Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review
-
* Corresponding author.
E-mail address: geshengbo@njfu.edu.cn (S. Ge)
Citation:
Guiyang Zheng, Xuelian Kang, Haoran Ye, Wei Fan, Christian Sonne, Su Shiung Lam, Rock Keey Liew, Changlei Xia, Yang Shi, Shengbo Ge. Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review[J]. Chinese Chemical Letters,
;2024, 35(4): 108817.
doi:
10.1016/j.cclet.2023.108817
B. Li, G. Zhao, G. Wang, et al., Adv. Sustain. Syst. 5 (2021) 2000295.
doi: 10.1002/adsu.202000295
B. Barkia, P. Aubry, P. Haghi-Ashtiani, et al., J. Mater. Sci. Technol. 41 (2020) 209–218.
doi: 10.1016/j.jmst.2019.09.017
R. Mori, RSC Sustain. 1 (2023) 179–212.
doi: 10.1039/d2su00014h
S. Kalisz, K. Kibort, J. Mioduska, M. Lieder, A. Małachowska, J. Environ. Manage. 304 (2022) 114239.
doi: 10.1016/j.jenvman.2021.114239
A.Z. Naser, I. Deiab, B.M. Darras, RSC adv. 11 (2021) 17151–17196.
doi: 10.1039/d1ra02390j
H. Han, J. Sustain. Tour. 29 (2021) 1021–1042.
doi: 10.1080/09669582.2021.1903019
Z. Wang, Prog. Polym. Sci. 101 (2020) 101197.
doi: 10.1016/j.progpolymsci.2019.101197
Q. Ou, B. Yang, J. Zhang, et al., Small 17 (2021) 2007241.
doi: 10.1002/smll.202007241
S. Vigneshwaran, R. Sundarakannan, K. John, et al., J. Clean. Prod. 277 (2020) 124109.
doi: 10.1016/j.jclepro.2020.124109
J. Deng, Q. Song, S. Liu, et al., Compos. B: Eng. 245 (2022) 110221.
doi: 10.1016/j.compositesb.2022.110221
M. Ramesh, Prog. Mater. Sci. 102 (2019) 109–166.
doi: 10.1016/j.pmatsci.2018.12.004
N. Forintos, T. Czigany, Compos. B 162 (2019) 331–343.
doi: 10.1016/j.compositesb.2018.10.098
B. Kumar, S. Roy, D.O. Agumba, D.H. Pham, J. Kim, Int. J. Biol. Macromol. 222 (2022) 1304–1313.
doi: 10.1016/j.ijbiomac.2022.09.237
F.A. Gonçalves, M. Santos, T. Cernadas, P. Ferreira, P. Alves, Int. Mater. Rev. 67 (2022) 119–149.
doi: 10.1080/09506608.2021.1915936
A. Yadav, N. Bagotia, A.K. Sharma, S. Kumar, Sci. Total Environ. 784 (2021) 147108.
doi: 10.1016/j.scitotenv.2021.147108
T. Raj, K. Chandrasekhar, A.N. Kumar, S.H. Kim, Renew. Sust. Energ. Rev. 158 (2022) 112130.
doi: 10.1016/j.rser.2022.112130
C. Zhang, J. Mo, Q. Fu, et al., Nano Energy 81 (2021) 105637.
doi: 10.1016/j.nanoen.2020.105637
X. Tang, D. Liu, Y.J. Wang, et al., Prog. Mater. Sci. 118 (2021) 100770.
doi: 10.1016/j.pmatsci.2020.100770
A. Vinod, M. Sanjay, S. Suchart, P. Jyotishkumar, J. Clean. Prod. 258 (2020) 120978.
doi: 10.1016/j.jclepro.2020.120978
Y. Liu, S. Ahmed, D.E. Sameen, et al., Trends Food Sci. Technol. 112 (2021) 532–546.
doi: 10.1016/j.tifs.2021.04.016
P. Luan, X. Zhao, K. Copenhaver, S. Ozcan, H. Zhu, Adv. Fiber Mater. 4 (2022) 736–757.
doi: 10.1007/s42765-022-00151-w
W. Fan, Y. Zhang, Y. Sun, et al., Chem. Eng. J. 455 (2023) 140917.
doi: 10.1016/j.cej.2022.140917
X. Hou, S. Liu, C. He, J. Mater. Chem. A 10 (2022) 1497–1505.
doi: 10.1039/d1ta09128j
O.M. Atta, S. Manan, A. Shahzad, et al., Food Hydrocoll 125 (2022) 107419.
