Engineering sulfur vacancies for boosting electrocatalytic reactions
-
* Corresponding author.
E-mail address: xuhui006@cczu.edu.cn (H. Xu).
Citation:
Xianxu Chu, Yueyu Liao, Lu Wang, Junru Li, Hui Xu. Engineering sulfur vacancies for boosting electrocatalytic reactions[J]. Chinese Chemical Letters,
;2023, 34(9): 108285.
doi:
10.1016/j.cclet.2023.108285
H. Xu, J. Yuan, G. He, et al., Coord. Chem. Rev. 475 (2023) 214869.
doi: 10.1016/j.ccr.2022.214869
H. Xu, Y. Zhao, Q. Wang, et al., Coord. Chem. Rev. 451 (2022) 214261.
doi: 10.1016/j.ccr.2021.214261
L. Jin, R. Ji, H. Wan, et al., ACS Catal. 13 (2023) 837-847.
doi: 10.1021/acscatal.2c05546
K. Yin, Y. Chao, F. Lv, et al., J. Am. Chem. Soc. 143 (2021) 10822-10827.
doi: 10.1021/jacs.1c04626
H. Xu, B. Huang, Y. Zhao, et al., Inorg. Chem. 61 (2022) 4533-4540.
doi: 10.1021/acs.inorgchem.2c00296
H. Xu, H. Shang, L. Jin, et al., J. Mater. Chem. A 7 (2019) 26905-26910.
doi: 10.1039/c9ta09310a
H. Xu, H. Shang, C. Wang, et al., Coord. Chem. Rev. 418 (2020) 213374.
doi: 10.1016/j.ccr.2020.213374
H. Xu, H. Shang, C. Wang, et al., Adv. Funct. Mater. 30 (2020) 2000592.
doi: 10.1002/adfm.202000592
H. Xu, J. Li, X. Chu, Chem. Rec. (2022) e202200244.
L. Tian, Y. Liu, C. He, et al., Chem. Rec. (2022) e202200213.
L. Tian, H. Chen, X. Lu, et al., J. Colloid Interface Sci. 628 (2022) 663-672.
doi: 10.1016/j.jcis.2022.07.125
S. Wang, L. Zhao, J. Li, et al., J. Energy Chem. 66 (2022) 483-492.
doi: 10.1016/j.jechem.2021.08.042
H. Xu, H. Shang, C. Wang, et al., Adv. Funct. Mater. 30 (2020) 2006317.
doi: 10.1002/adfm.202006317
B. Tang, X. Yang, Z. Kang, et al., Appl. Catal. B: Environ. 278 (2020) 119281.
doi: 10.1016/j.apcatb.2020.119281
Z. Liu, C. Zhang, H. Liu, et al., Appl. Catal. B: Environ. 276 (2020) 119161.
C. Wang, H. Shang, J. Li, et al., Chem. Eng. J. 420 (2021) 129805.
doi: 10.1016/j.cej.2021.129805
C. Wang, H. Shang, Y. Wang, et al., J. Mater. Chem. A 9 (2021) 14601-14606.
doi: 10.1039/d1ta01226f
S. Tang, Y. Zhou, X. Lu, et al., J. Alloys Compds. 924 (2022) 166415.
doi: 10.1016/j.jallcom.2022.166415
L. Tian, Z. Huang, W. Na, et al., Nanoscale 14 (2022) 15340-15347.
doi: 10.1039/d2nr04294k
P. Yan, Q. Liu, H. Zhang, et al., J. Mater. Chem. A 9 (2021) 15586-15594.
doi: 10.1039/d1ta03362j
Q. Zhang, K. Wang, M. Zhang, et al., CrystEngComm 24 (2022) 5580-5587.
