Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia
-
* Corresponding authors.
E-mail addresses: chemwhy@zjnu.edu.cn (H. Wang), yonghu@zjnu.edu.cn (Y. Hu).
Citation:
Sajid Mahmood, Haiyan Wang, Fang Chen, Yijun Zhong, Yong Hu. Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia[J]. Chinese Chemical Letters,
;2024, 35(4): 108550.
doi:
10.1016/j.cclet.2023.108550
T. Xu, B. Ma, J. Liang, et al., Acta Phys. Chim. Sin. 37 (2021) 2009043.
G. Qing, R. Ghazfar, S.T. Jackowski, et al., Chem. Rev. 120 (2020) 5437–5516.
doi: 10.1021/acs.chemrev.9b00659
X. Li, G. Zhang, P. Shen, X. Zhao, K. Chu, Inorg. Chem. Front. 10 (2023) 280–287.
doi: 10.1039/d2qi02118h
W. Song, J. Wang, L. Fu, et al., Chin. Chem. Lett. 32 (2021) 3137–3142.
doi: 10.1016/j.cclet.2021.02.043
Q. Liu, T. Xu, Y. Luo, et al., Curr. Opin. Electrochem. 29 (2021) 100766.
doi: 10.1016/j.coelec.2021.100766
C. Smith, A.K. Hill, L. Torrente-Murciano, Energy Environ. Sci. 13 (2020) 331–344.
doi: 10.1039/c9ee02873k
A. Klerke, C.H. Christensen, J.K. Nørskov, T. Vegge, J. Mater. Chem. 18 (2008) 2304–2310.
doi: 10.1039/b720020j
J. Liang, Q. Liu, A.A. Alshehri, X. Sun, Nano Res. Energy 1 (2022) e9120010.
doi: 10.26599/nre.2022.9120010
Y. Tan, L. Yan, C. Huang, et al., Small 17 (2021) 2100372.
doi: 10.1002/smll.202100372
S. Licht, B. Cui, B. Wang, et al., Science 345 (2014) 637–640.
doi: 10.1126/science.1254234
R. Shi, X. Zhang, G.I. Waterhouse, Y. Zhao, T. Zhang, Adv. Energy Mater. 10 (2020) 2000659.
doi: 10.1002/aenm.202000659
Y. Luo, P. Shen, X. Li, Y. Guo, K. Chu, Nano Res. 15 (2022) 3991–3999.
doi: 10.1007/s12274-022-4097-9
J. Kibsgaard, J.K. Nørskov, I. Chorkendorff, ACS Energy Lett. 4 (2019) 2986–2988.
doi: 10.1021/acsenergylett.9b02286
B.H. Suryanto, H.L. Du, D. Wang, et al., Nat. Catal. 2 (2019) 290–296.
doi: 10.1038/s41929-019-0252-4
J.H. Montoya, C. Tsai, A. Vojvodic, J.K. Nørskov, ChemSusChem 8 (2015) 2180–2186.
doi: 10.1002/cssc.201500322
N. Cao, G. Zheng, Nano Res. 11 (2018) 2992–3008.
doi: 10.1007/s12274-018-1987-y
C.J. van der Ham, M.T. Koper, D.G. Hetterscheid, Chem. Soc. Rev. 43 (2014) 5183–5191.
doi: 10.1039/C4CS00085D
J. Hou, M. Yang, J. Zhang, Nanoscale 12 (2020) 6900–6920.
doi: 10.1039/d0nr00412j
H. Xu, K. Ithisuphalap, Y. Li, et al., Nano Energy 69 (2020) 104469.
doi: 10.1016/j.nanoen.2020.104469
D. Ma, Z. Zeng, L. Liu, Y. Jia, J. Energy Chem. 54 (2021) 501–509.
doi: 10.1016/j.jechem.2020.06.032
D. Ma, Z. Zeng, L. Liu, X. Huang, Y. Jia, J. Phys. Chem. C 123 (2019) 19066–19076.
doi: 10.1021/acs.jpcc.9b05250
Q. Wang, J. Guo, P. Chen, J. Energy Chem. 36 (2019) 25–36.
doi: 10.30564/jams.v2i2.514
J. Yang, W. Weng, W. Xiao, J. Energy Chem. 43 (2020) 195–207.
doi: 10.1016/j.jechem.2019.09.006
H.P. Jia, E.A. Quadrelli, Chem. Soc. Rev. 43 (2014) 547–564.