doi: 10.1016/j.foodhyd.2021.107419
X. Zhao, Y. Wang, X. Chen, et al., Matter 6 (2023) 97–127.
doi: 10.1117/12.2686941
Y. Xiao, W. Wang, X. Tian, et al., Research 2020 (2020) 12–17.
doi: 10.1002/j.2769-2795.2020.tb00047.x
R. Mohammadinejad, H. Maleki, E. Larraneta, et al., Appl. Mater. Today 16 (2019) 213–246.
doi: 10.1016/j.apmt.2019.04.010
W. Li, L.S. Mille, J.A. Robledo, et al., Adv. Healthc. Mater. 9 (2020) 2000156.
doi: 10.1002/adhm.202000156
X. Tan, Y. Wang, W. Du, T. Mu, ChemSusChem 13 (2020) 321–327.
doi: 10.1002/cssc.201902979
K. De France, Z. Zeng, T. Wu, G. Nyström, Adv. Mater. 33 (2021) 2000657.
doi: 10.1002/adma.202000657
Y. Luo, Y. Miao, H. Wang, et al., Nano Res. 16 (2023) 7600–7608.
doi: 10.1007/s12274-023-5382-y
W. Fan, C. Zhang, Y. Liu, et al., Nano Res. 16 (2023) 1–9.
doi: 10.1007/s12274-022-5053-4
H. Ye, J. Jiang, Y. Yang, et al., Adv. Compos. Hybrid Mater. 6 (2023) 81.
doi: 10.1007/s42114-023-00664-x
R. Ilyas, M. Zuhri, M.N.F. Norrrahim, et al., Polymers 14 (2022) 182.
doi: 10.3390/polym14010182
H. Ye, Y. Wang, Q. Yu, et al., Chemosphere 287 (2022) 132436.
doi: 10.1016/j.chemosphere.2021.132436
C. Chen, Y. Zhang, Y. Li, et al., Energy Environ. Sci. 10 (2017) 538–545.
doi: 10.1039/C6EE03716J
W. Kong, C. Wang, C. Jia, et al., Adv. Mater. 30 (2018) 1801934.
doi: 10.1002/adma.201801934
P. Zheng, N. Chen, S. Mahfuzul Islam, et al., ACS Sustain. Chem. Eng. 7 (2018) 3909–3916.
H. Sun, Z. Ren, T. Ji, H. Bi, M. Xu, J. Mater. Res. Technol. 14 (2021) 3043–3050.
doi: 10.1016/j.jmrt.2021.08.153
C. Chen, Y. Wang, Q. Wu, et al., Chem. Eng. J. 400 (2020) 125876.
doi: 10.1016/j.cej.2020.125876
X. Ma, S. Zhao, Z. Tian, et al., Chem. Eng. J. 446 (2022) 136851.
doi: 10.1016/j.cej.2022.136851
H. Ye, G. Zheng, S. Zuo, et al., Appl. Surf. Sci. 615 (2023) 156313.
doi: 10.1016/j.apsusc.2022.156313
Z. Wang, Y. Yu, K. Roy, C. Gao, L. Huang, MDPI 20 (2023) 1871.
E. Zini, M. Scandola, Polym. Compos. 32 (2011) 1905–1915.
doi: 10.1002/pc.21224
G.S. Mann, L.P. Singh, P. Kumar, S. Singh, Compos. Mater. 33 (2020) 1145–1171.
