Recent advances in polyoxometalates acid-catalyzed organic reactions
-
* Corresponding authors.
E-mail addresses: cwhu@bit.edu.cn (C.-W. Hu), erick@ecut.edu.cn (G.-P. Yang).
Citation:
Yu-Feng Liu, Chang-Wen Hu, Guo-Ping Yang. Recent advances in polyoxometalates acid-catalyzed organic reactions[J]. Chinese Chemical Letters,
;2023, 34(5): 108097.
doi:
10.1016/j.cclet.2022.108097
A. Bijelic, A. Rompel, Coord. Chem. Rev. 299 (2015) 22–38.
doi: 10.1016/j.ccr.2015.03.018
B. Chakraborty, I.A. Weinstock, Coord. Chem. Rev. 382 (2019) 85–102.
doi: 10.1016/j.ccr.2018.11.011
X.X. Li, D. Zhao, S.T. Zheng, Coord. Chem. Rev. 397 (2019) 220–240.
doi: 10.1016/j.ccr.2019.07.005
H. Lv, Y.V. Geletii, C. Zhao, et al., Chem. Soc. Rev. 41 (2012) 7572–7589.
doi: 10.1039/c2cs35292c
N. Mizuno, K. Kamata, Coord. Chem. Rev. 255 (2011) 2358–2370.
doi: 10.1016/j.ccr.2011.01.041
N. Narkhede, S. Singh, A. Patel, Green Chem. 17 (2015) 89–107.
doi: 10.1039/C4GC01743A
C. Yvon, A.J. Surman, M. Hutin, et al., Angew. Chem. Int. Ed. 53 (2014) 3336–3341.
doi: 10.1002/anie.201311135
H.Y. Zhao, Y.Z. Li, J.W. Zhao, et al., Coord. Chem. Rev. 443 (2021) 213966.
doi: 10.1016/j.ccr.2021.213966
S.T. Zheng, G.Y. Yang, Chem. Soc. Rev. 41 (2012) 7623–7646.
doi: 10.1039/c2cs35133a
D.L. Long, E. Burkholder, L. Cronin, Chem. Soc. Rev. 36 (2007) 105–121.
doi: 10.1039/B502666K
D.L. Long, R. Tsunashima, L. Cronin, Angew. Chem. Int. Ed. 49 (2010) 1736–1758.
doi: 10.1002/anie.200902483
L. Chen, W.L. Chen, X.L. Wang, et al., Chem. Soc. Rev. 48 (2019) 260–284.
doi: 10.1039/c8cs00559a
D.Y. Du, J.S. Qin, S.L. Li, et al., Chem. Soc. Rev. 43 (2014) 4615–4632.
doi: 10.1039/C3CS60404G
W.H. Fang, L. Zhang, J. Zhang, Chem. Soc. Rev. 47 (2018) 404–421.
doi: 10.1039/C7CS00511C
I.A. Weinstock, R.E. Schreiber, R. Neumann, Chem. Rev. 118 (2018) 2680–2717.
doi: 10.1021/acs.chemrev.7b00444
J. Zhang, Y. Huang, G. Li, et al., Coord. Chem. Rev. 378 (2019) 395–414.
doi: 10.1016/j.ccr.2017.10.025
D.J. Zang, H.Q. Wang, Polyoxometalates 1 (2022) 9140006.
doi: 10.26599/pom.2022.9140006
N.S. Bhat, S.S. Mal, S. Dutta, Mol. Catal. 505 (2021) 111484.
doi: 10.1016/j.mcat.2021.111484
I.V. Kozhevnikov, J. Mol. Catal. A: Chem. 262 (2007) 86–92.
doi: 10.1016/j.molcata.2006.08.072
L. Lian, H. Zhang, S. An, et al., Sci. China Chem. 64 (2021) 1117–1130.
doi: 10.1007/s11426-020-9957-0
S.S. Wang, G.Y. Yang, Chem. Rev. 115 (2015) 4893–4962.
doi: 10.1021/cr500390v
M.M. Heravi, S. Sadjadi, J. Iran. Chem. Soc. 6 (2009) 1–54.