doi: 10.1039/d2ce00710j
C. Xie, D. Yan, W. Chen, et al., Mater. Today 31 (2019) 47-68.
doi: 10.1016/j.mattod.2019.05.021
J. Wan, W. Chen, C. Jia, et al., Adv. Mater. 30 (2018) 1705369.
doi: 10.1002/adma.201705369
Y. Tao, J. Yuan, X. Qian, et al., Inorg. Chem. Front. 8 (2021) 2271-2279.
doi: 10.1039/d0qi01460e
L. Tian, Z. Chen, T. Wang, et al., Nanoscale 15 (2023) 259-265.
doi: 10.1039/d2nr05410h
Z. Shao, H. Meng, J. Sun, et al., ACS Appl. Mater. Interfaces 12 (2020) 51846-51853.
doi: 10.1021/acsami.0c15870
R. He, X. Huang, L. Feng, Energy & Fuels 36 (2022) 6675-6694.
doi: 10.1021/acs.energyfuels.2c01429
L. Tian, Z. Huang, X. Lu, et al., Inorg. Chem. 62 (2023) 1659-1666.
doi: 10.1021/acs.inorgchem.2c04092
J. Jiang, Q. Zhang, A. Wang, et al., Small 15 (2019) 1901791.
doi: 10.1002/smll.201901791
C. Tsai, H. Li, S. Park, et al., Nat. Commun. 8 (2017) 15113.
doi: 10.1038/ncomms15113
K.H. Kim, K.S. Kim, Y.J. Ji, et al., J. Mater. Chem. C 8 (2020) 1846-1851.
doi: 10.1039/c9tc05548g
A.Y. Lu, X. Yang, C.C. Tseng, et al., Small 12 (2016) 5530-5537.
doi: 10.1002/smll.201602107
C. Zhang, Y. Shi, Y. Yu, et al., ACS Catal. 8 (2018) 8077-8083.
doi: 10.1021/acscatal.8b02056
H. Chen, Z. Yu, Y. Hou, et al., Nanoscale 13 (2021) 20670-20682.
doi: 10.1039/d1nr06556d
G. Zhang, D. Chen, N. Li, et al., Angew. Chem. Int. Ed. 59 (2020) 8255-8261.
doi: 10.1002/anie.202000503
L. Li, Z. Qin, L. Ries, et al., ACS Nano 13 (2019) 6824-6834.
doi: 10.1021/acsnano.9b01583
H. Su, S. Song, S. Li, et al., Appl. Catal. B: Environ. 293 (2021) 120225.
doi: 10.1016/j.apcatb.2021.120225
X. Liu, X. Fan, H. Huang, et al., J. Colloid Interface Sci. 587 (2021) 385-392.
doi: 10.1364/ome.412144
H. Wang, Y. Wang, J. Zhang, et al., Nano Energy 84 (2021) 105943.
doi: 10.1016/j.nanoen.2021.105943
Z. Yan, Z. Sun, L. Zhao, et al., Mater. Today Nano 20 (2022) 100261.
doi: 10.1016/j.mtnano.2022.100261
Y. Liu, Y. Zhou, X. Zhou, et al., Chem. Eng. J. 407 (2021) 127180.
doi: 10.1016/j.cej.2020.127180
Y. Ma, D. Leng, X. Zhang, et al., Small 18 (2022) 2203173.
doi: 10.1002/smll.202203173
S.S. Chee, C. Oh, M. Son, et al., Nanoscale 9 (2017) 9333-9339.
doi: 10.1039/C7NR01883E
Y. Zhang, L. Ye, J. Guo, et al., J. Mater. Sci. 56 (2021) 9368-9381.
doi: 10.1007/s10853-021-05874-6
S.L. Zhang, B.Y. Guan, X.F. Lu, et al., Adv. Mater. 32 (2020) 2002235.
