Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution
-
* Corresponding author.
E-mail address: weima@ecust.edu.cn (W. Ma).
Citation:
Zhihao Gu, Jiabo Le, Hehe Wei, Zehui Sun, Mahmoud Elsayed Hafez, Wei Ma. Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution[J]. Chinese Chemical Letters,
;2024, 35(4): 108849.
doi:
10.1016/j.cclet.2023.108849
Z.W. Seh, J. Kibsgaard, C.F. Dickens, et al., Science 355 (2017) 4998.
doi: 10.1126/science.aad4998
S.Y. Tee, K.Y. Win, W.S. Teo, et al., Adv. Mater. 4 (2017) 1600337.
F. Chen, Z. Zhang, W. Liang, et al., Chin. Chem. Lett. 33 (2022) 1395–1402.
doi: 10.1016/j.cclet.2021.08.019
B. You, M.T. Tang, C. Tsai, et al., Adv. Mater. 31 (2019) 1807001.
doi: 10.1002/adma.201807001
Z.F. Huang, J. Wang, Y. Peng, et al., Adv. Energy Mater. 7 (2017) 1700544.
doi: 10.1002/aenm.201700544
S. Anantharaj, S.R. Ede, K. Sakthikumar, et al., ACS Catal. 6 (2016) 8069–8097.
doi: 10.1021/acscatal.6b02479
S. Zhao, M. Li, M. Han, et al., Adv. Funct. Mater. 28 (2018) 1706018.
doi: 10.1002/adfm.201706018
L. Wang, J. Fan, Y. Liu, et al., Adv. Funct. Mater. 31 (2021) 2010912.
doi: 10.1002/adfm.202010912
W. Hu, M. Zheng, H. Duan, et al., Chin. Chem. Lett. 33 (2022) 1412–1416.
doi: 10.1016/j.cclet.2021.08.025
Y. Li, L. Zhang, J. Peng, W. Zhang, K. Peng, J. Power Sources 433 (2019) 226704.
doi: 10.1016/j.jpowsour.2019.226704
G. Zhou, P. Wang, H. Li, et al., Nat. Commun. 12 (2021) 4827.
doi: 10.1038/s41467-021-25095-4
J. Yao, W. Huang, W. Fang, et al., Small Methods 4 (2020) 2000494.
doi: 10.1002/smtd.202000494
F.A. Garcés-Pineda, M. Blasco-Ahicart, D. Nieto-Castro, N. López, J.R. Galán– Mascarós, Nat. Energy 4 (2019) 519–525.
doi: 10.1038/s41560-019-0404-4
H. Yan, Y. Xie, A. Wu, et al., Adv. Mater. 31 (2019) 20191174.
D. Böhm, M. Beetz, M. Schuster, et al., Adv. Funct. Mater. 30 (2020) 1906670.
doi: 10.1002/adfm.201906670
J. Gu, S. Magagula, J. Zhao, Z. Chen, Small Methods 11 (2019) 1800550.
C. Sun, J. Yang, Z. Dai, et al., Nano Res. 9 (2016) 1300–1309.
doi: 10.1007/s12274-016-1025-x
L. Chen, Y. Guo, H. Wang, et al., J. Mater. Chem. A 6 (2018) 4636–4641.
doi: 10.1039/C7TA11078B
X. Lu, M. Li, Y. Peng, et al., J. Am. Chem. Soc. 143 (2021) 16925–16929.
doi: 10.1021/jacs.1c08592
T. Wang, L. Liu, Z. Zhu, et al., Energy Environ. Sci. 6 (2013) 625–633.
doi: 10.1039/C2EE23513G
C. Yu, Z. Liu, X. Han, et al., Carbon 110 (2016) 1–7.
doi: 10.1016/j.carbon.2016.08.020
D.Y. Chung, S.K. Park, Y.H. Chung, et al., Nanoscale 6 (2014) 2131–2136.
doi: 10.1039/C3NR05228A
T. Quast, H.B. Aiyappa, S. Saddeler, et al., Angew. Chem. Int. Ed. 60 (2021) 3576–3580.
doi: 10.1002/anie.202014384
R. Chen, S. Liu, Y. Zhang, Mater. Horiz. 10 (2023) 52–64.
doi: 10.1039/D2MH01143C
L.A. Baker, J. Am. Chem. Soc. 140 (2018) 15549–15559.
