A review on hydrogen production from ammonia borane: Experimental and theoretical studies
-
* Corresponding authors.
E-mail addresses: hecz2019@xatu.edu.cn (C. He), huxincheng2019@163.com (X. Hu).
Citation:
Jinrong Huo, Kai Zhang, Haocong Wei, Ling Fu, Chenxu Zhao, Chaozheng He, Xincheng Hu. A review on hydrogen production from ammonia borane: Experimental and theoretical studies[J]. Chinese Chemical Letters,
;2023, 34(12): 108280.
doi:
10.1016/j.cclet.2023.108280
Q. Li, Y. Wang, J. Zeng, et al., Chin. Chem. Lett. 32 (2021) 3355–3358.
doi: 10.1016/j.cclet.2021.03.063
Y. Liu, Q. Feng, W. Liu, et al., Nano Energy 81 (2021) 105641.
doi: 10.1016/j.nanoen.2020.105641
L. Chen, Y. Wang, X. Zhao, et al., J. Mater. Sci. Technol. 110 (2022) 128–135.
doi: 10.1016/j.jmst.2021.08.083
S.G. Shore, R.W. Parry, J. Am. Chem. Soc. 77 (1955) 19–20.
S.G. Shore, R.W. Parry, J. Am. Chem. Soc. 80 (1958) 8–12.
doi: 10.1021/ja01534a003
D.J. Heldebrant, A. Karkamkar, J.C. Linehan, et al., Energy Environ. Sci. 1 (2008) 156.
doi: 10.1039/b808865a
P.V. Ramachandran, B.C. Raju, P.D. Gagare, Org. Lett. 14 (2012) 6119–6121.
doi: 10.1021/ol302421t
P.V. Ramachandran, H. Mistry, A.S. Kulkarni, et al., Dalton Trans. 43 (2014) 16580–16583.
doi: 10.1039/C4DT02467B
P.V. Ramachandran, A.S. Kulkarni, Inorg. Chem. 54 (2015) 5618–5620.
doi: 10.1021/acs.inorgchem.5b00572
H.T. Hwang, A. Al-Kukhun, A. Varma, Int. J. Hydrog. Energy 37 (2012) 2407–2411.
doi: 10.1016/j.ijhydene.2011.10.088
H.T. Hwang, A. Al-Kukhun, A. Varma, Int. J. Hydrog. Energy 37 (2012) 6764–6770.
doi: 10.1016/j.ijhydene.2012.01.098
N. Patel, A. Kale, A. Miotello, Appl. Catal. B 111-112 (2012) 178–184.
A.C. Gangal, P. Kale, R. Edla, et al., Int. J. Hydrog. Energy 37 (2012) 6741–6748.
doi: 10.1016/j.ijhydene.2012.01.017
J.F. Petit, U.B. Demirci, Inorg. Chem. 58 (2019) 489–494.
doi: 10.1021/acs.inorgchem.8b02721
G.J. Kim, S.G. Hunt, H.T. Hwang, Int. J. Hydrog. Energy 45 (2020) 33751–33758.
doi: 10.1016/j.ijhydene.2020.09.054
F. Toche, R. Chiriac, U.B. Demirci, et al., Int. J. Hydrog. Energy 37 (2012) 6749–6755.
doi: 10.1016/j.ijhydene.2012.01.037
D. Salinas-Torres, M. Navlani-García, Y. Kuwahara, et al., Catal. Today 351 (2020) 6–11.
doi: 10.1016/j.cattod.2019.03.072
M. Tong, Z. Yin, Y. Wang, et al., Int. J. Hydrog. Energy 38 (2013) 15285–15294.
doi: 10.1016/j.ijhydene.2013.09.097
T. Zhou, G. Wang, H. Cui, et al., Int. J. Hydrog. Energy 41 (2016) 11746–11760.
doi: 10.1016/j.ijhydene.2015.12.201
A. Kuang, T. Zhou, G. Wang, et al., Appl. Surf. Sci. 362 (2016) 562–571.
doi: 10.1016/j.apsusc.2015.11.011
H. Wu, Q.Q. Luo, R.Q. Zhang, et al., Chin. J. Chem. Phys. 31 (2018) 641–648.
doi: 10.1063/1674-0068/31/cjcp1804063
A.C. Gangal, P. Sharma, Int. J. Chem. Kinet. 45 (2013) 452–461.