Y. Leng, J. Wang, D. Zhu, et al., Angew. Chem. Int. Ed. 48 (2009) 168–171.
doi: 10.1002/anie.200803567
Z.Y. Liu, Y.D. Lin, Y. Hao, et al., Tungsten 4 (2022) 81–98.
doi: 10.1007/s42864-021-00134-1
N. Mizuno, K. Yamaguchi, K. Kamata, Coord. Chem. Rev. 249 (2005) 1944–1956.
doi: 10.1016/j.ccr.2004.11.019
P.G. Romanelli, C.J. Autino, Mini-Rev. Org. Chem. 6 (2009) 359–366.
doi: 10.2174/157019309789371578
J. Zhong, J. Pérez-Ramírez, N. Yan, Green Chem. 23 (2021) 18–36.
doi: 10.1039/d0gc03190a
X. Huang, N. Zhen, Y. Chi, et al., Sci. Sin. Chim. 50 (2020) 1064.
doi: 10.1360/SSC-2020-0083
I.V. Kozhevnikov, Chem. Rev. 98 (1998) 171–198.
doi: 10.1021/cr960400y
E. Ahmad, T.S. Khan, M.I. Alam, et al., Chem. Eng. J. 400 (2020) 125916.
doi: 10.1016/j.cej.2020.125916
Y. Chen, D. Liu, R. Wang, et al., J. Org. Chem. 87 (2022) 351–362.
doi: 10.1021/acs.joc.1c02385
F. de Azambuja, J. Lenie, T.N. Parac-Vogt, ACS Catal. 11 (2021) 271–277.
doi: 10.1021/acscatal.0c04189
F. de Azambuja, T.N. Parac-Vogt, ACS Catal. 9 (2019) 10245–10252.
doi: 10.1021/acscatal.9b03415
J. Li, S. Zhao, Z. Li, et al., Inorg. Chem. 60 (2021) 7785–7793.
doi: 10.1021/acs.inorgchem.1c00185
J. Yang, M.J. Janik, D. Ma, et al., J. Am. Chem. Soc. 127 (2005) 18274–18280.
doi: 10.1021/ja055925z
N. Mizuno, M. Misono, Chem. Rev. 98 (1998) 199–218.
doi: 10.1021/cr960401q
W. Deng, Q. Zhang, Y. Wang, Dalton Trans. 41 (2012) 9817–9831.
doi: 10.1039/c2dt30637a
Z. Wei, J. Wang, H. Yu, et al., Molecules 27 (2022) 5212–5225.
doi: 10.3390/molecules27165212
I.V. Kozhevnikov, Appl. Catal. A: Gen. 256 (2003) 3–18.
doi: 10.1016/S0926-860X(03)00406-X
H. Li, C.C.C. Johansson Seechurn, T.J. Colacot, ACS Catal. 2 (2012) 1147–1164.
doi: 10.1021/cs300082f
X.F. Wu, P. Anbarasan, H. Neumann, et al., Angew. Chem. Int. Ed. 49 (2010) 9047–9050.
doi: 10.1002/anie.201006374
K.R. Holman, A.M. Stanko, S.E. Reisman, Chem. Soc. Rev. 50 (2021) 7891–7908.
doi: 10.1039/d0cs01385d
C.S. Wang, P.H. Dixneuf, J.F. Soulé, Chem. Rev. 118 (2018) 7532–7585.
doi: 10.1021/acs.chemrev.8b00077
L.E. Zetzsche, A.R.H. Narayan, Nat. Rev. Chem. 4 (2020) 334–346.
doi: 10.1038/s41570-020-0191-2
T. Ueda, K. Yamashita, A. Onda, Appl. Catal. A: Gen. 485 (2014) 181–187.
doi: 10.1016/j.apcata.2014.07.032
G.P. Yang, Y.F. Liu, K. Li, et al., Chin. Chem. Lett. 31 (2020) 3233–3236.
