Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes
-
* Corresponding author.
E-mail address: xiacf@ynu.edu.cn (C. Xia).
Citation:
Lei Shen, Yang Zhang, Linlin Zhang, Chuanwang Liu, Zhixian Ma, Kangjiang Liang, Chengfeng Xia. Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes[J]. Chinese Chemical Letters,
;2024, 35(4): 108742.
doi:
10.1016/j.cclet.2023.108742
H. Wang, Y.M. Tian, B. König, Nat. Rev. Chem. 6 (2022) 745–755.
doi: 10.1038/s41570-022-00421-6
K.P. Shing Cheung, S. Sarkar, V. Gevorgyan, Chem. Rev. 122 (2022) 1543–1625.
doi: 10.1021/acs.chemrev.1c00403
S.L. Meng, C. Ye, X.B. Li, C.H. Tung, L.Z. Wu, J. Am. Chem. Soc. 144 (2022) 16219–16231.
doi: 10.1021/jacs.2c02341
Y.Z. Cheng, Z. Feng, X. Zhang, S.L. You, Chem. Soc. Rev. 51 (2022) 2145–2170.
doi: 10.1039/c9cs00311h
F.D. Lu, J. Chen, X. Jiang, et al., Chem. Soc. Rev. 50 (2021) 12808–12827.
doi: 10.1039/d1cs00210d
J.D. Bell, J.A. Murphy, Chem. Soc. Rev. 50 (2021) 9540–9685.
doi: 10.1039/d1cs00311a
G.E.M. Crisenza, D. Mazzarella, P. Melchiorre, J. Am. Chem. Soc. 142 (2020) 5461–5476.
doi: 10.1021/jacs.0c01416
L. Marzo, S.K. Pagire, O. Reiser, B. König, Angew. Chem. Int. Ed. 57 (2018) 10034–10072.
doi: 10.1002/anie.201709766
J.R. Chen, X.Q. Hu, L.Q. Lu, W.J. Xiao, Acc. Chem. Res. 49 (2016) 1911–1923.
doi: 10.1021/acs.accounts.6b00254
D.M. Schultz, T.P. Yoon, Science 343 (2014) 985.
S.P. Pitre, L.E. Overman, Chem. Rev. 122 (2022) 1717–1751.
doi: 10.1021/acs.chemrev.1c00247
N. Holmberg-Douglas, D.A. Nicewicz, Chem. Rev. 122 (2022) 1925–2016.
doi: 10.1021/acs.chemrev.1c00311
A. Hossain, A. Bhattacharyya, O. Reiser, Science 364 (2019) eaav9713.
doi: 10.1126/science.aav9713
K.L. Skubi, T.R. Blum, T.P. Yoon, Chem. Rev. 116 (2016) 10035–10074.
doi: 10.1021/acs.chemrev.6b00018
M.H. Shaw, J. Twilton, D.W.C. MacMillan, J. Org. Chem. 81 (2016) 6898–6926.
doi: 10.1021/acs.joc.6b01449
N.A. Romero, D.A. Nicewicz, Chem. Rev. 116 (2016) 10075–10166.
doi: 10.1021/acs.chemrev.6b00057
C.K. Prier, D.A. Rankic, D.W.C. MacMillan, Chem. Rev. 113 (2013) 5322–5363.
doi: 10.1021/cr300503r
H.Y. Song, Z.T. Zhang, H.Y. Tan, et al., Asian J. Org. Chem. 12 (2023) e202200658.
doi: 10.1002/ajoc.202200658
D. Yang, Q. Yan, E. Zhu, J. Lv, W.M. He, Chin. Chem. Lett. 33 (2022) 1798–1816.
doi: 10.1016/j.cclet.2021.09.068
N. Meng, Y. Lv, Q. Liu, R. Liu, X. Zhao, et al., Chin. Chem. Lett. 32 (2021) 258–262.
doi: 10.1016/j.cclet.2020.11.034
Q.W. Gui, F. Teng, P. Yu, et al., Chin. J. Catal. 44 (2023) 111–116.
doi: 10.1016/S1872-2067(22)64162-7
M.A. Fox, Chem. Rev. 79 (1979) 253–273.
doi: 10.1021/cr60319a002
L.M. Tolbert, Acc. Chem. Res. 19 (1986) 268–273.
doi: 10.1021/ar00129a002
E. Krogh, P. Wan, Top. Curr. Chem. 156 (1990) 93–116.
doi: 10.1007/3-540-52379-0_4
J.P. Soumillion, Top. Curr. Chem. 168 (1993) 93–141.
