doi: 10.1002/adma.201700737
H. Shin, D.H. Kim, W. Jung, et al., ACS Nano 15 (2021) 14207–14217.
doi: 10.1021/acsnano.1c01350
C. Sun, G. Feng, Y. Song, et al., Anal. Chem. 94 (2022) 6615–6620.
doi: 10.1021/acs.analchem.2c00897
C. Sun, R. Li, Y. Song, et al., Anal. Chem. 93 (2021) 6188–6194.
doi: 10.1021/acs.analchem.1c00372
C. Sun, M.V. Vinayak, S. Cheng, W. Hu, Anal. Chem. 93 (2021) 11305–11311.
doi: 10.1021/acs.analchem.1c02601
L. Fan, J.J. Huang, J. Liao, Sens. Actuator. B: Chem. 369 (2022) 132164.
doi: 10.1016/j.snb.2022.132164
T. Sierra, I. Jang, E. Noviana, et al., ACS Sens. 6 (2021) 2998–3005.
doi: 10.1021/acssensors.1c00864
S. Ramalingam, A. Elsayed, A. Singh, Mikrochim. Acta 187 (2020) 645.
doi: 10.1007/s00604-020-04589-w
M.L. Lian, L. Xu, X.W. Zhu, et al., Anal. Chem. 89 (2017) 12843–12849.
doi: 10.1021/acs.analchem.7b03371
Y. Wang, H. Feng, H. Zhang, et al., Analyst 145 (2020) 1294–1301.
doi: 10.1039/C9AN02390A
Y. Zhou, H. Yin, W.W. Zhao, S. Ai, Coordin. Chem. Rev. 424 (2020) 213519.
doi: 10.1016/j.ccr.2020.213519
R. Pandey, Y. Lu, E.M. McConnell, et al., Biosens. Bioelectron. 224 (2023) 114983.
doi: 10.1016/j.bios.2022.114983
R. Pandey, D. Chang, M. Smieja, et al., Nat. Chem. 13 (2021) 895–901.
doi: 10.1038/s41557-021-00718-x
Y. Xu, W. Huang, Y. Zhang, H. Duan, F. Xiao, Anal. Chem. 94 (2022) 4463–4473.
doi: 10.1021/acs.analchem.1c05544
L. Basabe-Desmonts, D.N. Reinhoudt, M. Crego-Calama, Chem. Soc. Rev. 36 (2007) 993–1017.
doi: 10.1039/b609548h
K. Liu, C. Shang, Z. Wang, et al., Nat. Commun. 9 (2018) 1695.
doi: 10.1038/s41467-018-04119-6
X. Chen, K. Xu, J. Li, et al., Biosens. Bioelectron. 155 (2020) 112104.
doi: 10.1016/j.bios.2020.112104
M.Y. Liu, Z. Gao, Y.J. Yu, et al., Nanoscale Res. Lett. 13 (2018) 27.
doi: 10.1186/s11671-018-2440-6
H. Eskandari, M. Amirzehni, H. Asadollahzadeh, J. Hassanzadeh, P.A. Eslami, Sens. Actuator. B: Chem. 275 (2018) 145–154.
doi: 10.1016/j.snb.2018.08.050
X. Li, Z.J. Xue, X.Y. Chen, et al., Sci. Adv. 11 (2022) eadd1559.
Y. Shi, Y. Hu, N. Jiang, A.K. Yetisen, ACS Sens. 7 (2022) 1615–1633.
doi: 10.1021/acssensors.2c00313
S. Wang, L. Zheng, G. Cai, et al., Biosens. Bioelectron. 140 (2019) 111333.
doi: 10.1016/j.bios.2019.111333
M. Meeseepong, G. Ghosh, S. Shrivastava, N.E. Lee, ACS Appl. Mater. Interfaces 15 (2023) 21754–21765.
doi: 10.1021/acsami.2c22352
S.Y. Ding, E.M. You, Z.Q. Tian, M. Moskovits, Chem. Soc. Rev. 46 (2017) 4042–4076.
doi: 10.1039/C7CS00238F
M.F. Cardinal, E. Vander Ende, R.A. Hackler, et al., Chem. Soc. Rev. 46 (2017) 3886–3903.
