Mitigating the dissolution of V2O5 in aqueous ZnSO4 electrolyte through Ti-doping for zinc storage
-
* Corresponding authors.
E-mail addresses: huping316@163.com (P. Hu), liangzhou@whut.edu.cn (L. Zhou).
Citation:
Zihe Wei, Xuehua Wang, Ting Zhu, Ping Hu, Liqiang Mai, Liang Zhou. Mitigating the dissolution of V2O5 in aqueous ZnSO4 electrolyte through Ti-doping for zinc storage[J]. Chinese Chemical Letters,
;2024, 35(1): 108421.
doi:
10.1016/j.cclet.2023.108421
S. Koohi-Fayegh, M.A. Rosen, J. Energy Storage 27 (2020) 101047.
doi: 10.1016/j.est.2019.101047
J. Zhu, L. Hu, P. Zhao, et al., Chem. Rev. 120 (2020) 851–918.
doi: 10.1021/acs.chemrev.9b00248
D. Kundu, B.D. Adams, V. Duffort, et al., Nat. Energy 1 (2016) 16119.
doi: 10.1038/nenergy.2016.119
D. Chao, W. Zhou, F. Xie, et al., Sci. Adv. 6 (2020) eaba4098.
doi: 10.1126/sciadv.aba4098
H. Jia, Z. Wang, B. Tawiah, et al., Nano Energy 70 (2020) 104523.
doi: 10.1016/j.nanoen.2020.104523
X. Jia, C. Liu, Z.G. Neale, et al., Chem. Rev. 120 (2020) 7795–7866.
doi: 10.1021/acs.chemrev.9b00628
X. Zeng, J. Hao, Z. Wang, et al., Energy Storage Mater. 20 (2019) 410–437.
doi: 10.1016/j.ensm.2019.04.022
Z. Yang, X. Pan, Y. Shen, et al., Small 18 (2022) 2107743.
doi: 10.1002/smll.202107743
X. Wu, Y. Xiang, Q. Peng, et al., J. Mater. Chem. A 5 (2017) 17990–17997.
doi: 10.1039/C7TA00100B
Y. Liu, X. Wu, Chin. Chem. Lett. 33 (2022) 1236–1244.
doi: 10.1016/j.cclet.2021.08.081
B. He, Q. Zhang, L. Li, et al., J. Mater. Chem. A 6 (2018) 14594–14601.
doi: 10.1039/C8TA05862H
M. Chen, J. Zhang, Y. Dong, et al., Chem. Eng. J. 433 (2022) 134507.
doi: 10.1016/j.cej.2022.134507
Y. Zhang, F. Wan, S. Huang, et al., Nat. Commun. 11 (2020) 2199.
doi: 10.1038/s41467-020-16039-5
L. Xing, C. Zhang, M. Li, et al., Energy Storage Mater. 52 (2022) 291–298.
doi: 10.1016/j.ensm.2022.07.044
Y. Niu, D. Wang, Y. Ma, et al., Chin. Chem. Lett. 33 (2022) 1430–1434.
doi: 10.1016/j.cclet.2021.08.058
Z. Li, B. Wu, M. Yan, et al., ACS Appl. Mater. Interfaces 12 (2020) 10420–10427.
doi: 10.1021/acsami.9b21579
X. Li, H. Cheng, H. Hu, et al., Chin. Chem. Lett. 32 (2021) 3753–3761.
doi: 10.1016/j.cclet.2021.04.045
S. Deng, Z. Yuan, Z. Tie, et al., Angew. Chem. Int. Ed. 59 (2020) 22002–22006.
doi: 10.1002/anie.202010287
Y.X. Zeng, X.F. Lu, S.L. Zhang, et al., Angew. Chem. Int. Ed. 60 (2021) 22189–22194.
doi: 10.1002/anie.202107697
Y. Xue, X. Shen, H. Zhou, et al., Chem. Eng. J. 448 (2022) 137657.
doi: 10.1016/j.cej.2022.137657
W. Wang, V.S. Kale, Z. Cao, et al., ACS Energy Lett. 5 (2020) 2256–2264.
doi: 10.1021/acsenergylett.0c00903
W. Li, K. Wang, S. Cheng, et al., Energy Storage Mater. 15 (2018) 14–21.
doi: 10.1016/j.ensm.2018.03.003
M. Li, Z.L. Li, X.P. Wang, et al., Energy Environ. Sci. 14 (2021) 3796–3839.
doi: 10.1039/D1EE00030F
W.W. Zhang, C.L. Zuo, C. Tang, et al., Energy Technol. 9 (2021) 2000789.