doi: 10.1177/0892705718816354
M. Zhang, G.M. Biesold, W. Choi, et al., Mater. Today 53 (2022) 134–161.
doi: 10.1016/j.mattod.2022.01.022
X. Bi, M. Li, G. Zhou, et al., Nano Res. 12 (2023) 1–14.
R. Ilyas, M. Zuhri, H. Aisyah, et al., Polymers 14 (2022) 202.
doi: 10.3390/polym14010202
S. Amiandamhen, M. Meincken, L. Tyhoda, Fibers Polym. 21 (2020) 677–689.
doi: 10.1007/s12221-020-9362-5
M. Asrofi, E. Syafri, S. Sapuan, R. Ilyas, Key Eng. Mater. 849 (2020) 96–101.
doi: 10.4028/www.scientific.net/kem.849.96
W. Sun, M. Tajvidi, C.G. Hunt, et al., J. Clean. Prod. 353 (2022) 131659.
doi: 10.1016/j.jclepro.2022.131659
T.D. Tavares, J.C. Antunes, F. Ferreira, H.P. Felgueiras, Biomolecules 10 (2020) 148.
doi: 10.3390/biom10010148
K. Rafiee, H. Schritt, D. Pleissner, G. Kaur, S.K. Brar, Curr. Opin. Green Sustain. Chem. 30 (2021) 100482.
doi: 10.1016/j.cogsc.2021.100482
M.J. John, R.D. Anandjiwala, Polym. Compos. 29 (2008) 187–207.
doi: 10.1002/pc.20461
M. Mohammed, R. Rahman, A.M. Mohammed, et al., Polym. Test. 115 (2022) 107707.
doi: 10.1016/j.polymertesting.2022.107707
Y. Liang, G. Zheng, C. Xia, et al., J. Clean. Prod. 351 (2022) 131531.
doi: 10.1016/j.jclepro.2022.131531
S. Kalia, K. Thakur, A. Celli, M.A. Kiechel, C.L. Schauer, J. Environ. Chem. Eng. 1 (2013) 97–112.
doi: 10.1016/j.jece.2013.04.009
J. Manivannan, S. Rajesh, K. Mayandi, et al., J. Nat. Fibers 19 (2022) 4007–4023.
doi: 10.1080/15440478.2020.1848743
S. Bousshine, M. Ouakarrouch, A. Bybi, et al., Appl. Acoust. 187 (2022) 108520.
doi: 10.1016/j.apacoust.2021.108520
H.S. Shekar, M. Ramachandra, Mater. Today Proc. 5 (2018) 2518–2526.
doi: 10.1016/j.matpr.2017.11.034
Z. Zhang, S. Cai, Y. Li, et al., Compos. Sci. Technol. 194 (2020) 108151.
doi: 10.1016/j.compscitech.2020.108151
Y. Leow, V. Sequerah, Y.C. Tan, et al., Compos. B: Eng. 241 (2022) 110031.
doi: 10.1016/j.compositesb.2022.110031
S. Alsubari, M. Zuhri, S. Sapuan, et al., Polymers 13 (2021) 423.
doi: 10.3390/polym13030423
L. Zhao, S. Pan, N. Holzmann, P. Schwerdtfeger, G. Frenking, Chem. Rev. 119 (2019) 8781–8845.
doi: 10.1021/acs.chemrev.8b00722
D. Zhao, M. Feng, L. Zhang, et al., Carbohydr. Polym. 256 (2021) 117580.
doi: 10.1016/j.carbpol.2020.117580
S. Godara, Mater. Today Proc. 18 (2019) 3428–3434.
doi: 10.1016/j.matpr.2019.07.270
Y.L. Loow, T.Y. Wu, J. Md. Jahim, A.W. Mohammad, W.H. Teoh, Cellulose 23 (2016) 1491–1520.