doi: 10.1039/C3CS60206K
J. Deng, J.A. Iñiguez, C. Liu, Joule 2 (2018) 846–856.
doi: 10.1016/j.joule.2018.04.014
X. Cui, C. Tang, Q. Zhang, Adv. Energy Mater. 8 (2018) 1800369.
doi: 10.1002/aenm.201800369
D.D. Wagman, W.H. Evans, V.B. Parker, et al., J. Phys. Chem. Ref. Data 18 (1989) 1807–1812.
doi: 10.1063/1.555845
N. Bauer, J. Phys. Chem. 64 (1960) 833–837.
doi: 10.1021/j100836a001
M.T. Koper, Chem. Sci. 4 (2013) 2710–2723.
doi: 10.1039/c3sc50205h
D.E. Brown, T. Edmonds, R.W. Joyner, J.J. McCarroll, S.R. Tennison, Catal. Lett. 144 (2014) 545–552.
doi: 10.1007/s10562-014-1226-4
G.F. Chen, S. Ren, L. Zhang, et al., Small Methods 3 (2019) 1800337.
doi: 10.1002/smtd.201800337
Y. Ren, C. Yu, X. Tan, et al., Energy Environ. Sci. 14 (2021) 1176–1193.
doi: 10.1039/d0ee03596c
D.R. MacFarlane, P.V. Cherepanov, J. Choi, et al., Joule 4 (2020) 1186–1205.
doi: 10.1016/j.joule.2020.04.004
L. Suo, O. Borodin, T. Gao, et al., Science 350 (2015) 938–943.
doi: 10.1126/science.aab1595
L. Hu, Z. Xing, X. Feng, ACS Energy Lett. 5 (2020) 430–436.
doi: 10.1021/acsenergylett.9b02679
A.R. Singh, B.A. Rohr, J.A. Schwalbe, et al., ACS Catal. 7 (2017) 706–709.
doi: 10.1021/acscatal.6b03035
C. Tang, S.Z. Qiao, Chem. Soc. Rev. 48 (2019) 3166–3180.
doi: 10.1039/c9cs00280d
Y.C. Hao, Y. Guo, L.W. Chen, et al., Nat. Catal. 2 (2019) 448–456.
doi: 10.1038/s41929-019-0241-7
Y. Ren, C. Yu, X. Tan, et al., Small Methods 3 (2019) 1900474.
doi: 10.1002/smtd.201900474
H. Tao, C. Lian, H. Jiang, et al., AIChE J. 68 (2022) e17549.
doi: 10.1002/aic.17549
O. Westhead, M. Spry, A. Bagger, et al., J. Mater. Chem. A 11 (2023) 12746—12758.
doi: 10.1039/D2TA07686A
E. Skúlason, T. Bligaard, S. Gudmundsdóttir, et al., Phys. Chem. Chem. Phys. 14 (2012) 1235–1245.
doi: 10.1039/C1CP22271F
J.G. Howalt, T. Bligaard, J. Rossmeisl, T. Vegge, Phys. Chem. Chem. Phys. 15 (2013) 7785–7795.
doi: 10.1039/c3cp44641g
M.C. Leech, K. Lam, Nat. Rev. Chem. 6 (2022) 275–286.
doi: 10.1038/s41570-022-00372-y
L.V. Haynes, D.T. Sawyer, Anal. Chem. 39 (1967) 332–338.
