Ordered macroporous structured TiO2-based photocatalysts for CO2 reduction: A review
-
* Corresponding author.
E-mail address: weiyc@cup.edu.cn (Y. Wei).
Citation:
Yifei Li, Yuechang Wei, Wenjie He, Zhiling Tang, Jing Xiong, Zhen Zhao. Ordered macroporous structured TiO2-based photocatalysts for CO2 reduction: A review[J]. Chinese Chemical Letters,
;2023, 34(12): 108417.
doi:
10.1016/j.cclet.2023.108417
P. Chen, Y.X. Zhang, Y. Zhou, F. Dong, Nano Mater. Sci. 3 (2021) 344–367.
doi: 10.1016/j.nanoms.2021.05.003
W.H. Zhang, A.R. Mohamed, W.J. Ong, Angew. Chem. Int. Ed. 59 (2020) 22894–22915.
doi: 10.1002/anie.201914925
C.H.A. Tsang, K. Li, Y.X. Zeng, et al., Environ. Int. 125 (2019) 200–228.
doi: 10.1016/j.envint.2019.01.015
Y. Bao, J. Wang, Q. Wang, et al., Nanoscale 12 (2020) 2507–2514.
doi: 10.1039/c9nr09321d
W. Cui, J.Y. Li, F. Dong, ACS ES&T Engg. 2 (2022) 1103–1115.
doi: 10.1021/acsestengg.1c00503
X. Li, W. Wang, F. Dong, et al., ACS Catal. 11 (2021) 4739–4769.
doi: 10.1021/acscatal.0c05354
J.L. White, M.F. Baruch, J.E.P. Iii, et al., Chem. Rev. 115 (2015) 12888–12935.
doi: 10.1021/acs.chemrev.5b00370
S. Ye, R. Wang, M.Z. Wu, Y.P. Yuan, Appl. Surf. Sci. 358 (2015) 15–27.
doi: 10.1016/j.apsusc.2015.08.173
L.Z. Liu, S.B. Wang, H.W. Huang, Y.H. Zhang, T.Y. Ma, Nano Energy 75 (2020) 104959.
doi: 10.1016/j.nanoen.2020.104959
O. Ola, M.M. Maroto-Valer, J. Photochem. Photobiol. C: Photochem. Rev. 24 (2015) 16–42.
doi: 10.1016/j.jphotochemrev.2015.06.001
S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Angew. Chem. Int. Ed. 52 (2013) 7372–7408.
doi: 10.1002/anie.201207199
X. Li, J.Q. Wen, J.X. Low, Y.P. Fang, J.G. Yu, Sci. China Mater. 57 (2014) 70–100.
doi: 10.1007/s40843-014-0003-1
Z. Xiong, Z. Lei, C.C. Kuang, et al., Appl. Catal. B 202 (2017) 695–703.
doi: 10.1016/j.apcatb.2016.10.001
M. Wu, Y. Li, Z. Deng, B.L. Su, ChemSusChem 4 (2011) 1481–1488.
doi: 10.1002/cssc.201100082
H. Park, Y. Park, W. Kim, W. Choi, J. Photochem. Photobiol. C: Photochem. Rev. 15 (2013) 1–20.
doi: 10.1016/j.jphotochemrev.2012.10.001
W.J. Ong, L.L. Tan, S.P. Chai, S.T. Yong, A.R. Mohamed, Nanoscale 6 (2014) 1946–2008.
doi: 10.1039/c3nr04655a
M. Sagir, M.B. Tahir, M. Rafique, M.S. Rafique, T. Nawaz, Nanotechnol. Photocatal. Environ. Appl. 10 (2020) 159–189.
C.G. Barraclough, J. Lewis, R.S. Nyholm, J. Chem. Soc. 173 (1959) 3552–3555.