doi: 10.1007/s10570-016-0936-8
C. Huang, Y. Zhan, J. Wang, et al., Green Chem. 24 (2022) 3736–3749.
doi: 10.1039/d2gc00301e
G. Zheng, H. Ye, Y. Liang, et al., Constr. Build. Mater. 367 (2023) 130350.
doi: 10.1016/j.conbuildmat.2023.130350
R. Vijay, D.L. Singaravelu, A. Vinod, et al., Int. J. Biol. Macromol. 125 (2019) 99–108.
doi: 10.1016/j.ijbiomac.2018.12.056
M. Beg, K. Pickering, Mater. Manuf. Proc. 21 (2006) 303–307.
doi: 10.1080/10426910500464750
M.N. Izani, M. Paridah, U. Anwar, M.M. Nor, P. H’ng, Compos. B: Eng. 45 (2013) 1251–1257.
doi: 10.1016/j.compositesb.2012.07.027
W. Lv, Z. Xia, Y. Song, et al., Ind. Crops. Prod. 171 (2021) 113934.
doi: 10.1016/j.indcrop.2021.113934
J. He, C. Huang, C. Lai, et al., Ind. Crops. Prod. 146 (2020) 112205.
doi: 10.1016/j.indcrop.2020.112205
E.S. Ferreira, E.D. Cranston, C.A. Rezende, ACS Sustain. Chem. Eng. 8 (2020) 8267–8278.
doi: 10.1021/acssuschemeng.0c01480
S. Ma, Y. Yan, C. He, et al., Ind. Crops. Prod. 180 (2022) 114712.
doi: 10.1016/j.indcrop.2022.114712
R. Yang, Q. Cao, Y. Liang, et al., Chem. Eng. J. 401 (2020) 126150.
doi: 10.1016/j.cej.2020.126150
Z. Li, C. Chen, H. Xie, et al., Nat. Sustain. 5 (2022) 235–244.
J. Song, C. Chen, S. Zhu, et al., Nature 554 (2018) 224–228.
doi: 10.1038/nature25476
X. Lv, J. Han, M. Liu, et al., Chem. Eng. J. 452 (2022) 139439.
M.H. Mohamed, I.A. Udoetok, L.D. Wilson, Compos. Sci. Technol. 4 (2020) 15.
T.V. Thanh, L.T. Hao, H.Y. Cho, et al., ACS Sustain. Chem. Eng. 10 (2022) 8411–8422.
doi: 10.1021/acssuschemeng.2c01395
C. Calvino, N. Macke, R. Kato, S.J. Rowan, Prog. Polym. Sci. 103 (2020) 101221.
doi: 10.1016/j.progpolymsci.2020.101221
C. Gilbert, T.C. Tang, W. Ott, et al., Nat. Mater. 20 (2021) 691–700.
doi: 10.1038/s41563-020-00857-5
Y. Wan, P. Xiong, J. Liu, et al., ACS Nano 15 (2021) 8439–8449.
doi: 10.1021/acsnano.0c10666
C. Li, H. Lei, Z. Wu, et al., ACS Appl. Mater. Interfaces 14 (2022) 23859–23867.
doi: 10.1021/acsami.2c02859
J. Zhang, C. Long, X. Zhang, et al., Chem. Eng. J. 450 (2022) 138387.
doi: 10.1016/j.cej.2022.138387
M. Bai, J. Cao, J. Li, C. Li, J. Clean. Prod. 321 (2021) 129001.
doi: 10.1016/j.jclepro.2021.129001
P.P. Das, V. Chaudhary, S. Mishra, Composite materials: properties, fabrication and applications, in: B. Sharma, P. Jain (Eds.), Graphene Based Biopolymer Nanocomposites, Springer, Singapore, 2021, pp. 1–24.