doi: 10.1016/j.cclet.2020.07.018
G.P. Yang, D. Dilixiati, T. Yang, et al., Appl. Organomet. Chem. 32 (2018) e4450.
doi: 10.1002/aoc.4450
J. Li, Y. Zhou, D. Mao, et al., Chem. Eng. J. 254 (2014) 54–62.
doi: 10.21273/jashs.139.1.54
E. Rafiee, F. Mirnezami, M. Kahrizi, J. Mol. Struct. 1119 (2016) 332–339.
doi: 10.1016/j.molstruc.2016.04.098
D.N.K. Reddy, K.B. Chandrasekhar, Y.S.S. Ganesh, et al., Synth. Commun. 45 (2015) 513–523.
doi: 10.1080/00397911.2014.966392
M. Ammar, S. Jiang, S. Ji, J. Solid State Chem. 233 (2016) 303–310.
doi: 10.1016/j.jssc.2015.11.014
L. Ullah, G. Zhao, Z. Xu, et al., Sci. China Chem. 61 (2018) 402–411.
doi: 10.1007/s11426-017-9182-0
C. Pezzotta, G. Fleury, M. Soetens, et al., J. Catal. 359 (2018) 198–211.
doi: 10.1016/j.jcat.2018.01.010
M.S. Rahaman, S. Tulaphol, M.A. Hossain, et al., Mol. Catal. 514 (2021) 111848.
doi: 10.1016/j.mcat.2021.111848
G.P. Yang, N. Zhang, N.N. Ma, et al., Adv. Synth. Catal. 359 (2017) 926–932.
doi: 10.1002/adsc.201601231
G.P. Yang, N. Jiang, X.Q. Huang, et al., Mol. Catal. 468 (2019) 80–85.
doi: 10.1016/j.mcat.2019.02.019
G.P. Yang, X. Wu, B. Yu, et al., ACS Sustainable Chem. Eng. 7 (2019) 3727–3732.
doi: 10.1021/acssuschemeng.8b06445
Z. Hui, S. Jiang, X. Qi, et al., Tetrahedron Lett. 61 (2020) 151995.
doi: 10.1016/j.tetlet.2020.151995
M.R. Becker, R.B. Watson, C.S. Schindler, Chem. Soc. Rev. 47 (2018) 7867–7881.
doi: 10.1039/c8cs00391b
J. Macht, M.J. Janik, M. Neurock, et al., J. Am. Chem. Soc. 130 (2008) 10369–10379.
doi: 10.1021/ja803114r
A.R.C. Morais, S. Dworakowska, A. Reis, et al., Catal. Today 239 (2015) 38–43.
doi: 10.1016/j.cattod.2014.05.033
V.L. Sushkevich, V.V. Ordomsky, I.I. Ivanova, Catal. Sci. Technol. 6 (2016) 6354–6364.
doi: 10.1039/C6CY00761A
S. Wang, E. Iglesia, ACS Catal. 6 (2016) 7664–7684.
doi: 10.1021/acscatal.6b02171
P.A. Kots, M.A. Artsiusheuski, Y.V. Grigoriev, et al., ACS Catal. 10 (2020) 15149–15161.
doi: 10.1021/acscatal.0c03282
T. Ma, J. Ding, R. Shao, et al., Chem. Eng. J. 316 (2017) 797–806.
doi: 10.1016/j.cej.2017.02.018
R. Himmelmann, E. Klemm, M. Dyballa, Catal. Sci. Technol. 11 (2021) 3098–3108.
doi: 10.1039/d1cy00143d
A. Micek-Ilnicka, N. Ogrodowicz, U. Filek, et al., Catal. Today 380 (2021) 84–92.
doi: 10.1016/j.cattod.2021.04.021
T. Kella, A.A. Vennathan, S. Dutta, et al., Mol. Catal. 516 (2021) 111975.
doi: 10.1016/j.mcat.2021.111975
T.H. Kang, J.H. Choi, Y. Bang, et al., J. Mol. Catal. A: Chem. 396 (2015) 282–289.