doi: 10.1021/ac60247a013
R. Zhang, X. Ren, X. Shi, et al., ACS Appl. Mater. Interfaces 10 (2018) 28251–28255.
doi: 10.1021/acsami.8b06647
Z. Wang, F. Gong, L. Zhang, et al., Adv. Sci. 6 (2019) 1801182.
doi: 10.1002/advs.201801182
L. Zhang, X. Ji, X. Ren, et al., Adv. Mater. 30 (2018) 1800191.
doi: 10.1002/adma.201800191
Y. Zhang, W. Qiu, Y. Ma, et al., ACS Catal. 8 (2018) 8540–8544.
doi: 10.1021/acscatal.8b02311
X. Zhang, Q. Liu, X. Shi, et al., J. Mater. Chem. A 6 (2018) 17303–17306.
doi: 10.1039/c8ta05627g
X. Xiang, Z. Wang, X. Shi, M. Fan, X. Sun, ChemCatChem 10 (2018) 4530–4535.
doi: 10.1002/cctc.201801208
X. Li, T. Li, Y. Ma, et al., Adv. Energy Mater. 8 (2018) 1801357.
doi: 10.1002/aenm.201801357
Q. Liu, X. Zhang, B. Zhang, et al., Nanoscale 10 (2018) 14386–14389.
doi: 10.1039/C8NR04524K
M. Nazemi, S.R. Panikkanvalappil, M.A. El-Sayed, Nano Energy 49 (2018) 316–323.
doi: 10.1016/j.nanoen.2018.04.039
X. Zhu, Z. Liu, Q. Liu, et al., Chem. Commun. 54 (2018) 11332–11335.
doi: 10.1039/c8cc06366d
V. Kordali, G. Kyriacou, C. Lambrou, Chem. Commun. (2000) 1673–1674.
D. Yang, T. Chen, Z. Wang, J. Mater. Chem. A 5 (2017) 18967–18971.
doi: 10.1039/C7TA06139K
X. Ren, G. Cui, L. Chen, et al., Chem. Commun. 54 (2018) 8474–8477.
doi: 10.1039/c8cc03627f
B.H. Suryanto, D. Wang, L.M. Azofra, et al., ACS Energy Lett. 4 (2018) 430–435.
C. Lv, C. Yan, G. Chen, et al., Angew. Chem. 130 (2018) 6181–6184.
doi: 10.1002/ange.201801538
Y. Liu, Y. Su, X. Quan, et al., ACS Catal. 8 (2018) 1186–1191.
doi: 10.1021/acscatal.7b02165
W. Qiu, X.Y. Xie, J. Qiu, et al., Nat. Commun. 9 (2018) 1–8.
doi: 10.1038/s41467-017-02088-w
J. Han, Z. Liu, Y. Ma, et al., Nano Energy 52 (2018) 264–270.
doi: 10.1016/j.nanoen.2018.07.045
H. Du, X. Guo, R.M. Kong, F. Qu, Chem. Commun. 54 (2018) 12848–12851.
doi: 10.1039/c8cc07186a
M.M. Shi, D. Bao, B.R. Wulan, et al., Adv. Mater. 29 (2017) 1606550.
doi: 10.1002/adma.201606550
S.J. Li, D. Bao, M.M. Shi, et al., Adv. Mater. 29 (2017) 1700001.