A. Vedrtnam, S. Kumar, S. Chaturvedi, Compos. B: Eng. 176 (2019) 107282.
doi: 10.1016/j.compositesb.2019.107282
F. Erchiqui, H. Kaddami, G. Dituba-Ngoma, F. Slaoui-Hasnaoui, Int. J. Heat Mass Transf. 158 (2020) 119996.
doi: 10.1016/j.ijheatmasstransfer.2020.119996
D. Basalp, F. Tihminlioglu, S.C. Sofuoglu, F. Inal, A. Sofuoglu, Waste Biomass Valori. 11 (2020) 5419–5430.
doi: 10.1007/s12649-020-00986-7
A.H. Elsheikh, H. Panchal, S. Shanmugan, et al., Clean Technol. Environ. Policy 8 (2022) 100450.
doi: 10.1016/j.clet.2022.100450
Y. Zhou, P. Stanchev, E. Katsou, S. Awad, M. Fan, Waste Manage. 99 (2019) 42–48.
doi: 10.1117/12.2523386
S. Han, X. Zhou, H. Xie, et al., Chemosphere 305 (2022) 135486.
doi: 10.1016/j.chemosphere.2022.135486
G.J. Jiao, J. Ma, Y. Li, et al., J. Hazard. Mater. 421 (2022) 126722.
doi: 10.1016/j.jhazmat.2021.126722
Q. Wang, X. Pan, C. Lin, et al., Chem. Eng. J. 370 (2019) 1039–1047.
doi: 10.3390/f10111039
A. Moreno, M.H. Sipponen, Mater. Horizons 7 (2020) 2237–2257.
doi: 10.1039/d0mh00798f
W. Huang, S. Ling, C. Li, F.G. Omenetto, D.L. Kaplan, Chem. Soc. Rev. 47 (2018) 6486–6504.
doi: 10.1039/C8CS00187A
J. Deng, M. Li, Y. Wang, Green Chem. 18 (2016) 4824–4854.
doi: 10.1039/C6GC01172A
Z. Li, C. Chen, R. Mi, et al., Adv. Mater. 32 (2020) 1906308.
doi: 10.1002/adma.201906308
S. Xiao, C. Chen, Q. Xia, et al., Science 374 (2021) 465–471.
doi: 10.1126/science.abg9556
A.Le Duigou, D. Correa, M. Ueda, R. Matsuzaki, M. Castro, Mater. Des. 194 (2020) 108911.