doi: 10.1002/kin.20781
Q. Zhang, C. He, J. Huo, Comp. Mater. Sci. 207 (2022) 111306.
doi: 10.1016/j.commatsci.2022.111306
C. He, Q. Zhang, J. Huo, et al., Chin. Chem. Lett. 33 (2022) 3281–3286.
doi: 10.1016/j.cclet.2022.02.055
J. Huo, L. Fu, C. Zhao, et al., Chin. Chem. Lett. 32 (2021) 2269–2273.
doi: 10.1016/j.cclet.2020.12.059
J. Huo, H. Wei, L. Fu, et al., Chin. Chem. Lett. 34 (2023) 107261.
doi: 10.1016/j.cclet.2022.02.066
C.Y. Peng, L. Kang, S. Cao, et al., Angew. Chem. 127 (2015) 15951–15955.
doi: 10.1002/ange.201508113
C. Hou, Q. Li, C. Wang, et al., Energy Environ. Sci. 10 (2017) 1770–1776.
doi: 10.1039/C7EE01553D
Z. Li, T. He, D. Matsumura, et al., ACS Catal. 7 (2017) 6762–6769.
doi: 10.1021/acscatal.7b01790
Q. Wang, F. Fu, S. Yang, et al., ACS Catal. 9 (2019) 1110–1119.
doi: 10.1021/acscatal.8b04498
Y. Peng, Y. He, Y. Wang, et al., J. Colloid Interface Sci. 594 (2021) 131–140.
doi: 10.1016/j.jcis.2021.02.086
L. Semiz, Chem. Phys. Lett. 767 (2021) 138365.
doi: 10.1016/j.cplett.2021.138365
W. Wang, M. Liang, Y. Jiang, et al., Mater. Lett. 293 (2021) 129702.
doi: 10.1016/j.matlet.2021.129702
H. Wu, Y. Cheng, B. Wang, et al., J. Energy Chem. 57 (2021) 198–205.
doi: 10.1016/j.jechem.2020.08.051
J. Xu, K. Feng, Y. Chen, et al., Appl. Surf. Sci. 537 (2021) 147823.
doi: 10.1016/j.apsusc.2020.147823
J. Zhang, J. Li, L. Yang, et al., Int. J. Hydrog. Energy 46 (2021) 3964–3973.
doi: 10.1016/j.ijhydene.2020.10.234
L. Zhao, Q. Wei, L. Zhang, et al., Renew. Energy 173 (2021) 273–282.
doi: 10.1016/j.renene.2021.03.100
Y. Chen, K. Feng, G. Yuan, et al., Chem. Eng. J. 428 (2022) 131219.
doi: 10.1016/j.cej.2021.131219
P. Li, R. Chen, Y. Huang, et al., Appl. Catal. B 300 (2022) 120725.
doi: 10.1016/j.apcatb.2021.120725
H. Song, Y. Cheng, B. Li, et al., ACS Sustain. Chem. Eng. 8 (2020) 3995–4002.
doi: 10.1021/acssuschemeng.0c00745
Y. SÜRME, Int. J. Chem. Technol. 4 (2020) 103–108.
doi: 10.32571/ijct.732677
S. Akbayrak, S. Ozkar, J. Colloid Interface Sci. 596 (2021) 100–107.
doi: 10.1016/j.jcis.2021.03.039
Y. Feng, Y. Shao, X. Chen, et al., ACS Appl. Energy Mater. 4 (2021) 633–642.
doi: 10.1021/acsaem.0c02521
Y. He, Y. Peng, Y. Wang, et al., Fuel 297 (2021) 120750.
doi: 10.1016/j.fuel.2021.120750
X. Huang, Y. Liu, H. Wen, et al., Appl. Catal. B 287 (2021) 119960.
doi: 10.1016/j.apcatb.2021.119960
J. Liu, P. Li, R. Jiang, et al., ChemCatChem 13 (2021) 1–10.