doi: 10.1002/adma.202002235
Z. Zhuang, Y. Wang, C.Q. Xu, et al., Nat. Commun. 10 (2019) 4875.
doi: 10.1038/s41467-019-12885-0
J. Feng, F. Lv, W. Zhang, et al., Adv. Mater. 29 (2017) 1703798.
doi: 10.1002/adma.201703798
Y. Li, J. Qian, M. Zhang, et al., Adv. Mater. 32 (2020) 2005802.
doi: 10.1002/adma.202005802
K. Zhang, B.M. Bersch, J. Joshi, et al., Adv. Funct. Mater. 28 (2018) 1706950.
doi: 10.1002/adfm.201706950
G. Liu, D. Luo, R. Gao, et al., Small 16 (2020) 2001089.
doi: 10.1002/smll.202001089
H. Li, C. Tsai, A. Koh, et al., Nat. Mater. 15 (2015) 48.
H. Li, M. Du, M.J. Mleczko, et al., J. Am. Chem. Soc. 138 (2016) 5123.
doi: 10.1021/jacs.6b01377
L. Tian, X. Pang, H. Xu, et al., Inorg. Chem. 61 (2022) 16944-16951.
doi: 10.1021/acs.inorgchem.2c03060
J. Long, Q. Yao, X. Zhang, et al., Appl. Catal. B: Environ. 320 (2023) 121989.
doi: 10.1016/j.apcatb.2022.121989
L. Liang, W. Gu, Y. Wu, et al., Adv. Mater. 34 (2022) 2106195.
doi: 10.1002/adma.202106195
T. Wang, X. Li, Y. Pang, et al., Chem. Eng. J. 425 (2021) 131491.
doi: 10.1016/j.cej.2021.131491
H. Yu, T. Zhou, Z. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 12027-12031.
doi: 10.1002/anie.202101019
S. Huang, Z. Jin, P. Ning, et al., Chem. Eng. J. 420 (2021) 127630.
doi: 10.1016/j.cej.2020.127630
W. Deeloed, T. Priamushko, J. Cizek, et al., ACS Appl. Mater. Interfaces 14 (2022) 23307-23321.
doi: 10.1021/acsami.2c00254
X. Li, K. Zheng, J. Zhang, et al., ACS Omega 7 (2022) 12430-12441.
doi: 10.1021/acsomega.2c01423
J. Wu, W. Zhong, C. Yang, et al., Appl. Catal. B: Environ. 310 (2022) 121332.
doi: 10.1016/j.apcatb.2022.121332
Z. Li, X. Xu, X. Lu, et al., J. Colloid Interface Sci. 615 (2022) 273-281.
doi: 10.3390/electronics11020273
X. Zheng, J. Yang, Z. Xu, et al., Angew. Chem. Int. Ed. 61 (2022) 202205946.
doi: 10.1002/anie.202205946
J. Chang, G. Wang, Z. Yang, et al., Adv. Mater. 33 (2021) 2101425.
doi: 10.1002/adma.202101425
Q. Chang, Y. Jin, M. Jia, et al., J. Colloid Interface Sci. 575 (2020) 61-68.
doi: 10.1016/j.jcis.2020.04.096
M. Shamloofard, S. Shahrokhian, Nanoscale 13 (2021) 17576-17591.
doi: 10.1039/d1nr04374a
T. Zhang, W. Zong, Y. Ouyang, et al., Adv. Fiber Mater. 3 (2021) 229-238.
doi: 10.1007/s42765-021-00072-0
H. Song, T. Li, T. He, et al., Chem. Eng. J. 450 (2022) 138115.
doi: 10.1016/j.cej.2022.138115
Y. Sun, Y. Li, Y. Qin, et al., Chem. Eur. J. 26 (2020) 4032-4038.
doi: 10.1002/chem.201904473
H. Xu, J. Cao, C. Shan, et al., Angew. Chem. Int. Ed. 57 (2018) 8654-8658.
doi: 10.1002/anie.201804673
C. Fan, X. Wu, M. Li, et al., Chem. Eng. J. 431 (2022) 133829.
doi: 10.1016/j.cej.2021.133829
X. Li, C. Wang, S. Zheng, et al., J. Colloid Interface Sci. 624 (2022) 443-449.
doi: 10.1016/j.jcis.2022.05.160
L. An, Y. Hu, J. Li, et al., Adv. Mater. 34 (2022) e2202874.
doi: 10.1002/adma.202202874
Y. Li, C. Jiang, Y. Yang, et al., Appl. Surf. Sci. 604 (2022) 154470.
doi: 10.1016/j.apsusc.2022.154470
H. Man, J. Feng, S. Wang, et al., Cell Rep. Phys. Sci. 3 (2022) 101059.
doi: 10.1016/j.xcrp.2022.101059
L. Zhang, J. Wang, K. Jiang, et al., Angew. Chem. Int. Ed. 61 (2022) 2214794.
F. Wu, R. Yang, S. Lu, et al., ACS Energy Lett. 7 (2022) 4198-4203.
doi: 10.1021/acsenergylett.2c02229
T.I. Singh, G. Rajeshkhanna, U.N. Pan, et al., Small 17 (2021) e2101312.