doi: 10.1016/j.matdes.2020.108911
U. Ray, S. Zhu, Z. Pang, T. Li, Adv. Mater. 33 (2021) 2002504.
doi: 10.1002/adma.202002504
C. Chen, Z. Li, R. Mi, et al., ACS Nano 14 (2020) 5194–5202.
doi: 10.1021/acsnano.9b08747
N. Van de Werken, H. Tekinalp, P. Khanbolouki, et al., Adv. Mater. 31 (2020) 100962.
J. Garemark, X. Yang, X. Sheng, et al., ACS Nano 14 (2020) 7111–7120.
doi: 10.1021/acsnano.0c01888
X. Han, W. Wu, Z. Tian, et al., Compos. Commun. 33 (2022) 101199.
doi: 10.1016/j.coco.2022.101199
Q. Xia, C. Chen, Y. Yao, et al., Nat. Sustain. 4 (2021) 627–635.
doi: 10.1038/s41893-021-00702-w
S. Gao, Z. Cheng, X. Zhou, et al., Chem. Eng. J. 394 (2020) 124896.
doi: 10.1016/j.cej.2020.124896
Y. Wang, Z. Li, D. Yang, et al., Nat. Sustain. 583 (2021) 80–88.
Y. Gong, L. Xie, C. Chen, et al., Prog. Mater. Sci. 132 (2022) 101048.
E. Guzman, R.G. Rubio, F. Ortega, Adv. Colloid Interface Sci. 282 (2020) 102197.
doi: 10.1016/j.cis.2020.102197
M. Lian, Y. Huang, Y. Liu, et al., Adv. Compos. Hybrid Mater. 5 (2022) 1612–1657.
doi: 10.1007/s42114-022-00475-6
Z. Bi, Q. Kong, Y. Cao, et al., J. Mater. Chem. A 7 (2019) 16028–16045.
doi: 10.1039/c9ta04436a
R. Brandes, D. Belosinschi, F. Brouillette, B. Chabot, J. Environ. Chem. Eng. 7 (2019) 103477.
doi: 10.1016/j.jece.2019.103477
B. Thomas, M.C. Raj, J. Joy, et al., Chem. Rev. 118 (2018) 11575–11625.
doi: 10.1021/acs.chemrev.7b00627
P. Phanthong, P. Reubroycharoen, X. Hao, et al., Energy Convers. Manag. 1 (2018) 32–43.
C. Chen, L. Berglund, I. Burgert, L. Hu, Adv. Mater. 33 (2021) 2006207.
doi: 10.1002/adma.202006207
E.J. Foster, R.J. Moon, U.P. Agarwal, et al., Chem. Soc. Rev. 47 (2018) 2609–2679.
doi: 10.1039/c6cs00895j
D.Y. Liu, G. Sui, D. Bhattacharyya, Compos. Sci. Technol. 99 (2014) 31–36.
doi: 10.1201/b16752-6
C. Zheng, K. Lu, Y. Lu, et al., Carbohydr. Polym. 250 (2020) 116905.
doi: 10.1016/j.carbpol.2020.116905
X. Wang, Q. Xia, S. Jing, et al., Small 17 (2021) 2008011.
doi: 10.1002/smll.202008011
M.E. Lamm, K. Li, J. Qian, et al., Adv. Mater. 33 (2021) 2005538.
doi: 10.1002/adma.202005538
A. Hänninen, E. Sarlin, I. Lyyra, et al., Carbohydr. Polym. 202 (2018) 418–424.
doi: 10.1016/j.carbpol.2018.09.001
A. Dorieh, M.F. Pour, S.G. Movahed, et al., Prog. Org. Coat. 165 (2022) 106768.
doi: 10.1016/j.porgcoat.2022.106768
S. Gerassimidou, O.V. Martin, S.P. Chapman, J.N. Hahladakis, E. Iacovidou, J. Clean. Prod. 286 (2021) 125378.
doi: 10.1016/j.jclepro.2020.125378
A.T. Adeleye, C.K. Odoh, O.C. Enudi, et al., Proc. Biochem. 96 (2020) 174–193.
doi: 10.1016/j.procbio.2020.05.032
Y. Chen, J. Fu, B. Dang, et al., ACS Nano 14 (2020) 2036–2043.
doi: 10.1021/acsnano.9b08647
Y. Yang, Y. Ren, S. Ge, et al., Appl. Surf. Sci. 606 (2022) 154595.
doi: 10.1016/j.apsusc.2022.154595
Y. Liu, Y. Ke, Q. Shang, et al., Chem. Eng. J. 451 (2023) 138934.
doi: 10.1016/j.cej.2022.138934
A. Hai, G. Bharath, K.R. Babu, et al., Process Saf. Environ. Prot. 129 (2019) 103–111.
doi: 10.1016/j.psep.2019.06.024
N. Tian, S. Wu, G. Han, et al., J. Hazard. Mater. 424 (2022) 127393.
doi: 10.1016/j.jhazmat.2021.127393
T. Meng, B. Jiang, Z. Li, et al., Nano Energy 87 (2021) 106146.
doi: 10.1016/j.nanoen.2021.106146
C. Liang, H. Qiu, P. Song, et al., Sci. Bull. 65 (2020) 616–622.
doi: 10.1016/j.scib.2020.02.009
K. Petersen, P.V. Nielsen, G. Bertelsen, et al., Trends Food Sci. Technol. 10 (1999) 52–68.
doi: 10.1016/S0924-2244(99)00019-9
A. Biswas, I.S. Bayer, A.S. Biris, et al., Adv. Colloid Interface Sci. 170 (2012) 2–27.
doi: 10.1016/j.cis.2011.11.001
X. Li, M. Younas, M. Rezakazemi, Q.V. Ly, J. Li, Chin. Chem. Lett. 33 (2022) 3594–3602.
doi: 10.1016/j.cclet.2021.10.044
J. Ma, J. He, X. Kong, et al., Chin. Chem. Lett. 34 (2022) 107407.
N. Mittal, F. Ansari, K. Gowda, et al., ACS Nano 12 (2018) 6378–6388.
doi: 10.1021/acsnano.8b01084
Q.F. Guan, Z.M. Han, H.B. Yang, Z.C. Ling, S.H. Yu, Natl. Sci. Rev. 8 (2021) nwaa230.