doi: 10.1002/cctc.202001851
H. Lv, R. Wei, X. Guo, et al., J. Phys. Chem. Lett. 12 (2021) 696–703.
doi: 10.1021/acs.jpclett.0c03547
S. Rej, L. Mascaretti, E.Y. Santiago, et al., ACS Catal. 10 (2020) 5261–5271.
doi: 10.1021/acscatal.0c00343
Q. Xu, M. Chandra, J. Power Sources 163 (2006) 364–370.
doi: 10.1016/j.jpowsour.2006.09.043
D. Sun, V. Mazumder, O. Metin, et al., ACS Nano 5 (2011) 6458–6464.
doi: 10.1021/nn2016666
Z.C. Fu, Y. Xu, S.L. Chan, et al., Chem. Commun. 53 (2017) 705–708 Camb. .
doi: 10.1039/C6CC08120G
C. Tang, F. Qu, A.M. Asiri, et al., Inorg. Chem. Front. 4 (2017) 659–662.
doi: 10.1039/C6QI00518G
B. Coşkuner Filiz, A. Kantürk Figen, P. Sabriye, Appl. Catal. A: Gen. 550 (2018) 320–330.
doi: 10.1016/j.apcata.2017.11.022
F. Fu, C. Wang, Q. Wang, et al., J. Am. Chem. Soc. 140 (2018) 10034–10042.
doi: 10.1021/jacs.8b06511
Q. Zhou, L. Qi, H. Yang, et al., J. Colloid Interface Sci. 513 (2018) 258–265.
doi: 10.1016/j.jcis.2017.11.040
Y. Lin, L. Yang, H. Jiang, et al., J. Phys. Chem. Lett. 10 (2019) 1048–1054.
doi: 10.1021/acs.jpclett.9b00122
Y. Wang, D. Wang, C. Zhao, et al., Int. J. Hydrog. Energy 44 (2019) 10508–10518.
doi: 10.1016/j.ijhydene.2019.02.157
X. Yang, Q. Li, L. Li, et al., J. Power Sources 431 (2019) 135–143.
doi: 10.1016/j.jpowsour.2019.05.038
M. Zhang, X. Xiao, Y. Wu, et al., Catalysts 9 (2019) 1009.
doi: 10.3390/catal9121009
X. Zhou, X.F. Meng, J.M. Wang, et al., Int. J. Hydrog. Energy 44 (2019) 4764–4770.
doi: 10.1016/j.ijhydene.2019.01.026
S. Akbayrak, Y. Tonbul, S. Özkar, ACS Sustain. Chem. Eng. 8 (2020) 4216–4224.
doi: 10.1021/acssuschemeng.9b07402
W. Chen, W. Fu, G. Qian, et al., iScience 23 (2020) 100922.
doi: 10.1016/j.isci.2020.100922
L.L. Fu, D.F. Zhang, Z. Yang, et al., ACS Sustain. Chem. Eng. 8 (2020) 3734–3742.
doi: 10.1021/acssuschemeng.9b06865
Y.T. Li, X.L. Zhang, Z.K. Peng, et al., Fuel 277 (2020) 118243.
doi: 10.1016/j.fuel.2020.118243
Y.T. Li, X.L. Zhang, Z.K. Peng, et al., ACS Sustain. Chem. Eng. 8 (2020) 8458–8468.
doi: 10.1021/acssuschemeng.0c03009
S. Prabu, K.Y. Chiang, Mater. Adv. 1 (2020) 1952–1962.
doi: 10.1039/D0MA00441C
M. Rakap, Renew. Energy 154 (2020) 1076–1082.
doi: 10.1016/j.renene.2020.03.088
J. Li, Q. Guan, H. Wu, et al., J. Am. Chem. Soc. 141 (2019) 14515–14519.
doi: 10.1021/jacs.9b06482
P.V. Ramachandran, P.D. Gagare, Inorg. Chem. 46 (2007) 7810–7817.