doi: 10.1039/C7CS00207F
X.Z. Qiao, Z.J. Xue, L. Liu, K.Y. Liu, T. Wang, Adv. Mater. 31 (2019) 1804275.
doi: 10.1002/adma.201804275
F. Sun, H.C. Hung, A. Sinclair, et al., Nat. Commun. 7 (2016) 13437.
doi: 10.1038/ncomms13437
Y.C. Kao, X. Han, Y.H. Lee, et al., ACS Nano 14 (2020) 2542–2552.
doi: 10.1021/acsnano.0c00515
D. Cialla-May, X.S. Zheng, K. Weberabc, J. Popp, Chem. Soc. Rev. 46 (2017) 3945–3961.
doi: 10.1039/C7CS00172J
X.Z. Qiao, B.S. Su, C. Liu, et al., Adv. Mater. 30 (2018) 1702275.
doi: 10.1002/adma.201702275
S. Hu, Y. Jiang, Y. Wu, et al., ACS Appl. Mater. Interfaces 12 (2020) 55324–55330.
doi: 10.1021/acsami.0c12988
J. Guo, F. Zeng, J. Guo, X. Ma, J. Mater. Sci. Technol. 37 (2020) 96–103.
doi: 10.1016/j.jmst.2019.06.018
K. Yang, S. Zong, Y. Zhang, et al., ACS Appl. Mater. Interfaces 12 (2020) 1395–1403.
doi: 10.1021/acsami.9b19358
L. Ma, S. Ye, X. Wang, J. Zhang, ACS Sens. 6 (2021) 1392–1399.
doi: 10.1021/acssensors.1c00063
C.H. Huang, A.L. Li, X.Y. Chen, T. Wang, Small 16 (2020) e2004802.
doi: 10.1002/smll.202004802
I. Paulowicz, V. Hrkac, S. Kaps, et al., Adv. Electron. Mater. 1 (2015) 1500081.
doi: 10.1002/aelm.201500081
O. Lupan, V. Postica, N. Ababii, et al., Microelectron. Eng. 164 (2016) 63–70.
doi: 10.1016/j.mee.2016.07.008
L. Chow, O. Lupan, H. Heinrich, G. Chai, Appl. Phys. Lett. 94 (2009) 163105.
doi: 10.1063/1.3118583
S. Wei, Z. Li, K. Murugappan, et al., Adv. Mater. 35 (2022) 2207199.
L.Z. Liu, S. Chen, X. Zhang, et al., Sci. Adv. 6 (2020) eabb9593.
doi: 10.1126/sciadv.abb9593
Z. Zhang, Y. Fu, W. Yu, et al., Adv. Mater. 28 (2016) 9589–9595.
doi: 10.1002/adma.201603223
J.G. Feng, Q. Song, B. Zhang, et al., Adv. Mater. 29 (2017) 1703143.
doi: 10.1002/adma.201703143
D. Luo, X.Y. Qin, Q. Song, et al., Adv. Funct. Mater. 27 (2017) 1701982.
doi: 10.1002/adfm.201701982
Y. Chen, H.J. Yin, D. Sikdar, et al., ACS Appl. Nano Mater. 4 (2021) 12498–12505.
doi: 10.1021/acsanm.1c02884
W.T. Koo, S. Qiao, A.F. Ogata, et al., ACS Nano 11 (2017) 9276–9285.
doi: 10.1021/acsnano.7b04529
H. Kim, W. Kim, S. Cho, J. Park, G.Y. Jung, ACS Appl. Mater. Interfaces 12 (2020) 28616–28623.
doi: 10.1021/acsami.0c05369
G. Namgung, Q.T.H. Ta, W. Yang, J.S. Noh, ACS Appl. Mater. Interfaces 11 (2019) 1411–1419.
doi: 10.1021/acsami.8b17336
Y.K. Moon, S.Y. Jeong, Y.C. Kang, J.H. Lee, ACS Appl. Mater. Interfaces 11 (2019) 32169–32177.