doi: 10.1093/nsr/nwaa230
L. Liu, H. Li, A. Lazzaretto, et al., Renew. Sust. Energ. Rev. 69 (2017) 912–932.
doi: 10.1016/j.rser.2016.11.140
N.A. Nguyen, C.C. Bowland, A.K. Naskar, Appl. Mater. Today 12 (2018) 138–152.
doi: 10.1016/j.apmt.2018.03.009
A. Rath, B. Grisin, T.D. Pallicity, et al., Compos. Sci. Technol. 235 (2023) 109952.
doi: 10.1016/j.compscitech.2023.109952
Z. Zhu, W. Wang, Z. Liu, et al., Ind. Crops. Prod. 185 (2022) 115106.
doi: 10.1016/j.indcrop.2022.115106
C.B. Godiya, L.A.M. Ruotolo, W. Cai, J. Mater. Chem. A 8 (2020) 21585–21612.
doi: 10.1039/d0ta07028a
X. Huang, Y. Liu, X. Wang, et al., Int. J. Env. Pub. he. 19 (2022) 10897.
doi: 10.3390/ijerph191710897
S. Liu, X. Tian, X. Zhang, et al., Chin. Chem. Lett. 33 (2022) 2205–2211.
doi: 10.1016/j.cclet.2021.09.063
P. Mei, R. Wu, S. Shi, et al., Chem. Eng. J. 420 (2021) 130382.
doi: 10.1016/j.cej.2021.130382
Y. Hu, M. Shi, L. Liu, J. Yu, Y. Fan, Int. J. Biol. Macromol. 174 (2021) 162–174.
doi: 10.1016/j.ijbiomac.2021.01.159
G. Chen, T. Li, C. Chen, et al., ACS Nano 15 (2021) 11244–11252.
doi: 10.1021/acsnano.0c10117
W. Chao, S. Wang, Y. Li, et al., Chem. Eng. J. 400 (2020) 125865.
doi: 10.1016/j.cej.2020.125865
Y. Zhang, W. Cui, W. An, et al., Appl. Catal. B 221 (2018) 36–46.
doi: 10.1016/j.apcatb.2017.08.076
L. Huang, X. Huang, J. Yan, et al., J. Hazard. Mater. 442 (2023) 130024.
doi: 10.1016/j.jhazmat.2022.130024
M. Ghazaie, M. Ghiaci, S. Soleimanian Zad, S. Behzadi Teshnizi, J. Hazard. Mater. 371 (2019) 224–232.
doi: 10.1016/j.jhazmat.2019.03.003
H.D. Thi, S.Y. Kim, S.Y. Jung, et al., SSRN 31 (2023) 4394136.
H. Gu, C. Gao, X. Zhou, et al., Adv. Compos. Hybrid Mater. 4 (2021) 459–468.
doi: 10.1007/s42114-021-00289-y
H. Zhao, X.K. Ouyang, L.Y. Yang, J. Mol. Liq. 324 (2021) 115122.
doi: 10.1016/j.molliq.2020.115122
C.C. Wang, X. Wang, W. Liu, Chem. Eng. J. 391 (2020) 123601.