doi: 10.1021/ic700772a
Y. Karataş, M. Gülcan, M. Çelebi, et al., ChemistrySelect 2 (2017) 9628–9635.
doi: 10.1002/slct.201701616
C. Reller, F.O. Mertens, Angew. Chem. Int. Ed. 51 (2012) 11731–11735.
doi: 10.1002/anie.201201134
C. Reller, F. Mertens, ChemPlusChem 83 (2018) 1013–1020.
doi: 10.1002/cplu.201800347
H. Erdogan, O. Metin, S. Ozkar, Phys. Chem. Chem. Phys. 11 (2009) 10519–10525.
doi: 10.1039/b916459f
D. Sun, V. Mazumder, Ö. Metin, et al., ACS Catal. 2 (2012) 1290–1295.
doi: 10.1021/cs300211y
D. Sun, P. Li, B. Yang, et al., RSC Adv. 6 (2016) 105940–105947.
doi: 10.1039/C6RA21691A
P. Lara, K. Philippot, A. Suárez, ChemCatChem 11 (2019) 766–771.
doi: 10.1002/cctc.201801702
H.B. Dai, X.D. Kang, P. Wang, Int. J. Hydrog. Energy 35 (2010) 10317–10323.
doi: 10.1016/j.ijhydene.2010.07.164
Y. Karatas, M. Gülcan, F. Sen, Int. J. Hydrog. Energy 44 (2019) 13432–13442.
doi: 10.1016/j.ijhydene.2019.04.012
H. Erdogan, Ö. Metin, S. Özkar, Catal. Today 170 (2011) 93–98. ˘
doi: 10.1016/j.cattod.2010.08.024
S. Peng, J. Liu, J. Zhang, et al., Int. J. Hydrog. Energy 40 (2015) 10856–10866.
doi: 10.1016/j.ijhydene.2015.06.113
Y. Fang, J. Li, T. Togo, et al., Chem 4 (2018) 555–563.
doi: 10.1016/j.chempr.2018.01.004
S. Çalışkan, M. Zahmakıran, S. Özkar, Appl. Catal. B 93 (2010) 387–394.
doi: 10.1016/j.apcatb.2009.10.013
D. Özhava, S. Özkar, Appl. Catal. B 237 (2018) 1012–1020.
doi: 10.1016/j.apcatb.2018.06.064
W. Luo, W. Cheng, M. Hu, et al., ChemSusChem 12 (2019) 535–541.
doi: 10.1002/cssc.201802157
B. Abay, M. Rakap, Catal. Sci. Technol. 10 (2020) 7270–7279.
doi: 10.1039/D0CY01422B
D. Özhava, S. Özkar, Int. J. Hydrog. Energy 40 (2015) 10491–10501.
doi: 10.1016/j.ijhydene.2015.06.144
D. Özhava, S. Özkar, Appl. Catal. B 181 (2016) 716–726.
doi: 10.1016/j.apcatb.2015.08.038
D. Özhava, S. Özkar, Mol. Catal. 439 (2017) 50–59.
doi: 10.1016/j.mcat.2017.06.016
J.K. Sun, W.W. Zhan, T. Akita, et al., J. Am. Chem. Soc. 137 (2015) 7063–7066.
doi: 10.1021/jacs.5b04029
Q. Yao, M. Huang, Z.H. Lu, et al., Dalton Trans. 44 (2015) 1070–1076.
doi: 10.1039/C4DT02873B
M. Yurderi, A. Bulut, I.E. Ertas, et al., Appl. Catal. B 165 (2015) 169–175. ˙
doi: 10.1016/j.apcatb.2014.10.011
C. Yu, J. Fu, M. Muzzio, et al., Chem. Mater. 29 (2017) 1413–1418.
doi: 10.1021/acs.chemmater.6b05364
K. Mori, P. Verma, R. Hayashi, et al., Chemistry 21 (2015) 11885–11893.
doi: 10.1002/chem.201501361
S. Jo, P. Verma, Y. Kuwahara, et al., J. Mater. Chem. A 5 (2017) 21883–21892.
doi: 10.1039/C7TA07264C
H. Cheng, T. Kamegawa, K. Mori, et al., Angew. Chem. Int. Ed. 53 (2014) 2910–2914.
doi: 10.1002/anie.201309759
H. Yin, Y. Kuwahara, K. Mori, et al., J. Mater. Chem. A 5 (2017) 8946–8953.
doi: 10.1039/C7TA01217A
Z. Lou, Q. Gu, L. Xu, et al., Chem. Asian J. 10 (2015) 1291–1294.
doi: 10.1002/asia.201500319
X. Li, Y. Yan, Y. Jiang, et al., Nanoscale Adv. 1 (2019) 3941–3947.
doi: 10.1039/C9NA00424F
S.W. Lai, J.W. Park, S.H. Yoo, et al., Int. J. Hydrog. Energy 41 (2016) 3428–3435.