doi: 10.1016/j.molcata.2014.10.015
M.J. West, J.W.B. Fyfe, J.C. Vantourout, et al., Chem. Rev. 119 (2019) 12491–12523.
doi: 10.1021/acs.chemrev.9b00491
Y. Zhao, W. Xia, Chem. Soc. Rev. 47 (2018) 2591–2608.
doi: 10.1039/C7CS00572E
G.W. Wang, Y.B. Shen, X.L. Wu, Eur. J. Org. Chem. 2008 (2008) 4367–4371.
doi: 10.1002/ejoc.200800413
M.A. Tzani, S. Fountoulaki, I.N. Lykakis, J. Org. Chem. 87 (2022) 2601–2615.
doi: 10.1021/acs.joc.1c02550
R.M. de Figueiredo, J.S. Suppo, J.M. Campagne, Chem. Rev. 116 (2016) 12029–12122.
doi: 10.1021/acs.chemrev.6b00237
V.R. Pattabiraman, J.W. Bode, Nature 480 (2011) 471–479.
doi: 10.1038/nature10702
C. Bougheloum, S. Alioua, R. Belghiche, et al., J. Heterocyclic. Chem. 57 (2020) 120–131.
doi: 10.1002/jhet.3753
R. Fu, Y. Yang, Y. Ma, et al., Tetrahedron Lett. 56 (2015) 4527–4531.
doi: 10.1016/j.tetlet.2015.05.118
M. Kooti, E. Nasiri, J. Mol. Catal. A: Chem. 406 (2015) 168–177.
doi: 10.1016/j.molcata.2015.05.009
A. Wang, Y. Xie, J. Wang, et al., Chem. Commun. 58 (2022) 1127–1130.
doi: 10.1039/d1cc05417a
P.J. Borpatra, B. Deka, M.L. Deb, et al., Org. Chem. Front. 6 (2019) 3445–3489.
doi: 10.1039/c9qo00863b
J. Le Bras, J. Muzart, Chem. Soc. Rev. 43 (2014) 3003–3040.
doi: 10.1039/C3CS60379B
J. Li, D. Li, J. Xie, et al., J. Catal. 339 (2016) 123–134.
doi: 10.1016/j.jcat.2016.03.036
L. Lian, X. Chen, X. Yi, et al., Chem. Eur. J. 26 (2020) 11900–11908.
doi: 10.1002/chem.202001451
R.S. Malkar, H. Daly, C. Hardacre, et al., React. Chem. Eng. 4 (2019) 1790–1802.
doi: 10.1039/c9re00167k
R. Tiwari, A. Rahman, N.S. Bhat, et al., ChemistrySelect 4 (2019) 9119–9123.
doi: 10.1002/slct.201902208
J. Wang, H. Yu, Z. Wei, et al., Research 2020 (2020) 3875920.
O.M. Portilla-Zuñiga, J.J. Martínez, M. Casella, et al., Mol. Catal. 494 (2020).
X. Jing, Z. Li, W. Geng, et al., J. Mater. Chem. A 9 (2021) 8480–8488.
doi: 10.1039/d0ta11188k
F. Rajabi, C. Wilhelm, W.R. Thiel, Green Chem. 22 (2020) 4438–4444.
doi: 10.1039/d0gc01354d
Z. Sun, X. Duan, P. Gnanasekarc, et al., Biomass Convers. Bior. 12 (2022) 2313–2331.
doi: 10.1007/s13399-020-00802-1
J. Schnee, A. Eggermont, E.M. Gaigneaux, ACS Catal. 7 (2017) 4011–4017.
doi: 10.1021/acscatal.7b00808
K. Yamamoto, M. Kuriyama, O. Onomura, Acc. Chem. Res. 53 (2020) 105–120.
doi: 10.1021/acs.accounts.9b00513
Y.C. Zhang, F. Jiang, F. Shi, Acc. Chem. Res. 53 (2020) 425–446.