doi: 10.1002/adma.201700001
L. Zhang, X. Ji, X. Ren, et al., ACS Sustain. Chem. Eng. 6 (2018) 9550–9554.
doi: 10.1021/acssuschemeng.8b01438
K. Kugler, M. Luhn, J.A. Schramm, K. Rahimi, M. Wessling, Phys. Chem. Chem. Phys. 17 (2015) 3768–3782.
doi: 10.1039/C4CP05501B
Z. Wang, Y. Li, H. Yu, et al., ChemSusChem 11 (2018) 3480–3485.
doi: 10.1002/cssc.201801444
D. Bao, Q. Zhang, F.L. Meng, et al., Adv. Mater. 29 (2017) 1604799.
doi: 10.1002/adma.201604799
S. Mukherjee, D.A. Cullen, S. Karakalos, et al., Nano Energy 48 (2018) 217–226.
doi: 10.1016/j.nanoen.2018.03.059
S. Chen, S. Perathoner, C. Ampelli, et al., ACS Sustain. Chem. Eng. 5 (2017) 7393–7400.
doi: 10.1021/acssuschemeng.7b01742
W. Guo, Z. Liang, J. Zhao, et al., Small Methods 2 (2018) 1800204.
doi: 10.1002/smtd.201800204
H. Ma, Z. Chen, Z. Wang, Nanoscale 13 (2021) 1717–1722.
doi: 10.1039/d0nr07362h
M. Nazemi, M.A. El-Sayed, J. Phys. Chem. Lett. 9 (2018) 5160–5166.
doi: 10.1021/acs.jpclett.8b02188
J. Wang, L. Yu, L. Hu, et al., Nat. Commun. 9 (2018) 1795.
doi: 10.1038/s41467-018-04213-9
S. Mukherjee, X. Yang, W. Shan, et al., Small Methods 4 (2020) 1900821.
doi: 10.1002/smtd.201900821
H. Zhu, X. Ren, X. Yang, et al., SusMat 2 (2022) 214–242.
doi: 10.1002/sus2.70
M. Wang, S. Liu, T. Qian, et al., Nat. Commun. 10 (2019) 341.
doi: 10.1038/s41467-018-08120-x
F. Lü, S. Zhao, R. Guo, et al., Nano Energy 61 (2019) 420–427.
doi: 10.1016/j.nanoen.2019.04.092
L. Hu, A. Khaniya, J. Wang, et al., ACS Catal. 8 (2018) 9312–9319.
doi: 10.1021/acscatal.8b02585
L. Zeng, X. Li, S. Chen, et al., J. Mater. Chem. A 8 (2020) 7339–7349.
doi: 10.1039/c9ta13336d
X. Yi, X. He, F. Yin, et al., J. Mater. Sci. 55 (2020) 12041–12052.
doi: 10.1007/s10853-020-04777-2
Y. Yan, H. Qu, X. Zheng, et al., Chin. Chem. Lett. 33 (2022) 4655–4658.
doi: 10.1016/j.cclet.2021.12.054
X. Zheng, Y. Liu, Y. Yan, X. Li, Y. Yao, Chin. Chem. Lett. 33 (2022) 1455–1458.
doi: 10.1016/j.cclet.2021.08.102
H. Chen, J. Liang, K. Dong, et al., Inorg. Chem. Front. 9 (2022) 1514–1519.
doi: 10.1039/d2qi00140c
Z. Wang, K. Zheng, S. Liu, et al., ACS Sustain. Chem. Eng. 7 (2019) 11754–11759.
doi: 10.1021/acssuschemeng.9b01991
X. Li, L. Li, X. Ren, et al., Ind. Eng. Chem. Res. 57 (2018) 16622–16627.
doi: 10.1021/acs.iecr.8b04045
Y. Song, D. Johnson, R. Peng, et al., Sci. Adv. 4 (2018) e1700336.
doi: 10.1126/sciadv.1700336
Q. Zhang, B. Liu, L. Yu, Y. Bei, B. Tang, ChemCatChem 12 (2020) 334–341.
doi: 10.1002/cctc.201901519
H. Cheng, L.X. Ding, G.F. Chen, et al., Adv. Mater. 30 (2018) 1803694.
doi: 10.1002/adma.201803694
J. Han, X. Ji, X. Ren, et al., J. Mater. Chem. A 6 (2018) 12974–12977.
doi: 10.1039/C8TA03974G
X. Zhang, R.M. Kong, H. Du, L. Xia, F. Qu, Chem. Commun. 54 (2018) 5323–5325.
doi: 10.1039/c8cc00459e
Q. Liu, Y. Lin, S. Gu, et al., Nano Res. 15 (2022) 7134–7138.
doi: 10.1007/s12274-022-4568-z
H.J. Chen, Z.Q. Xu, S. Sun, et al., Inorg. Chem. Front. 9 (2022) 4608–4613.