S.J. Xie, Q.H. Zhang, G.D. Liu, Y. Wang, Chem. Commun. 52 (2016) 35–59.
doi: 10.1039/C5CC07613G
A. Sarkar, E. Gracia-Espino, T. Wågberg, et al., Nano Res. 9 (2016) 1–13.
doi: 10.21843/reas/2015/1-8/108322
J. Wu, H.W. Lu, X.L. Zhang, et al., Chem. Commun. 52 (2016) 5027–5029.
doi: 10.1039/C6CC00772D
A.J. Cowan, J.R. Durrant, Chem. Soc. Rev. 42 (2013) 2281–2293.
doi: 10.1039/C2CS35305A
K. Li, X. An, K.H. Park, M. Khraisheh, J. Tang, Catal. Today 224 (2014) 3–12.
doi: 10.1016/j.cattod.2013.12.006
R. Camarillo, S. Tostón, F. Martínez, C. Jiménez, J. Rincón, J. Chem. 92 (2017) 1710–1720.
doi: 10.1002/jctb.5169
X. Li, J.G. Yu, M. Jaroniec, Chem. Soc. Rev. 45 (2016) 2603–2636.
doi: 10.1039/C5CS00838G
J.W. Fu, B.C. Zhu, C.J. Jiang, et al., Small 13 (2017) 1603938.
doi: 10.1002/smll.201603938
T.M. Di, B.C. Zhu, B. Cheng, J.G. Yu, J.S. Xu, Chem. Soc. Rev. 352 (2017) 532–541.
J.R. Jin, T. He, Appl. Surf. Sci. 394 (2017) 364–370.
doi: 10.1016/j.apsusc.2016.10.118
M. Tahir, B. Tahir, Appl. Surf. Sci. 377 (2016) 244–252.
doi: 10.1016/j.apsusc.2016.03.141
K.M. Ji, H.X. Dai, J.G. Deng, et al., Appl. Catal. B 168 (2015) 274–282.
doi: 10.1016/j.apcatb.2014.12.045
T.Y. Tan, W. Xie, G.J. Zhu, et al., J. Porous Mat. 22 (2015) 659–663.
doi: 10.1007/s10934-015-9938-4
J. Poolwong, T. Kiatboonyarit, S. Achiwawanich, et al., Nanomaterials 11 (2021) 1715.
doi: 10.3390/nano11071715
H. Khan, S. Samanta, M. Seth, S. Jana, J. Mater. Sci. 55 (2020) 11907–11918.
doi: 10.1007/s10853-020-04858-2
Y. Song, Y. Peng, H.Y. Li, et al., Chem. Eng. J. 447 (2022) 137450.
doi: 10.1016/j.cej.2022.137450
L.Q. Tang, W. Ni, H. Zhao, Q. Xu, J.X. Jiao, Bioresources 4 (2019) 38–48.
doi: 10.3390/educsci9010038
X.Y. Yang, L.H. Chen, Y. Li, et al., Chem. Soc. Rev. 46 (2017) 481–558.
doi: 10.1039/C6CS00829A
J.X. Low, B. Cheng, J.G. Yu, Appl. Surf. Sci. 392 (2017) 658–686.
doi: 10.1016/j.apsusc.2016.09.093
S. Das, W.M.A.W. Daud, RSC Adv. 4 (2014) 20856–20893.
doi: 10.1039/c4ra01769b
S.R. Lingampalli, M.M. Ayyub, C.N.R. Rao, ACS Omega 2 (2017) 2740–2748.
doi: 10.1021/acsomega.7b00721
C. Han, M. Pelaez, V. Likodimos, et al., Appl. Catal. B 107 (2011) 77–87.
doi: 10.1016/j.apcatb.2011.06.039
M.K. Singh, M.S. Mehata, Opt. Mater.: X 109 (2020) 110309–110310.
doi: 10.1016/j.optmat.2020.110309
T. Wang, X.G. Meng, G.G. Liu, et al., J. Mater. Chem. A 3 (2015) 9491–9501.
doi: 10.1039/C4TA05892E
N. Shehzad, M. Tahir, K. Johari, T. Murugesan, M. Hussain, J. CO2 Util. 26 (2018) 98–122.
doi: 10.1016/j.jcou.2018.04.026
J. Ye, J.H. He, S. Wang, et al., Sep. Purif. Technol. 220 (2019) 8–15.
doi: 10.1016/j.seppur.2019.03.042
C.L. Muhich, J.Y. Westcott, T. Fuerst, A.W. Weimer, C.B. Musgrave, J. Phys. Chem. C 118 (2014) 27415–27427.