doi: 10.1002/smll.202101312
L. Li, L. Bu, B. Huang, et al., Adv. Mater. 33 (2021) 2105308.
doi: 10.1002/adma.202105308
Y. Zhou, H.J. Fan, ACS Mater. Lett. 3 (2020) 136-147.
doi: 10.1109/ismar50242.2020.00035
S. Fan, J. Zhang, Q. Wu, et al., J. Phys. Chem. Lett. 11 (2020) 3911-3919.
doi: 10.1021/acs.jpclett.0c00851
S. Anantharaj, S. Noda, Small 16 (2020) e1905779.
doi: 10.1002/smll.201905779
J. Zhang, X. Mao, S. Wang, et al., Angew. Chem. Int. Ed. 61 (2022) 202116867.
doi: 10.1002/anie.202116867
S. Anantharaj, Curr. Opin. Electrochem. 33 (2022) 100961.
doi: 10.1016/j.coelec.2022.100961
H. Xu, Y. Zhao, G. He, et al., Int. J. Hydrogen Energy 47 (2022) 14257-14279.
doi: 10.1016/j.ijhydene.2022.02.152
J. Zhang, J. Le, Y. Dong, et al., Sci. China Chem. 65 (2021) 87-95.
L. Li, P. Wang, Q. Shao, et al., Chem. Soc. Rev. 49 (2020) 3072-3106.
doi: 10.1039/d0cs00013b
T. Zhu, J. Huang, B. Huang, et al., Adv. Energy Mater. 10 (2020) 2002860.
doi: 10.1002/aenm.202002860
L. Zhang, Y. Lei, D. Zhou, et al., Nano Res. 15 (2021) 2895-2904.
doi: 10.3390/polym13172895
M. Wang, J.Q. Wang, C. Xi, et al., Small 17 (2021) 2100203.
doi: 10.1002/smll.202100203
Z.W. Wei, H.J. Wang, C. Zhang, et al., Angew. Chem. Int. Ed. 60 (2021) 16622-16627.
doi: 10.1002/anie.202104856
J. Li, J. Hu, M. Zhang, et al., Nat. Commun. 12 (2021) 3502.
doi: 10.1039/d1qo00111f
G. Li, D. Zhang, Q. Qiao, et al., J. Am. Chem. Soc. 138 (2016) 16632-16638.
doi: 10.1021/jacs.6b05940
H. Li, S. Wang, H. Sawada, et al., ACS Nano 11 (2017) 3392-3403.
doi: 10.1021/acsnano.7b00796
K. Zhang, Y. Duan, N. Graham, et al., Appl. Catal. B: Environ. 323 (2023) 122144.
doi: 10.1016/j.apcatb.2022.122144
Z. Cai, P. Wang, J. Zhang, et al., Adv. Mater. 34 (2022) 2110696.
doi: 10.1002/adma.202110696
S. Xu, Q. Huang, J. Xue, et al., Inorg. Chem. 61 (2022) 8909-8919.
doi: 10.1021/acs.inorgchem.2c01035
O.N. Avci, L. Sementa, A. Fortunelli, ACS Catal. 12 (2022) 9058-9073.
doi: 10.1021/acscatal.2c01534
K. Chang, D.T. Tran, J. Wang, J. Mater. Chem. A 10 (2022) 3102-3111.
doi: 10.1039/d1ta07393a
R. Abazari, S. Sanati, A. Morsali, Inorg. Chem. 61 (2022) 3396-3405.
doi: 10.1021/acs.inorgchem.1c03216
H. Xu, C. Wang, G. He, et al., Inorg. Chem. 61 (2022) 14224-14232.
doi: 10.1021/acs.inorgchem.2c02666
Q. Chen, Q. Zhang, H. Liu, et al., Small 17 (2021) 2007858.
doi: 10.1002/smll.202007858
H. Liu, Z. Liu, F. Wang, L. Feng, Chem. Eng. J. 397 (2020) 125507.
doi: 10.1016/j.cej.2020.125507
R. Madhu, S.S. Sankar, K. Karthick, et al., Inorg. Chem. 60 (2021) 9899-9911.
doi: 10.1021/acs.inorgchem.1c01151
Z.P. Wu, H. Zhang, S. Zuo, et al., Adv. Mater. 33 (2021) 2103004.
doi: 10.1002/adma.202103004
Y. Cong, S. Huang, Y. Mei, et al., Chem. Eur. J. 27 (2021) 15866-15888.
doi: 10.1002/chem.202102209
Y. Li, K. Jiang, J. Yang, et al., Small 17 (2021) 2102159.
doi: 10.1002/smll.202102159
R. He, C. Wang, L. Feng, Chin. Chem. Lett. 34 (2023) 107241.
doi: 10.1016/j.cclet.2022.02.046
X. Miao, L. Wu, Y. Lin, et al., Chem. Commun. 55 (2019) 1442-1445.
doi: 10.1039/c8cc08817a
M. Li, L. Feng, Chin. J. Struct. Chem. 41 (2022) 2201019-2201024.
H. Xu, H. Shang, C. Wang, et al., Appl. Catal. B: Environ. 265 (2020) 118605.
doi: 10.1016/j.apcatb.2020.118605
Q. Wang, H. Xu, X. Qian, et al., Appl. Catal. B: Environ. 322 (2023) 122104.
doi: 10.1016/j.apcatb.2022.122104
L. Zhao, Y. Xiong, X. Wang, et al., Small 18 (2022) 2106939.
doi: 10.1002/smll.202106939
Y. Wang, D. Wang, Y. Li, Adv. Mater. 33 (2021) 2008151.
doi: 10.1002/adma.202008151
M. Liu, S. Yin, T. Ren, et al., ACS Appl. Mater. Interfaces 13 (2021) 47458-47464.
doi: 10.1021/acsami.1c11246
P.Y. Liu, K. Shi, W.Z. Chen, et al., Appl. Catal. B: Environ. 287 (2021) 119956.