doi: 10.1039/d2qi01173e
H. Chen, J. Liang, L. Li, et al., ACS Appl. Mater. Interfaces 13 (2021) 41715–41722.
doi: 10.1021/acsami.1c11872
C. Lv, Y. Qian, C. Yan, et al., Angew. Chem. 130 (2018) 10403–10407.
doi: 10.1002/ange.201806386
X. Yu, P. Han, Z. Wei, et al., Joule 2 (2018) 1610–1622.
doi: 10.1016/j.joule.2018.06.007
Y.Q. Liu, L. Huang, Y. Fang, et al., ACS Appl. Mater. Interfaces 14 (2022) 12304–12313.
doi: 10.1021/acsami.1c25240
W. Ye, H. Wang, J. Ning, Y. Zhong, Y. Hu, J. Energy Chem. 57 (2021) 219–232.
doi: 10.1016/j.jechem.2020.09.016
J. Thompson, G. Morrison, Anal. Chem. 23 (1951) 1153–1157.
doi: 10.1021/ac60056a029
T. Ali, H. Wang, W. Iqbal, et al., Adv. Sci. 10 (2023) 2205077.
doi: 10.1002/advs.202205077
S.H. Yuen, A.G. Pollard, J. Sci. Food Agric. 3 (1952) 441–447.
doi: 10.1002/jsfa.2740031002
L. Zhou, C.E. Boyd, Aquaculture 450 (2016) 187–193.
doi: 10.1016/j.aquaculture.2015.07.022
M. Wang, S. Liu, H. Ji, et al., Nat. Commun. 12 (2021) 3198.
doi: 10.1038/s41467-021-23360-0
P. Shen, X. Li, Y. Luo, et al., ACS Nano 16 (2022) 7915–7925.
doi: 10.1021/acsnano.2c00596
Y. Ren, C. Yu, X. Tan, et al., Energy Environ. Sci. 15 (2022) 2776–2805.
doi: 10.1039/d2ee00358a
Y. Ren, C. Yu, X. Song, et al., J. Mater. Chem. A 9 (2021) 13036–13043.
doi: 10.1039/d1ta02681j
C.M. Gabardo, A. Seifitokaldani, J.P. Edwards, et al., Energy Environ. Sci. 11 (2018) 2531–2539.
doi: 10.1039/c8ee01684d
B.H. Suryanto, C.S. Kang, D. Wang, et al., ACS Energy Lett. 3 (2018) 1219–1224.
doi: 10.1021/acsenergylett.8b00487
F. Zhou, L.M. Azofra, M. Ali, et al., Energy Environ. Sci. 10 (2017) 2516–2520.
doi: 10.1039/C7EE02716H
F. Köleli, T. Röpke, App. Catal. B: Environ. 62 (2006) 306–310.
doi: 10.1016/j.apcatb.2005.08.006
K. Kim, N. Lee, C.Y. Yoo, et al., J. Electrochem. Soc. 163 (2016) F610.
doi: 10.1149/2.0231607jes
K. Kim, C.Y. Yoo, J.N. Kim, H.C. Yoon, J.I. Han, J. Electrochem. Soc. 163 (2016) F1523.
doi: 10.1149/2.0741614jes
Y. Ren, C. Yu, X. Han, et al., ACS Energy Lett. 6 (2021) 3844–3850.
doi: 10.1021/acsenergylett.1c01893
H.K. Lee, C.S.L. Koh, Y.H. Lee, et al., Sci. Adv. 4 (2018) eaar3208.
doi: 10.1126/sciadv.aar3208
A. Gennaro, A.A. Isse, M.G. Severin, et al., J. Chem. Soc. Faraday Trans. 92 (1996) 3963–3968.
doi: 10.1039/FT9969203963
S. Malkhandi, B. Yang, A.K. Manohar, G.K.S. Prakash, S.R. Narayanan, J. Am. Chem. Soc. 135 (2013) 347–353.
doi: 10.1021/ja3095119
M.N. Jackson, Y. Surendranath, J. Am. Chem. Soc. 138 (2016) 3228–3234.