doi: 10.1021/jacs.8b09747
H. Ren, M.A. Edwards, Curr. Opin. Electrochem. 25 (2021) 100632.
doi: 10.1016/j.coelec.2020.08.014
Y. Shan, X. Deng, X. Lu, et al., Chin. Chem. Lett. 33 (2022) 5158–5161.
doi: 10.1016/j.cclet.2022.03.010
X. Xiao, A.J. Bard, J. Am. Chem. Soc. 129 (2007) 9610–9612.
doi: 10.1021/ja072344w
B.J. Plowman, N.P. Young, C. Batchelor-McAuley, R.G. Compton, Angew. Chem. Int. Ed. 128 (2016) 7116–7119.
doi: 10.1002/ange.201602867
H. Li, X. Zhang, Z. Sun, W. Ma, J. Am. Chem. Soc. 144 (2022) 16480–16489.
doi: 10.1021/jacs.2c05299
Z. Sun, Z. Gu, W. Ma, Anal. Chem. 95 (2023) 3613–3620.
doi: 10.1021/acs.analchem.2c04309
A.E. Arrassi, Z. Liu, M.V. Evers, et al., J. Am. Chem. Soc. 141 (2019) 9197–9201.
doi: 10.1021/jacs.9b04516
P.A. Defnet, C. Han, B. Zhang, Anal. Chem. 91 (2019) 4023–4030.
doi: 10.1021/acs.analchem.8b05463
P. Thakur, S. Taneja, D. Chahar, B. Ravelo, A. Thakur, J. Magn. Magn. Mater. 530 (2021) 167925.
doi: 10.1016/j.jmmm.2021.167925
X. Ren, T. Wu, Y. Sun, et al., Nat. Commun. 12 (2021) 2608.
doi: 10.1038/s41467-021-22865-y
J. Kang, H. Lee, Y.N. Kim, et al., Nanoscale Res. Lett. 8 (2013) 1–7.
doi: 10.1186/1556-276X-8-1
F. Ludwig, C. Balceris, T. Viereck, et al., J. Magn. Magn. Mater. 427 (2017) 19–24.
doi: 10.1016/j.jmmm.2016.11.113
M. Du, Y. Meng, G. Zhu, et al., Nanoscale 12 (2020) 22014–22021.
doi: 10.1039/D0NR05780K
S.A. Makhlouf, M.A. Kassem, M.A. Abdel-Rahim, J. Mater. Sci. 44 (2009) 3438–3444.
doi: 10.1007/s10853-009-3457-0
S. Zou, M.S. Burke, M.G. Kast, et al., Chem. Mater. 27 (2015) 8011–8020.
doi: 10.1021/acs.chemmater.5b03404
S. Zhou, X. Miao, X. Zhao, et al., Nat. Commun. 7 (2016) 1–7.
J. Hwang, R.R. Rao, L. Giordano, et al., Science 358 (2015) 751–756.
Y. Sun, X. Ren, S. Sun, et al., Angew. Chem. Int. Ed. 60 (2021) 14536–14544.
doi: 10.1002/anie.202102452
S.K. Jown, A.J. Bard, J. Am. Chem. Soc. 134 (2012) 7102–7108.
doi: 10.1021/ja300894f
Y. Sun, S. Sun, H. Yang, et al., Adv. Mater. 32 (2020) 2003297.
doi: 10.1002/adma.202003297
X. Li, Z. Cheng, X. Wang, Electrochem. Energy Rev. 4 (2021) 136–145.
doi: 10.1007/s41918-020-00084-1
H.M. Lu, W.T. Zheng, Q. Jiang, J. Phys. D 40 (2007) 320–325.
doi: 10.1088/0022-3727/40/2/006
L. Wang, H. Yang, J. Yang, et al., Ionics 22 (2016) 2195–2202.
doi: 10.1007/s11581-016-1746-6
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Lu Dai , Yuxin Ren , Shuang Li , Meidi Wang , Chentao Hu , Ya-Pan Wu , Guangtong Hai , Dong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
Hong-Rui Li , Xia Kang , Rui Gao , Miao-Miao Shi , Bo Bi , Ze-Yu Chen , Jun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Yanjie Li , Chaoqun Qu , Siqi Meng , Jiaqi Hu , Ze Gao , Hongji Xu , Rui Gao , Ming Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872