doi: 10.1002/ente.202000789
Y. Wang, Z. Wang, F. Yang, et al., Small 18 (2022) 202107033.
F. Liu, Z. Chen, G. Fang, et al., Nano-Micro Lett. 11 (2019) 25.
doi: 10.1007/s40820-019-0256-2
Y. Li, Z. Huang, P.K. Kalambate, et al., Nano Energy 60 (2019) 752–759.
doi: 10.1016/j.nanoen.2019.04.009
X. Chen, L. Wang, H. Li, et al., J. Energy Chem. 38 (2019) 20–25.
doi: 10.1016/j.jechem.2018.12.023
Y. Yang, Y. Tang, S. Liang, et al., Nano Energy 61 (2019) 617–625.
doi: 10.1016/j.nanoen.2019.05.005
R. Li, H. Zhang, Q. Zheng, et al., J. Mater. Chem. A 8 (2020) 5186–5193.
doi: 10.1039/C9TA11750D
Y. Ma, A. Huang, H. Zhou, et al., J. Mater. Chem. A 5 (2017) 6522–6531.
doi: 10.1039/C6TA11194G
Y. Dou, X. Liang, G. Gao, et al., J. Alloys Compd. 735 (2018) 109–116.
doi: 10.1016/j.jallcom.2017.10.264
M. Giorgetti, M. Berrettoni, Chem. Mater. 19 (2007) 5991–6000.
doi: 10.1021/cm701910c
Y. Liu, J. Xu, J. Li, et al., Coord. Chem. Rev. 460 (2022) 214477.
doi: 10.1016/j.ccr.2022.214477
G. Zhang, T. Wu, H. Zhou, et al., ACS Energy Lett. 6 (2021) 2111–2120.
doi: 10.1021/acsenergylett.1c00625
G.D. Cui, Y.X. Zeng, J.F. Wu, et al., Adv. Sci. 9 (2022) 9.
W. Yang, W. Yang, Y. Huang, et al., Chin. Chem. Lett. 33 (2022) 4628–4634.
doi: 10.1016/j.cclet.2021.12.049
M. Du, F. Zhang, X. Zhang, et al., Sci. China Chem. 63 (2020) 1767–1776.
doi: 10.1007/s11426-020-9830-8
J. Zhou, L. Shan, Z. Wu, et al., Chem. Commun. 54 (2018) 4457–4460.
doi: 10.1039/C8CC02250J
Y. Sun, Z. Xu, X. Xu, et al., Energy Storage Mater. 48 (2022) 192–204.
doi: 10.1016/j.ensm.2022.03.023
F. Huang, X. Li, Y. Zhang, et al., Adv. Mater. 34 (2022) 2203710.
doi: 10.1002/adma.202203710
M. Neelima, S. Vandana, A. Kathirvel, et al., Optik 252 (2022) 168516.
doi: 10.1016/j.ijleo.2021.168516
S. Phatyenchuen, B. Pongthawornsakun, J. Panpranot, et al., J. Environ. Chem. Eng. 6 (2018) 5655–5661.
doi: 10.1016/j.jece.2018.08.066
Q. Fu, A.L. Hansen, B. Schwarz, et al., Chem. Mater. 34 (2022) 9844–9853.
doi: 10.1021/acs.chemmater.2c01695
A. Baltakesmez, C. Aykaç, B. Güzeldir, Appl. Phys. A 125 (2019) 441.
doi: 10.1007/s00339-019-2736-0
S. Zhu, S. Chen, H. Zhang, et al., Ionics 28 (2022) 2931–2942.
doi: 10.1007/s11581-022-04541-3
S. Qiu, L. Xiao, X. Ai, et al., ACS Appl. Mater. Interfaces 9 (2017) 345–353.
doi: 10.1021/acsami.6b12001
M. Yan, P. He, Y. Chen, et al., Adv. Mater. 30 (2018) 1703725.
doi: 10.1002/adma.201703725
X.W. Wang, L.Q. Wang, B. Zhang, et al., J. Energy Chem. 59 (2021) 126–133.
doi: 10.1016/j.jechem.2020.10.007
P.J. Wang, X.D. Shi, Z.X. Wu, et al., Carbon Energy 2 (2020) 294–301.