doi: 10.1021/acs.accounts.9b00549
M.Z. Wang, H. Xu, T.W. Liu, et al., Eur. J. Med. Chem. 46 (2011) 1463–1472.
doi: 10.1016/j.ejmech.2011.01.031
M. Soltani, I. Mohammadpoor-Baltork, A.R. Khosropour, et al., C. R. Chim. 19 (2016) 381–389.
doi: 10.1016/j.crci.2015.11.006
S. Basu, T. Ghosh, S. Maity, et al., ChemistrySelect 4 (2019) 5763–5767.
doi: 10.1002/slct.201901011
H. Kamauchi, Y. Shiraishi, A. Kojima, et al., J. Nat. Prod. 81 (2018) 1290–1294.
doi: 10.1021/acs.jnatprod.7b00976
R. Karmakar, P. Pahari, D. Mal, Chem. Rev. 114 (2014) 6213–6284.
doi: 10.1021/cr400524q
X. Pang, X. Lin, J. Yang, et al., J. Nat. Prod. 81 (2018) 1860–1868.
doi: 10.1021/acs.jnatprod.8b00345
N. Zheng, F. Yao, X. Liang, et al., Nat. Prod. Res. 32 (2018) 755–760.
doi: 10.1080/14786419.2017.1311892
G.P. Yang, K. Li, X.L. Lin, et al., Chin. J. Chem. 39 (2021) 3017–3022.
doi: 10.1002/cjoc.202100397
Y.F. Liu, G.M. Cao, L. Chen, et al., Adv. Synth. Catal. 364 (2022) 1460–1464.
doi: 10.1002/adsc.202200081
A. Ansari, A. Ali, M. Asif, et al., New J. Chem. 41 (2017) 16–41.
doi: 10.1039/C6NJ03181A
Z. Xu, C. Gao, Q.C. Ren, et al., Eur. J. Med. Chem. 139 (2017) 429–440.
doi: 10.1016/j.ejmech.2017.07.059
D. Sar, R. Bag, A. Yashmeen, et al., Org. Lett. 17 (2015) 5308–5311.
doi: 10.1021/acs.orglett.5b02669
L. Wang, X. Yu, X. Feng, et al., J. Org. Chem. 78 (2013) 1693–1698.
doi: 10.1021/jo302732v
G.P. Yang, X. He, B. Yu, et al., Appl. Organomet. Chem. 32 (2018) e4532.
doi: 10.1002/aoc.4532
G.P. Yang, S.X. Shang, B. Yu, et al., Inorg. Chem. Front. 5 (2018) 2472–2477.
doi: 10.1039/c8qi00678d
M. Cheng, Y. Liu, W. Du, et al., Chin. Chem. Lett. 33 (2022) 3899–3902.
doi: 10.1016/j.cclet.2021.11.059
K. Li, X.L. Lin, K. Zeng, et al., Tungsten 4 (2022) 149–157.
doi: 10.1007/s42864-021-00119-0
G.P. Yang, Y.F. Liu, X.L. Lin, et al., Chin. Chem. Lett. 33 (2022) 354–357.
doi: 10.1016/j.cclet.2021.05.008
G.P. Yang, X.L. Zhang, Y.F. Liu, et al., Inorg. Chem. Front. 8 (2021) 4650–4656.
doi: 10.1039/d1qi00485a
M.Y. Yao, Y.F. Liu, X.X. Li, et al., Chem. Commun. 58 (2022) 5737–5740.
doi: 10.1039/d2cc01051h
K. Li, Y.F. Liu, X.L. Lin, et al., Inorg. Chem. 61 (2022) 6934–6942.
doi: 10.1021/acs.inorgchem.2c00287
G.P. Yang, X. Xie, M. Cheng, et al., Chin. Chem. Lett. 33 (2022) 1483–1487.