doi: 10.1016/j.apcatb.2021.119956
M. Arif, G. Yasin, L. Luo, et al., Appl. Catal. B: Environ. 265 (2020) 118559.
doi: 10.1016/j.apcatb.2019.118559
J. Wang, B. Huang, Y. Ji, et al., Adv. Mater. 32 (2020) 1907112.
doi: 10.1002/adma.201907112
K. Chu, H. Nan, Q. Li, et al., J. Energy Chem. 53 (2021) 132-138.
doi: 10.1016/j.jechem.2020.04.074
C. Li, R. Xu, S. Ma, et al., Chem. Eng. J. 415 (2021) 129018.
doi: 10.1016/j.cej.2021.129018
T. Xu, D. Ma, T. Li, et al., Chem Commun. 56 (2020) 14031-14034.
doi: 10.1039/d0cc05917j
J. Wang, C. Cheng, B. Huang, et al., Nano Lett. 21 (2021) 980-987.
doi: 10.1021/acs.nanolett.0c04004
Y. Wang, C. Li, Z. Fan, et al., Nano Lett. 20 (2020) 8074-8080.
doi: 10.1021/acs.nanolett.0c03073
N. Zhang, F. Zheng, B. Huang, et al., Adv. Mater. 32 (2020) 1906477.
doi: 10.1002/adma.201906477
Y. Feng, H. Yang, Y. Zhang, et al., Nano Lett. 20 (2020) 8282-8289.
doi: 10.1021/acs.nanolett.0c03400
R. Cui, Q. Yuan, C. Zhang, et al., ACS Catal. 12 (2022) 11294-11300.
doi: 10.1021/acscatal.2c03369
H. Tao, X. Sun, S. Back, et al., Chem. Sci. 9 (2018) 483-487.
doi: 10.1039/C7SC03018E
B. Qin, Y. Li, H. Wang, et al., Nano Energy 60 (2019) 43-51.
doi: 10.1016/j.nanoen.2019.03.024
Y. Li, W. Niu, T. Chen, et al., Appl. Catal. B: Environ. 321 (2023) 122037.
doi: 10.1016/j.apcatb.2022.122037
X. Feng, Q. Jiao, Q. Li, et al., Electrochim. Acta 331 (2020) 135356.
doi: 10.1016/j.electacta.2019.135356
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Xiaoli Deng , Xiangchao Lu , Yang Cao , Qianjin Chen . Electrochemical imaging uncovers the heterogeneity of HER activity by sulfur vacancies in molybdenum disulfide monolayer. Chinese Chemical Letters, 2025, 36(3): 110379-. doi: 10.1016/j.cclet.2024.110379
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Guilong Li , Wenbo Ma , Jialing Zhou , Caiqin Wu , Chenling Yao , Huan Zeng , Jian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449
Xuan Liu , Qing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Yanhua Peng , Xin Yu , Ting Wang . Adaptive nanoconfined Fenton-like reactions: Tailoring carbon pathways for sustainable water treatment and energy harvesting. Chinese Chemical Letters, 2024, 35(12): 110198-. doi: 10.1016/j.cclet.2024.110198
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Tengfei Yang , Jingshuai Xiao , Xiao Sun , Yan Song , Chaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Jian-Rong Li , Jieying Hu , Lai-Hon Chung , Jilong Zhou , Parijat Borah , Zhiqing Lin , Yuan-Hui Zhong , Hua-Qun Zhou , Xianghua Yang , Zhengtao Xu , Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380
Dongmei Yao , Junsheng Zheng , Liming Jin , Xiaomin Meng , Zize Zhan , Runlin Fan , Cong Feng , Pingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382
Shunshun Jiang , Ji Zhang , Jing Wang , Shan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Wenhao Yan , Shuaiya Xue , Xuerui Zhao , Wei Zhang , Jian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224
Mei Peng , Wei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899
Shehla Khalid , Muhammad Bilal , Nasir Rasool , Muhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498