doi: 10.1002/cey2.39
N. Zhang, Y. Dong, M. Jia, et al., ACS Energy Lett. 3 (2018) 1366–1372.
doi: 10.1021/acsenergylett.8b00565
Y. Dong, M. Jia, Y. Wang, et al., ACS Appl. Energy Mater. 3 (2020) 11183–11192.
doi: 10.1021/acsaem.0c02126
P. Hu, T. Zhu, J. Ma, et al., Chem. Commun. 55 (2019) 8486–8489.
doi: 10.1039/C9CC04053F
M. Narayanasamy, B. Kirubasankar, M. Shi, et al., Chem. Commun. 56 (2020) 6412–6415.
doi: 10.1039/D0CC01802C
F. Liu, Math. Inequal. Appl. 22 (2019) 25–44.
doi: 10.7153/mia-2019-22-02
H. Wang, C. Zhu, D. Chao, et al., Adv. Mater. 29 (2017) 1702093.
doi: 10.1002/adma.201702093
T. Brezesinski, J. Wang, S.H. Tolbert, et al., Nat. Mater. 9 (2010) 146–151.
doi: 10.1038/nmat2612
J. Wang, J. Polleux, J. Lim, et al., J. Phys. Chem. C 111 (2007) 14925–14931.
doi: 10.1021/jp074464w
H. Lindström, S. Södergren, A. Solbrand, et al., J. Phys. Chem. B 101 (1997) 7717–7722.
doi: 10.1021/jp970490q
X. Zhang, F. Xue, X. Sun, et al., Chem. Eng. J. 445 (2022) 136714.
doi: 10.1016/j.cej.2022.136714
J. Zhang, S. Liu, H. Liu, et al., J. Alloys Compd. 920 (2022) 166010.
doi: 10.1016/j.jallcom.2022.166010
Yang Li , Xiaoxu Liu , Tianyi Ji , Man Zhang , Xueru Yan , Mengjie Yao , Dawei Sheng , Shaodong Li , Peipei Ren , Zexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551
Jun Guo , Zhenbang Zhuang , Wanqiang Liu , Gang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803
Jiahao Xie , Jin Liu , Bin Liu , Xin Meng , Zhuang Cai , Xiaoqin Xu , Cheng Wang , Shijie You , Jinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236
Lingjiang Kou , Yong Wang , Jiajia Song , Taotao Ai , Wenhu Li , Mohammad Yeganeh Ghotbi , Panya Wattanapaphawong , Koji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
Ruofan Yin , Zhaoxin Guo , Rui Liu , Xian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643
Xinyu Guo , Chang Li , Wenjun Deng , Yi Zhou , Yan Chen , Yushuang Xu , Rui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715
Yiwen Xu , Chaozheng He , Chenxu Zhao , Ling Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
Jingjing Zhang , Lan Ding , Vadim Popkov , Kezhen Qi . Aqueous indium metal batteries. Chinese Chemical Letters, 2025, 36(2): 110407-. doi: 10.1016/j.cclet.2024.110407
Xiaoxing Ji , Xiaojuan Li , Chenggang Wang , Gang Zhao , Hongxia Bu , Xijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388
Haohao Sun , Wenxuan Wang , Yuli Xiong , Zelang Jian , Wen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213
Jianjun Fang , Kunchen Xie , Yongli Song , Kangyi Zhang , Fei Xu , Xiaoze Shi , Ming Ren , Minzhi Zhan , Hai Lin , Luyi Yang , Shunning Li , Feng Pan . Break the capacity limit of Li4Ti5O12 anodes through oxygen vacancy engineering. Chinese Journal of Structural Chemistry, 2025, 44(2): 100504-100504. doi: 10.1016/j.cjsc.2024.100504
Yuhuan Meng , Long Zhang , Lequan Wang , Junming Kang , Hongbin Lu . 20 nm-ultra-thin fluorosiloxane interphase layer enables dendrite-free, fast-charging, and flexible aqueous zinc metal batteries. Chinese Chemical Letters, 2024, 35(12): 110025-. doi: 10.1016/j.cclet.2024.110025
Xi Tang , Chunlei Zhu , Yulu Yang , Shihan Qi , Mengqiu Cai , Abdullah N. Alodhayb , Jianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014
Shilong Li , Ming Zhao , Yefei Xu , Zhanyi Liu , Mian Li , Qing Huang , Xiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701
Qian-Qian Tang , Li-Fang Feng , Zhi-Peng Li , Shi-Hao Wu , Long-Shuai Zhang , Qing Sun , Mei-Feng Wu , Jian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271
Runjing Xu , Xin Gao , Ya Chen , Xiaodong Chen , Lifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852