doi: 10.1021/jp508882m
K. Kalantari, M. Kalbasi, M. Sohrabi, S.J. Royaee, Ceram. Int. 42 (2016) 14834–14842.
doi: 10.1016/j.ceramint.2016.06.117
L.H. Zhang, C.H. Hu, L.Y. Cheng, et al., Chin. J. Catal. 34 (2013) 2089–2097.
doi: 10.1016/S1872-2067(12)60692-5
H.Y. Li, D.J. Wang, H.M. Fan, et al., J. Colloid Interface Sci. 354 (2011) 175–180.
doi: 10.1016/j.jcis.2010.10.048
L.S. Jia, J.J. Li, W.P. Fang, et al., Catal. Commun. 10 (2009) 1230–1234.
doi: 10.1016/j.catcom.2009.01.025
M.S. Akple, J.X. Low, Z.Y. Qin, et al., Chin. J. Catal. 36 (2015) 2127–2134.
doi: 10.1016/S1872-2067(15)60989-5
W. Zhou, H.G. Fu, ChemCatChem 5 (2013) 885–894.
doi: 10.1002/cctc.201200519
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269–271.
doi: 10.1126/science.1061051
S. Sato, Chem. Phys. Lett. 123 (1986) 126–128.
doi: 10.1016/0009-2614(86)87026-9
S. Cho, C.G. Ahn, J.Y. Park, S. Jeon, Nanoscale 10 (2018) 9747–9751.
doi: 10.1039/C8NR02330A
Z.D. Li, F. Wang, A.V. Kvit, X.D. Wang, J. Phys. Chem. C 119 (2015) 4397–4405.
doi: 10.1021/jp512622j
L. Sun, J.H. Cai, Q. Wu, et al., Electrochim. Acta 108 (2013) 525–531.
doi: 10.1016/j.electacta.2013.06.149
M.R. Khan, T.W. Chuan, A. Yousuf, M.N.K. Chowdhury, C.K. Cheng, Catal. Sci. Technol. 5 (2015) 2522–2531.
doi: 10.1039/C4CY01545B
H. Abdullah, M. Maksudur Rahman Khan, H. Ong, Z. Yaakob, J. CO2 Util. 22 (2017) 15–32.
doi: 10.1016/j.jcou.2017.08.004
N. Singhal, A. Ali, A. Vorontsov, C. Pendem, U. Kumar, Appl. Catal. A: Gen. 523 (2016) 107–117.
doi: 10.1016/j.apcata.2016.05.027
L.Q. Ye, J.Y. Liu, L.H. Tian, T.Y. Peng, L. Zan, Appl. Catal. B 134 (2013) 60–65.
doi: 10.1016/j.apcatb.2012.12.043
S. Neaţu, J.A. Maciá-Agulló, P. Concepción, H. Garcia, J. Am. Chem. Soc. 136 (2014) 15969–15976.
doi: 10.1021/ja506433k
O. Ishitani, C. Inoue, Y. Suzuki, T. Ibusuki, J. Photochem. Photobiol. A 72 (1993) 269–271.
doi: 10.1016/1010-6030(93)80023-3
Y.X. Zhao, B.F. Yang, J. Xu, et al., Thin Solid Films 520 (2012) 3515–3522.
doi: 10.1016/j.tsf.2011.12.076
Z.Y. Chen, L. Fang, W. Dong, et al., J. Mater. Chem. A 2 (2014) 824–832.
doi: 10.1039/C3TA13985A
J.Q. Jiao, Y.C. Wei, Z. Zhao, et al., Catal. Today 258 (2015) 319–326.
doi: 10.1016/j.cattod.2015.01.030
J.Q. Jiao, Y.C. Wei, Y.L. Zhao, et al., Appl. Catal. B 209 (2017) 228–239.