doi: 10.1016/j.cclet.2021.08.037
D. Zhang, L. Ren, A. Liu, et al., Monatsh. Chem. Chem. Mon. 153 (2022) 257–266.
doi: 10.1007/s00706-022-02902-2
L. Wang, K.W. Woods, Q. Li, et al., J. Med. Chem. 45 (2002) 1697–1711.
doi: 10.1021/jm010523x
E. Eidi, M.Z. Kassaee, Z. Nasresfahani, Appl. Organomet. Chem. 30 (2016) 561–565.
doi: 10.1002/aoc.3470
J. Jayram, V. Jeena, Green Chem. 19 (2017) 5841–5845.
doi: 10.1039/C7GC02484C
M. Shaker, A. Davoodnia, H. Vahedi, et al., J. Heterocyclic. Chem. 54 (2017) 313–317.
doi: 10.1002/jhet.2585
M. Masteri-Farahani, A. Ezabadi, R. Mazarei, et al., Appl. Organomet. Chem. 34 (2020) e5727.
B. Maleki, H. Eshghi, A. Khojastehnezhad, et al., RSC Adv. 5 (2015) 64850–64857.
doi: 10.1039/C5RA10534J
M. Esmaeilpour, J. Javidi, M. Zandi, New J. Chem. 39 (2015) 3388–3398.
doi: 10.1039/C5NJ00050E
A. Hashemzadeh, M.M. Amini, R. Tayebee, et al., Mol. Catal. 440 (2017) 96–106.
doi: 10.1016/j.mcat.2017.07.010
A. Hassankhani, E. Mosaddegh, S.Y. Ebrahimipour, Arab. J. Chem. 9 (2016) S936–S939.
doi: 10.1016/j.arabjc.2011.10.003
R. Tayebee, M. Fattahi Abdizadeh, B. Maleki, et al., J. Mol. Liq. 241 (2017) 447–455.
doi: 10.1016/j.molliq.2017.06.033
X. Feng, T. Yang, X. He, et al., Appl. Organomet. Chem. 32 (2018) e4314.
doi: 10.1002/aoc.4314
D.M. Clode, Chem. Rev. 79 (1979) 491–513.
doi: 10.1021/cr60322a002
V. Kannan, K. Sreekumar, A. Gil, et al., Catal. Lett. 141 (2011) 1118–1122.
doi: 10.1007/s10562-011-0572-8
Y. Dai, B.D. Li, H.D. Quan, et al., Chin. Chem. Lett. 21 (2010) 678–681.
doi: 10.1016/j.cclet.2010.02.004
L. Fang, K. Zhang, L. Chen, et al., Chin. J. Catal. 34 (2013) 932–941.
doi: 10.1016/S1872-2067(12)60591-9
K.I. Shimizu, E. Hayashi, T. Hatamachi, et al., J. Catal. 231 (2005) 131–138.
doi: 10.1016/j.jcat.2005.01.017
M.X. Tan, L. Gu, N. Li, et al., Green Chem. 15 (2013) 1127–1132.
doi: 10.1039/c3gc40297e
S. Zhao, Y. Jia, Y.F. Song, Catal. Sci. Technol. 4 (2014) 2618–2625.
doi: 10.1039/C4CY00021H
J. Castanheiro, Catalysts 12 (2022) 81.
doi: 10.3390/catal12010081
L. j. Liu, Q. j. Luan, J. Lu, et al., RSC Adv. 8 (2018) 26180–26187.
doi: 10.1039/C8RA04471F
S. Sadjadi, S. Tarighi, N.S. Moussavi, et al., J. Mol. Struct. 1256 (2022) 132556.
doi: 10.1016/j.molstruc.2022.132556
A.E. Clatworthy, E. Pierson, D.T. Hung, Nat. Chem. Biol. 3 (2007) 541–548.