doi: 10.1007/3-540-56746-1_9
M. Schmalzbauer, M. Marcon, B. König, Angew. Chem. Int. Ed. 60 (2021) 6270–6292.
doi: 10.1002/anie.202009288
E. Hasegawa, N. Izumiya, T. Miura, et al., J. Org. Chem. 83 (2018) 3921–3927.
doi: 10.1021/acs.joc.8b00282
E. Hasegawa, Y. Nagakura, N. Izumiya, et al., J. Org. Chem. 83 (2018) 10813–10825.
doi: 10.1021/acs.joc.8b01536
Q. Wang, M. Poznik, M. Li, P.J. Walsh, J.J. Chruma, Adv. Synth. Catal. 360 (2018) 2854–2868.
doi: 10.1002/adsc.201800396
G. Filippini, M. Nappi, P. Melchiorre, Tetrahedron 71 (2015) 4535–4542.
doi: 10.1016/j.tet.2015.02.034
M. Schmalzbauer, I. Ghosh, B. König, Faraday Discuss. 215 (2019) 364–378.
doi: 10.1039/c8fd00176f
M. Schmalzbauer, T.D. Svejstrup, F. Fricke, et al., Chem 6 (2020) 2658–2672.
doi: 10.1016/j.chempr.2020.08.022
K. Liang, Q. Liu, L. Shen, et al., Chem. Sci. 11 (2020) 6996–7002.
doi: 10.1039/d0sc02160a
D. Wei, X. Li, L. Shen, et al., Org. Chem. Front. 8 (2021) 6364–6370.
doi: 10.1039/d1qo01128f
K. Liang, X. Li, D. Wei, et al., Chem 9 (2023) 511–522.
doi: 10.1016/j.chempr.2022.11.001
Z. Liu, P. Sivaguru, G. Zanoni, X. Bi, Acc. Chem. Res. 55 (2022) 1763–1781.
doi: 10.1021/acs.accounts.2c00186
D. Zhu, L. Chen, H. Fan, Q. Yao, S. Zhu, Chem. Soc. Rev. 49 (2020) 908–950.
doi: 10.1039/c9cs00542k
P. Xu, W. Li, J. Xie, C. Zhu, Acc. Chem. Res. 51 (2018) 484–495.
doi: 10.1021/acs.accounts.7b00565
Y. Xia, J. Wang, Chem. Soc. Rev. 46 (2017) 2306–2362.
doi: 10.1039/C6CS00737F
L.A. Tatum, X. Su, I. Aprahamian, Acc. Chem. Res. 47 (2014) 2141–2149.
doi: 10.1021/ar500111f
A.R. Katritzky, L. Huang, M. Chahar, R. Sakhuja, C.D. Hall, Chem. Rev. 112 (2012) 1633–1649.
doi: 10.1021/cr200076q
R. Lazny, A. Nodzewska, Chem. Rev. 110 (2010) 1386–1434.
doi: 10.1021/cr900067y
M. Sugiura, S. Kobayashi, Angew. Chem. Int. Ed. 44 (2005) 5176–5186.
doi: 10.1002/anie.200500691
W.R. Bamford, T.S. Stevens, J. Chem. Soc. (1952) 4735–4740.
doi: 10.1039/JR9520004735(1952)4735–4740
P. Humphries, Bamford-Stevens reaction, in: J.J. Li (Ed.), Name Reactions for Homologations, John Wiley & Sons, Inc., 2009, pp. 642–652.
A.J. Clark, C.S. Guy, Reduction of Ketones to Alkenes, in: P. Knochel, G.A. Molander (Eds.), Comprehensive Organic Synthesis, 2nd Edition, Elsevier B.V., 2014, pp. 1143–1163.
M. Ghavre, Asian J. Org. Chem. 9 (2020) 1901–1923.
doi: 10.1002/ajoc.202000336
S. Wang, B. König, Angew. Chem., Int. Ed. 60 (2021) 21624–21634.
doi: 10.1002/anie.202105469
X.Y. Yu, Q.Q. Zhao, J. Chen, W.J. Xiao, J.R. Chen, Acc. Chem. Res. 53 (2020) 1066–1083.
doi: 10.1021/acs.accounts.0c00090
M. Latrache, N. Hoffmann, Chem. Soc. Rev. 50 (2021) 7418–7435.
doi: 10.1039/d1cs00196e
T. Zhang, Y. Meng, J. Lu, et al., Adv. Synth. Catal. 360 (2018) 3063–3068.
doi: 10.1002/adsc.201701200
B. Sai Allaka, S. Basavoju, G.R. Krishna, Adv. Synth. Catal. 363 (2021) 3560–3565.
doi: 10.1002/adsc.202100321
P. Pan, S. Liu, Y. Lan, H. Zeng, C.J. Li, Chem. Sci. 13 (2022) 7165–7171.
doi: 10.1039/d2sc01909d
E.S. Isbrandt, A. Nasim, K. Zhao, S.G. Newman, J. Am. Chem. Soc. 143 (2021) 14646–14656.
doi: 10.1021/jacs.1c05661
L. Wang, T. Wang, G.J. Cheng, et al., ACS Catal. 10 (2020) 7543–7551.
doi: 10.1021/acscatal.0c02105
J.K. Vandavasi, X. Hua, H.B. Halima, S.G. Newman, Angew. Chem. Int. Ed. 56 (2017) 15441–15445.