doi: 10.1021/acsami.9b11079
W.D. Zhao, J.M. Li, Z.J. Xue, et al., Angew. Chem. Int. Ed. 61 (2022) e202205628.
doi: 10.1002/anie.202205628
G. Lu, S. Li, Z. Guo, et al., Nat. Chem. 4 (2012) 310–316.
doi: 10.1038/nchem.1272
W.Q. Bai, A.P. Cui, M.Z. Liu, et al., Anal. Chem. 91 (2019) 11840–11847.
doi: 10.1021/acs.analchem.9b02569
C.H. Wu, Z. Zhu, H.M. Chang, et al., J. Alloys Compd. 814 (2020) 151815.
doi: 10.1016/j.jallcom.2019.151815
M.H. Raza, K. Movlaee, S.G. Leonardi, et al., Adv. Funct. Mater. 30 (2020) 1906874.
doi: 10.1002/adfm.201906874
M.H. Raza, R. Di Chio, K. Movlaee, et al., ACS Appl. Mater. Interfaces 14 (2022) 22041–22052.
doi: 10.1021/acsami.2c00808
W.H. Li, X.F. Wu, N. Han, et al., Sens. Actuator. B: Chem. 225 (2016) 158–166.
doi: 10.1016/j.snb.2015.11.034
W.T. Koo, S. Yu, S.J. Choi, et al., ACS Appl. Mater. Interfaces 9 (2017) 8201–8210.
doi: 10.1021/acsami.7b01284
J.S. Jang, W.T. Koo, S.J. Choi, I.D. Kim, J. Am. Chem. Soc. 139 (2017) 11868–11876.
doi: 10.1021/jacs.7b05246
Y.M. Jo, T.H. Kim, C.S. Lee, et al., ACS Appl. Mater. Interfaces 10 (2018) 8860–8868.
doi: 10.1021/acsami.8b00733
J. Wang, H. Qiu, H. Shen, et al., Biosens. Bioelectron. 85 (2016) 387–394.
doi: 10.1016/j.bios.2016.05.041
X.Z. Qiao, X.Y. Chen, C.H. Huang, et al., Angew. Chem. Int. Ed. 58 (2019) 16523–16527.
doi: 10.1002/anie.201910865
A.L. Li, X.Z. Qiao, K.Y. Liu, W.Q. Bai, T. Wang, Adv. Funct. Mater. 32 (2022) 2202805.
doi: 10.1002/adfm.202202805
Z. Zhang, W. Yu, J. Wang, et al., Anal. Chem. 89 (2017) 1416–1420.
doi: 10.1021/acs.analchem.6b05117
L. Liu, W. Xiong, L.F. Cui, et al., Angew. Chem. Int. Ed. 59 (2020) 15953–15957.
doi: 10.1002/anie.202006408
X.B. Huang, W.D. Zhao, X.Y. Chen, et al., J. Am. Chem. Soc. 144 (2022) 17533–17539.
doi: 10.1021/jacs.2c06623
L.Z. Liu, S. Chen, Z.J. Xue, et al., Nat. Commun. 9 (2018) 444.
doi: 10.1038/s41467-018-02879-9
G. Le Saux, N. Bar Hanin, A. Edri, et al., Adv. Mater. 31 (2019) e1805954.
doi: 10.1002/adma.201805954
C.H. Huang, Z.H. Guo, X. Zheng, et al., J. Am. Chem. Soc. 142 (2020) 9408–9414.
doi: 10.1021/jacs.0c02272
Y. Cao, N. Wu, H.D. Li, et al., Small 18 (2022) e2203962.
doi: 10.1002/smll.202203962
X.Z. Qiao, X.M. Yin, L. Wen, et al., Chem 8 (2022) 1–11.
doi: 10.1016/j.chempr.2021.12.020
D. Luo, S. Cui, Y. Liu, et al., J. Am. Chem. Soc. 140 (2018) 14211–14216.
doi: 10.1021/jacs.8b08118
J. Zhang, X. Li, Y. Liu, et al., Adv. Mater. 34 (2022) e2202119.
doi: 10.1002/adma.202202119
H. Zou, Z. Luo, X. Yang, Q. Xie, Y. Zhou, J. Mater. Sci. 57 (2022) 10912–10942.
doi: 10.1007/s10853-022-07328-z
W.T. Koo, J.H. Cha, J.W. Jung, et al., Adv. Funct. Mater. 28 (2018) 1802575.