doi: 10.1016/j.ijhydene.2015.12.058
H. Zhang, X. Gu, P. Liu, et al., J. Mater. Chem. A 5 (2017) 2288–2296.
doi: 10.1039/C6TA08987A
L.T. Guo, Y.Y. Cai, J.M. Ge, et al., ACS Catal. 5 (2014) 388–392.
B. Pant, H.R. Pant, M. Park, et al., Catal. Commun. 50 (2014) 63–68.
doi: 10.1016/j.catcom.2014.03.002
M. Wen, Y. Cui, Y. Kuwahara, et al., ACS Appl. Mater. Interfaces 8 (2016) 21278–21284.
doi: 10.1021/acsami.6b04169
H. Zhang, X. Gu, J. Song, et al., ACS Appl. Mater. Interfaces 9 (2017) 32767–32774.
doi: 10.1021/acsami.7b10280
J. Song, X. Gu, J. Cheng, et al., Appl. Catal. B 225 (2018) 424–432.
doi: 10.1016/j.apcatb.2017.12.024
S. Zhang, M. Li, L. Li, et al., ACS Catal. 10 (2020) 14903–14915.
doi: 10.1021/acscatal.0c03965
S.H. Xu, J.F. Wang, A. Valério, et al., Inorg. Chem. Front. 8 (2021) 48–58.