doi: 10.1016/j.apcatb.2017.02.076
A. Kumar, M. Khan, J. He, I.M.C. Lo, Water Res. 170 (2020) 115356.
doi: 10.1016/j.watres.2019.115356
M. Mazur, D. Wojcieszak, D. Kaczmarek, et al., Appl. Surf. Sci. 380 (2016) 165–171.
doi: 10.1016/j.apsusc.2016.01.226
M. Dahl, Y. Liu, Y.J.C.R. Yin, Chem. Rev. 114 (2014) 9853–9889.
doi: 10.1021/cr400634p
B.T. Barroca, N. Ambrožová, K. Kočí, Materials 15 (2022) 967.
doi: 10.3390/ma15030967
G.X. Song, F. Xin, J.S. Chen, X.H. Yin, Appl. Catal. A: Gen. 473 (2014) 90–95.
doi: 10.1016/j.apcata.2013.12.035
J.X. Low, J.G. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Adv. Mater. 29 (2017) 1601694.
doi: 10.1002/adma.201601694
H.J. Li, W.G. Tu, Y. Zhou, Z.G. Zou, Adv. Sci. 3 (2016) 1500389.
doi: 10.1002/advs.201500389
J.J. Tao, Z.Z. Gong, G. Yao, et al., J. Alloy. Compd. 688 (2016) 605–612.
doi: 10.1016/j.jallcom.2016.07.074
C.L. Yu, W.Q. Zhou, J.C. Yu, H. Liu, L.F. Wei, Chin. J. Catal. 35 (2014) 1609–1618.
doi: 10.1016/S1872-2067(14)60170-4
Y.J. Wang, Q.S. Wang, X.Y. Zhan, et al., Nanoscale 5 (2013) 8326–8339.
doi: 10.1039/c3nr01577g
K.Z. Qi, J.G. Yu, Interface Sci. Technol. 31 (2020) 265–284.
doi: 10.1016/B978-0-08-102890-2.00008-7
X.Y. Pan, Y.J. Xu, J. Phys. Chem. C 119 (2015) 7184–7194.
doi: 10.1021/jp512797t
C.Y. Dong, M.Y. Xing, J.L. Zhang, J. Phys. Chem. Lett. 7 (2016) 2962–2966.
doi: 10.1021/acs.jpclett.6b01287
J.Y. Bai, X.L. Sun, G. Han, G.W. Diao, J. Alloy. Compd. 722 (2017) 864–871.
doi: 10.1016/j.jallcom.2017.06.102
J.Q. Jiao, Y.C. Wei, Z. Zhao, et al., Ind. Eng. Chem. Res. 53 (2014) 17345–17354.
doi: 10.1021/ie503333b
Y. Xie, G. Ali, S.H. Yoo, S.O. Cho, ACS Appl. Mater. Interfaces 2 (2010) 2910–2914.
doi: 10.1021/am100605a
H. Xie, T. Zeng, S.F. Jin, et al., J. Nanosci. Nanotechno. 13 (2013) 1461–1466.
doi: 10.1166/jnn.2013.6056
X.F. Chen, J. Zhang, Y.N. Huo, H.X. Li, Chin. J. Catal. 34 (2013) 949–955.
doi: 10.1016/S1872-2067(12)60560-9
J.W. Xue, M. Fujitsuka, T. Majima, Chem. Commun. 57 (2021) 3532–3542.
doi: 10.1039/d1cc00204j
Y.R. Wang, F. Wang, Z.X. Wang, Nano Res. 14 (2021) 4328–4335.
doi: 10.1007/s12274-021-3833-x
F. Bi, M.F. Ehsan, W. Liu, T. He, Chin. J. Chem. 33 (2015) 112–118.
doi: 10.1002/cjoc.201400476
J.Y. Wang, G.B. Ji, Y.S. Liu, M.A. Gondal, X.F. Chang, Catal. Commun. 46 (2014) 17–21.