doi: 10.1002/adfm.201802575
Z.J. Xue, P.L. Wang, A.D. Peng, T. Wang, Adv. Mater. 31 (2019) 1801441.
doi: 10.1002/adma.201801441
L. Zhu, C. Shao, H. Chen, Z. Chen, Y. Zhao, Research 2021 (2021) 9845679.
S. Yan, X. Zhang, X. Dai, et al., ACS Appl. Mater. Interfaces 8 (2016) 33457–33463.
doi: 10.1021/acsami.6b11673
N. Singh, M.A. Ali, P. Rai, et al., ACS Appl. Mater. Interfaces 9 (2017) 33576–33588.
doi: 10.1021/acsami.7b07590
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
Ya-Ping Liu , Zhi-Rong Gui , Zhen-Wen Zhang , Sai-Kang Wang , Wei Lang , Yanzhu Liu , Qian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO−. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769
Chao Liu , Chao Jia , Shi-Xian Gan , Qiao-Yan Qi , Guo-Fang Jiang , Xin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750
Ziqin Li , Kai Hao , Longwei Xiang , Huayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943
Quan Zhang , Shunjie Xing , Jingqian Han , Li Feng , Jianchun Li , Zhaosheng Qian , Jin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117
Jia-Qi Feng , Xiang Tian , Rui-Ge Cao , Yong-Xiu Li , Wen-Long Liu , Rong Huang , Si-Yong Qin , Ai-Qing Zhang , Yin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657
Xilin Bai , Wei Deng , Jingjuan Wang , Ming Zhou . Enrichment-enhanced detection strategy in the optimized monitoring system of dopamine with carbon dots-based probe. Chinese Chemical Letters, 2025, 36(2): 109959-. doi: 10.1016/j.cclet.2024.109959
Shu Tian , Wenxin Huang , Junrui Hu , Huiling Wang , Zhipeng Zhang , Liying Xu , Junrong Li , Yao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336
Zian Fang , Qianqian Wen , Yidi Wang , Hongxia Ouyang , Qi Wang , Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032
Kezuo Di , Jie Wei , Lijun Ding , Zhiying Shao , Junling Sha , Xilong Zhou , Huadong Heng , Xujing Feng , Kun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911
Ting WANG , Peipei ZHANG , Shuqin LIU , Ruihong WANG , Jianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134
Qian Ren , Xue Dai , Ran Cen , Yang Luo , Mingyang Li , Ziyun Zhang , Qinghong Bai , Zhu Tao , Xin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022
Ran Cen , Yan-Yan Tang , Li-Xia Chen , Zhu Tao , Xin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744
Xin Chen , Meng Zhao , Yan-Yuan Jia . Stable Eu(III)-based metal-organic framework for fluorescence sensing of benzaldehyde and its analogues. Chinese Journal of Structural Chemistry, 2025, 44(3): 100445-100445. doi: 10.1016/j.cjsc.2024.100445
Yueyue WEI , Xuehua SUN , Hongmei CHAI , Wanqiao BAI , Yixia REN , Loujun GAO , Gangqiang ZHANG , Jun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
Tiankai Sun , Hui Min , Zongsu Han , Liang Wang , Peng Cheng , Wei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718
Yuxin Xiao , Xiaowei Wang , Yutong Yin , Fangchao Yin , Jinchao Li , Zhiyuan Hou , Mashooq Khan , Rusong Zhao , Wenli Wu , Qiongzheng Hu . Distance-based lateral flow biosensor for the quantitative detection of bacterial endotoxin. Chinese Chemical Letters, 2024, 35(12): 109718-. doi: 10.1016/j.cclet.2024.109718
Haibo Wan , Zhengzhong Lv , Jicai Jiang , Xuefeng Cheng , Qingfeng Xu , Haibin Shi , Jianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023
Jia-Mei Qin , Xue Li , Wei Lang , Fu-Hao Zhang , Qian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925