doi: 10.1016/j.cej.2019.123601
T. Meng, Z. Li, Z. Wan, et al., Chem. Eng. J. 452 (2023) 139193.
doi: 10.1016/j.cej.2022.139193
X. Niu, X. Li, Z. Lyu, et al., ChemComm 56 (2020) 11338–11353.
doi: 10.1039/d0cc04890a
W. Zhu, R. Michalsky, O.n. Metin, et al., J. Am. Chem. Soc. 135 (2013) 16833–16836.
doi: 10.1021/ja409445p
Z. Su, Y. Yang, Q. Huang, et al., Prog. Mater. Sci. 125 (2022) 100917.
doi: 10.1016/j.pmatsci.2021.100917
Z.U. Arif, M.Y. Khalid, M.F. Sheikh, A. Zolfagharian, M. Bodaghi, J. Environ. Chem. Eng. 10 (2022) 108159.
doi: 10.1016/j.jece.2022.108159
T. Wu, Y. Song, Z. Shi, et al., Nano Energy 80 (2021) 105541.
doi: 10.1016/j.nanoen.2020.105541
S.Y. Lu, M. Jin, Y. Zhang, et al., Adv. Energy Mater. 8 (2018) 1702545.
doi: 10.1002/aenm.201702545
Q. Lin, S. Liu, X. Wang, Y. Huang, W. Yu, Appl. Surf. Sci. 575 (2022) 151700.
doi: 10.1016/j.apsusc.2021.151700
W. Gan, C. Chen, M. Giroux, et al., Chem. Mater. 32 (2020) 5280–5289.
doi: 10.1021/acs.chemmater.0c01507
L. Gu, J. Han, M. Chen, et al., Energy Stor. Mater. 52 (2022) 547–561.
X. Han, W. Zhou, M. Chen, et al., J. Energy Chem. 67 (2022) 727–735.
doi: 10.1016/j.jechem.2021.11.021
Y. Wang, S. Hou, T. Li, et al., ACS Appl. Mater. Interfaces 12 (2020) 41896–41904.
doi: 10.1021/acsami.0c12868
J. Huang, D. Li, M. Zhao, et al., Chem. Eng. J. 373 (2019) 1357–1366.
doi: 10.1016/j.cej.2019.05.136
T. Lu, Y. Liu, X. Xu, et al., Sep. Purif. Technol. 256 (2021) 117771.
doi: 10.1016/j.seppur.2020.117771
X. Sheng, X. Xu, Y. Wu, et al., Bull. Chem. Soc. Jpn. 94 (2021) 1645–1650.
doi: 10.1246/bcsj.20210029
C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G. Guo, Energy Environ. Sci. 7 (2014) 2831–2867.
doi: 10.1039/C4EE01299B
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Tianyi Hou , Yunhui Huang , Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313
Yuehai Zhi , Chen Gu , Huachao Ji , Kang Chen , Wenqi Gao , Jianmei Chen , Dafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234
Juhong Zhou , Hui Zhao , Ping Han , Ziyue Wang , Yan Zhang , Xiaoxia Mao , Konglin Wu , Shengjue Deng , Wenxiang He , Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Jingxuan Liu , Shiqi Zhao , Xiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059
Zhiqing Ge , Zuxiong Pan , Shuo Yan , Baoying Zhang , Xiangyu Shen , Mozhen Wang , Xuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850
Min LUO , Xiaonan WANG , Yaqin ZHANG , Tian PANG , Fuzhi LI , Pu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277
Aolei Tan , Xiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276
Tianze Wang , Junyi Ren , Dongxiang Zhang , Huan Wang , Jianjun Du , Xin-Dong Jiang , Guiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862
Chang Liu , Zirui Song , Xinglan Deng , Shihong Xu , Renji Zheng , Wentao Deng , Hongshuai Hou , Guoqiang Zou , Xiaobo Ji . Interfacial/bulk synergetic effects accelerating charge transferring for advanced lithium-ion capacitors. Chinese Chemical Letters, 2024, 35(6): 109081-. doi: 10.1016/j.cclet.2023.109081
Shili Wang , Mamitiana Roger Razanajatovo , Xuedong Du , Shunli Wan , Xin He , Qiuming Peng , Qingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139