doi: 10.1021/jacs.6b00167
A. Gorodyskii, V. Danilin, O. Efimov, N. Nechaeva, V. Tsarev, React. Kinet. Catal. Lett. 11 (1979) 337–342.
doi: 10.1007/BF02079722
A. Tsuneto, A. Kudo, T. Sakata, Chem. Lett. 22 (1993) 851–854.
doi: 10.1246/cl.1993.851
J.L. Ma, D. Bao, M.M. Shi, J.M. Yan, X.B. Zhang, Chem 2 (2017) 525–532.
doi: 10.1016/j.chempr.2017.03.016
S. Stevanovic, M.F. Costa Gomes, J. Chem. Thermodyn. 59 (2013) 65–71.
doi: 10.1016/j.jct.2012.11.010
H.L. Du, M. Chatti, R.Y. Hodgetts, et al., Nature 609 (2022) 722–727.
doi: 10.1038/s41586-022-05108-y
Hong-Rui Li , Xia Kang , Rui Gao , Miao-Miao Shi , Bo Bi , Ze-Yu Chen , Jun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958
Haijiao Liu , Qiao Feng , Yu Huang , Feng Wu , Yali Liu , Minxia Shen , Xiao Guo , Wenting Dai , Weining Qi , Yifan Zhang , Lu Li , Qiyuan Wang , Bianhong Zhou , Jianjun Li . Composition and size distribution of wintertime inorganic aerosols at ground and alpine regions of northwest China. Chinese Chemical Letters, 2024, 35(11): 109636-. doi: 10.1016/j.cclet.2024.109636
Ying Chen , Xingyuan Xia , Lei Tian , Mengying Yin , Ling-Ling Zheng , Qian Fu , Daishe Wu , Jian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382
Xue Xin , Qiming Qu , Islam E. Khalil , Yuting Huang , Mo Wei , Jie Chen , Weina Zhang , Fengwei Huo , Wenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654
Hang Wang , Qi Wang , Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437
Mengjun Sun , Zhi Wang , Jvhui Jiang , Xiaobing Wang , Chuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Jia-hui Li , Jinkai Qiu , Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381
Linjing Li , Wenlai Xu , Jianyong Ning , Yaping Zhong , Chuyue Zhang , Jiane Zuo , Zhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Zhe Wang , Li-Peng Hou , Qian-Kui Zhang , Nan Yao , Aibing Chen , Jia-Qi Huang , Xue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570
Chuyuan Lin , Hui Lin , Lingxing Zeng . Optimization strategy for rechargeable Zn metal batteries over wide-pH aqueous electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100407-100407. doi: 10.1016/j.cjsc.2024.100407
Zhen-Zhen Dong , Jin-Hao Zhang , Lin Zhu , Xiao-Zhong Fan , Zhen-Guo Liu , Yi-Bo Yan , Long Kong . Attenuating reductive decomposition of fluorinated electrolytes for high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(4): 109773-. doi: 10.1016/j.cclet.2024.109773
Chunqing Ou , Meijia Xiao , Xinyue Zheng , Xianzhou Huang , Suleixin Yang , Yingying Leng , Xiaowei Liu , Xiuqi Liang , Linjiang Song , Yanjie You , Shaohua Yao , Changyang Gong . Programmable double-unlock nanocomplex self-supplies phenylalanine ammonia-lyase for precise phenylalanine deprivation of tumors. Chinese Chemical Letters, 2024, 35(8): 109275-. doi: 10.1016/j.cclet.2023.109275
Wenqing Deng , Fanfeng Deng , Ting Zhang , Junjie Lin , Liang Zhao , Gang Li , Yi Pan , Jiebin Yang . Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer. Chinese Chemical Letters, 2025, 36(3): 110085-. doi: 10.1016/j.cclet.2024.110085