doi: 10.1016/j.catcom.2013.11.011
Y. Zhao, X.Y. Linghu, Y. Shu, et al., J. Environ. Chem. Eng. 10 (2022) 108077.
doi: 10.1016/j.jece.2022.108077
J.X. Low, C.J. Jiang, B. Cheng, et al., Small Methods 1 (2017) 357–366.
doi: 10.1177/1753193416684658
G. Yang, D.M. Chen, H. Ding, et al., Appl. Catal. B 219 (2017) 611–618.
doi: 10.1016/j.apcatb.2017.08.016
Y.C. Wei, J.Q. Jiao, Z. Zhao, et al., J. Mater. Chem. A 3 (2015) 11074–11085.
doi: 10.1039/C5TA00444F
Y.C. Wei, J.Q. Jiao, Z. Zhao, et al., Appl. Catal. B 179 (2015) 422–432.
doi: 10.1016/j.apcatb.2015.05.041
J.R. Ran, J. Zhang, J.G. Yu, M. Jaroniec, S.Z. Qiao, Chem. Soc. Rev. 43 (2014) 7787–7812.
doi: 10.1039/C3CS60425J
M.Q. Yang, N. Zhang, Y.J. Xu, ACS Appl. Mater. Interfaces 5 (2013) 1156–1164.
doi: 10.1021/am3029798
M. Inagaki, Carbon 50 (2012) 3247–3266.
doi: 10.1016/j.carbon.2011.11.045
C.J. Wang, L. Xi, W.J. He, et al., J. Catal. 389 (2020) 440–449.
doi: 10.1016/j.jcat.2020.06.026
P.D. Yang, T. Deng, D.Y. Zhao, et al., Science 282 (1998) 2244–2246.
doi: 10.1126/science.282.5397.2244
N.G. Moustakas, J. Strunk, Chem. Eur. J. 24 (2018) 12739–12746.
doi: 10.1002/chem.201706178
F. Wang, Y. Zhou, P. Li, et al., RSC Adv. 4 (2014) 43172–43177.
doi: 10.1039/C4RA06565D
Y. Yuan, R.T. Guo, Z.W. Zhang, et al., Energy Fuel 35 (2021) 13291–13303.
doi: 10.1021/acs.energyfuels.1c01563
Z.X. Bi, R.T. Guo, X. Hu, et al., Nanoscale 14 (2022) 3367–3386.
doi: 10.1039/d1nr08235c
K. Li, B. Peng, T.Y. Peng, ACS Catal. 6 (2016) 7485–7527.
doi: 10.1021/acscatal.6b02089
Z.Y. Sun, N. Talreja, H.C. Tao, et al., Angew. Chem. Int. Ed. 57 (2018) 7610–7627.
doi: 10.1002/anie.201710509
G. Kaune, M. Memesa, R. Meier, et al., ACS Appl. Mater. Interfaces 1 (2009) 2862–2869.
doi: 10.1021/am900592u
W.Q. Fan, Q.H. Zhang, Y. Wang, Phys. Chem. Chem. Phys. 15 (2013) 2632–2649.
doi: 10.1039/c2cp43524a
H. He, C. Liu, K. Dubois, et al., Ind. Eng. Chem. Res. 51 (2012) 11841–11849.
doi: 10.1021/ie300510n
X.K. Li, Z.J. Zhuang, W. Li, H.Q. Pan, Appl. Catal. A: Gen. 429 (2012) 31–38.
doi: 10.1016/j.apcata.2012.04.001
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Yaoyin Lou , Xiaoyang Jerry Huang , Kuang-Min Zhao , Mark J. Douthwaite , Tingting Fan , Fa Lu , Ouardia Akdim , Na Tian , Shigang Sun , Graham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Fahui Xiang , Lu Li , Zhen Yuan , Wuji Wei , Xiaoqing Zheng , Shimin Chen , Yisi Yang , Liangji Chen , Zizhu Yao , Jianwei Fu , Zhangjing Zhang , Shengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Di Wang , Qing-Song Chen , Yi-Ran Lin , Yun-Xin Hou , Wei Han , Juan Yang , Xin Li , Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173