doi: 10.1002/anie.201710241
A. Bhattacharjya, P. Klumphu, B.H. Lipshutz, Nat. Commun. 6 (2015) 7401.
doi: 10.1038/ncomms8401
S. Ko, B. Kang, S. Chang, Angew. Chem. Int. Ed. 44 (2005) 455–457.
doi: 10.1002/anie.200462006
M. Silvi, E. Arceo, I.D. Jurberg, C. Cassani, P. Melchiorre, J. Am. Chem. Soc. 137 (2015) 6120–6123.
doi: 10.1021/jacs.5b01662
A. Bahamonde, P. Melchiorre, J. Am. Chem. Soc. 138 (2016) 8019–8030.
doi: 10.1021/jacs.6b04871
K. Liang, N. Li, Y. Zhang, T. Li, C. Xia, Chem. Sci. 10 (2019) 3049–3053.
doi: 10.1039/c8sc05170d
M. Liang, Z.Y. Wang, L. Zhang, et al., Renew. Energy 36 (2011) 2711–2716.
doi: 10.1016/j.renene.2011.03.003
L. Pause, M. Robert, J.M. Savéant, J. Am. Chem. Soc. 121 (1999) 7158–7159.
doi: 10.1021/ja991365q
H. Li, R.Y. Zhu, W.J. Shi, K.H. He, Z.J. Shi, Org. Lett. 14 (2012) 4850–4853.
doi: 10.1021/ol302181z
C. Zhang, T. Li, L. Wang, Y. Rao, Org. Chem. Front. 4 (2017) 386–391.
doi: 10.1039/C6QO00522E
M. Kojima, K. Oisaki, M. Kanai, Chem. Commun. 51 (2015) 9718–9721.
doi: 10.1039/C5CC02349A
W. Guo, L.Q. Lu, Y. Wang, et al., Angew. Chem. Int. Ed. 54 (2015) 2265–2269.
doi: 10.1002/anie.201408837
Y. Iwata, Y. Tanaka, S. Kubosaki, T. Morita, Y. Yoshimi, Chem. Commun. 54 (2018) 1257–1260.
doi: 10.1039/C7CC09140K
S.J. Kwon, H.I. Jung, D.Y. Kim, ChemistrySelect 3 (2018) 5824–5827.
doi: 10.1002/slct.201801431
P. Bellotti, M. Koy, C. Gutheil, S. Heuvel, F. Glorius, Chem. Sci. 12 (2021) 1810–1817.
doi: 10.1039/d0sc05551d
T. Tezuka, S. Ando, Chem. Lett. 14 (1985) 1621–1624.
doi: 10.1246/cl.1985.1621
F. Sparatore, R. Cerri, J. Heterocycl. Chem. 16 (1979) 1001–1003.
doi: 10.1002/jhet.5570160533
K. Livingstone, S. Bertrand, J. Mowat, C. Jamieson, Chem. Sci. 10 (2019) 10412–10416.
doi: 10.1039/c9sc03032h
M.A. Cismesia, T.P. Yoon, Chem. Sci. 6 (2015) 5426–5434.
doi: 10.1039/C5SC02185E
Lang Gao , Cen Zhou , Rui Wang , Feng Lan , Bohang An , Xiaozhou Huang , Xiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832
Teng Wang , Jiachun Cao , Juan Li , Didi Li , Zhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078
Yi Liu , Zhe-Hao Wang , Guan-Hua Xue , Lin Chen , Li-Hua Yuan , Yi-Wen Li , Da-Gang Yu , Jian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138
Qinghong Zhang , Qiao Zhao , Xiaodi Wu , Li Wang , Kairui Shen , Yuchen Hua , Cheng Gao , Yu Zhang , Mei Peng , Kai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Sixiao Liu , Tianyi Wang , Lei Zhang , Chengyin Wang , Huan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058
Yanrui Liu , Paramaguru Ganesan , Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369
Haowen Shang , Yujie Yang , Bingjie Xue , Yikai Wang , Zhiyi Su , Wenlong Liu , Youzhi Wu , Xinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511
Xiangan Song , Shaogang Shen , Mengyao Lu , Ying Wang , Yong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118
Xuhui Fan , Fan Wang , Mengjiao Li , Faiza Meharban , Yaying Li , Yuanyuan Cui , Xiaopeng Li , Jingsan Xu , Qi Xiao , Wei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299
Yan Fan , Jiao Tan , Cuijuan Zou , Xuliang Hu , Xing Feng , Xin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
Zhen Zhang , Xue-ling Chen , Xiu-Mei Xie , Tian-Yu Gao , Jing Qin , Jun-Jie Li , Chao Feng , Da-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473
Xin Wang , Changzhao Chen , Qishen Wang , Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473
Rong-Nan Yi , Wei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632