doi: 10.1039/D0QI00659A
M. Navlani-García, P. Verma, Y. Kuwahara, et al., J. Photochem. Photobiol. A Chem. 358 (2018) 327–333.
doi: 10.1016/j.jphotochem.2017.09.007
L. Wei, Y. Yang, Y.N. Yu, et al., Int. J. Hydrog. Energy 46 (2021) 3811–3820.
doi: 10.1016/j.ijhydene.2020.10.177
J. Song, X. Gu, Y. Cao, et al., J. Mater. Chem. A 7 (2019) 10543–10551.
doi: 10.1039/C9TA01674K
H. Huang, C. Wang, Q. Li, et al., Adv. Funct. Mater. 31 (2020) 2007591.
Y. Wang, G. Shen, Y. Zhang, et al., Appl. Catal. B 260 (2020) 118183.
doi: 10.1016/j.apcatb.2019.118183
D. Sun, Y. Hao, C. Wang, et al., Int. J. Hydrog. Energy 45 (2020) 4390–4402.
doi: 10.1016/j.ijhydene.2019.11.212
Y. Yan, J. Li, T. Jia, et al., Energy Fuels 35 (2021) 16035–16045.
doi: 10.1021/acs.energyfuels.1c01893
N. Kang, Q. Wang, R. Djeda, et al., ACS Appl. Mater. Interfaces 12 (2020) 53816–53826.
doi: 10.1021/acsami.0c16247
P. Xu, W. Lu, J. Zhang, et al., ACS Sustain. Chem. Eng. 8 (2020) 12366–12377.
doi: 10.1021/acssuschemeng.0c02276
J. Song, F. Wu, Y. Lu, et al., ACS Appl. Nano Mater. 4 (2021) 4800–4809.
R. Fang, Z. Yang, Z. Wang, et al., Energy 244 (2022) 123187.
doi: 10.1016/j.energy.2022.123187
H. Li, Y. Yan, S. Feng, et al., Fuel 255 (2019) 115771.
doi: 10.1016/j.fuel.2019.115771
B. Wang, L. Xiong, H. Hao, et al., J. Alloys Compd. 844 (2020) 156253.
doi: 10.1016/j.jallcom.2020.156253
J. Yu, C. He, J. Huo, et al., Int. J. Hydrog. Energy 47 (2022) 7738–7750.
doi: 10.1016/j.ijhydene.2021.12.095
J. Huo, H. Wei, L. Fu, et al., Mater. Today. Commun. 31 (2022) 103544.
doi: 10.1016/j.mtcomm.2022.103544
D. Hong, W. Zang, X. Guo, et al., ACS Appl. Mater. Interfaces 8 (2016) 21302–21314.
doi: 10.1021/acsami.6b05252
H. You, Z. Wu, Y. Jia, et al., Chemosphere 183 (2017) 528–535.
doi: 10.1016/j.chemosphere.2017.05.130
S. Li, Z. Zhao, D. Yu, et al., Nano Energy 66 (2019) 104083.
doi: 10.1016/j.nanoen.2019.104083
D. Yu, Z. Liu, J. Zhang, et al., Nano Energy 58 (2019) 695–705.
doi: 10.1016/j.nanoen.2019.01.095
K.S. Hong, H. Xu, H. Konishi, et al., J. Phys. Chem. Lett. 1 (2010) 997–1002.
doi: 10.1021/jz100027t
R. Tang, D. Gong, Y. Zhou, et al., Appl. Catal. B 303 (2022) 120929.
doi: 10.1016/j.apcatb.2021.120929
H. Li, Y. Sang, S. Chang, et al., Nano Lett. 15 (2015) 2372–2379.
doi: 10.1021/nl504630j
J. Song, X. Gu, H. Zhang, ChemistryOpen 9 (2020) 366–373.
doi: 10.1002/open.201900335
M. Pan, S. Liu, J.W. Chew, Nano Energy 68 (2020) 104366.
doi: 10.1016/j.nanoen.2019.104366
S. Liu, K. Huang, W. Liu, et al., New J. Chem. 44 (2020) 14291–14298.
doi: 10.1039/D0NJ01053G
Zhou Yiwen, Huang Kuangzheng, Liu Wenxiao, et al., J. Suzhou Univ. Sci. Technol. 38 (2021) 1–11.
S. Özkar, Int. J. Hydrog. Energy 45 (2020) 7881–7891.
doi: 10.1016/j.ijhydene.2019.04.125
A.D. Sutton, A.K. Burrell, D.A. Dixon, et al., Science 331 (2011) 1426–1429.
doi: 10.1126/science.1199003
S. Hausdorf, F. Baitalow, G. Wolf, et al., Int. J. Hydrog. Energy 33 (2008) 608–614.
doi: 10.1016/j.ijhydene.2007.10.035
Q. Yao, H. Du, Z.H. Lu, Prog. Chem. 32 (2020) 1930–1951.
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Xian-Fa Jiang , Chongyun Shao , Zhongwen Ouyang , Zhao-Bo Hu , Zhenxing Wang , You Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011
Yiyue Ding , Qiuxiang Zhang , Lei Zhang , Qilu Yao , Gang Feng , Zhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
Xinlong Zheng , Zhongyun Shao , Jiaxin Lin , Qizhi Gao , Zongxian Ma , Yiming Song , Zhen Chen , Xiaodong Shi , Jing Li , Weifeng Liu , Xinlong Tian , Yuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
Yuehai Zhi , Chen Gu , Huachao Ji , Kang Chen , Wenqi Gao , Jianmei Chen , Dafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234
Wenqing Deng , Fanfeng Deng , Ting Zhang , Junjie Lin , Liang Zhao , Gang Li , Yi Pan , Jiebin Yang . Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer. Chinese Chemical Letters, 2025, 36(3): 110085-. doi: 10.1016/j.cclet.2024.110085
Yiwen Xu , Chaozheng He , Chenxu Zhao , Ling Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242
Deqi Fan , Yicheng Tang , Yemei Liao , Yan Mi , Yi Lu , Xiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
Yuexiang Liu , Xiangqiao Yang , Tong Lin , Guantian Yang , Xiaoyong Xu , Bubing Zeng , Zhong Li , Weiping Zhu , Xuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Linping Li , Junhui Su , Yanping Qiu , Yangqin Gao , Ning Li , Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472