doi: 10.1038/nchembio.2007.24
S. Ravi Kanth, G. Venkat Reddy, K. Hara Kishore, et al., Eur. J. Med. Chem. 41 (2006) 1011–1016.
doi: 10.1016/j.ejmech.2006.03.028
J. Safari, M. Tavakoli, M.A. Ghasemzadeh, J. Organomet. Chem. 880 (2019) 75–82.
doi: 10.1016/j.jorganchem.2018.10.028
S.M. Vahdat, S. Khaksar, M. Akbari, et al., Arab. J. Chem. 12 (2019) 1515–1521.
doi: 10.1016/j.arabjc.2014.10.026
A. Samzadeh-Kermani, Synlett 27 (2016) 461–464.
S. Jannati, A.A. Esmaeili, Tetrahedron 74 (2018) 2967–2972.
doi: 10.1016/j.tet.2018.04.092
M. Rohaniyan, A. Davoodnia, S.A. Beyramabadi, et al., Appl. Organomet. Chem. 33 (2019) e4881.
doi: 10.1002/aoc.4881
E. Abbaspour-Gilandeh, M. Aghaei-Hashjin, A. Yahyazadeh, et al., RSC Adv. 6 (2016) 55444–55462.
doi: 10.1039/C6RA09818E
Z. Zhao, K. Kang, J. Yue, et al., Eur. J. Med. Chem. 210 (2021) 113073.
doi: 10.1016/j.ejmech.2020.113073
G. Yang, K. Li, K. Zeng, et al., RSC Adv. 11 (2021) 10610–10614.
doi: 10.1039/d1ra01004b
M. Ashok, B.S. Holla, N.S. Kumari, Eur. J. Med. Chem. 42 (2007) 380–385.
doi: 10.1016/j.ejmech.2006.09.003
R. Medyouni, W. Elgabsi, O. Naouali, et al., Spectrochim. Acta A: Mol. Biomol. Spectrosc. 167 (2016) 165–174.
doi: 10.1016/j.saa.2016.04.045
L.G. do Nascimento, I.M. Dias, G.B. Meireles de Souza, et al., J. Org. Chem. 85 (2020) 11170–11180.
doi: 10.1021/acs.joc.0c01167
M.M. Heravi, V. Zadsirjan, Curr. Org. Chem. 24 (2020) 1331–1366.
doi: 10.2174/1385272824999200616111228
H. Nagarajaiah, A. Mukhopadhyay, J.N. Moorthy, Tetrahedron Lett. 57 (2016) 5135–5149.
doi: 10.1016/j.tetlet.2016.09.047
A. Moussa, A. Rahmati, ChemistryOpen 10 (2021) 764–774.
doi: 10.1002/open.202100063
L. Saher, M. Makhloufi-Chebli, L. Dermeche, et al., Tetrahedron Lett. 57 (2016) 1492–1496.
doi: 10.1016/j.tetlet.2016.02.077
L.D. Fader, R. Bethell, P. Bonneau, et al., Bioorg. Med. Chem. Lett. 21 (2011) 398–404.
doi: 10.1016/j.bmcl.2010.10.131
J. Zhou, T. Yu, K. Li, et al., Inorg. Chem. 61 (2022) 3050–3057.
doi: 10.1021/acs.inorgchem.1c03160
M.D. Morales, A. Infantes-Molina, J.M. Lázaro-Martínez, et al., Mol. Catal. 485 (2020) 110842.
doi: 10.1016/j.mcat.2020.110842
Y.P. Sarnikar, D.O. Biradar, Y.D. Mane, et al., J. Heterocyclic. Chem. 56 (2019) 1111–1116.
doi: 10.1002/jhet.3500
R. Mohebat, P. Dehgan, A. Yazdani-Elah-Abadi, J. Chin. Chem. Soc. 65 (2018) 1259–1265.
doi: 10.1002/jccs.201800071
M.T. Lv, Y.F. Liu, K. Li, et al., Tetrahedron Lett. 65 (2021) 152757.
doi: 10.1016/j.tetlet.2020.152757
R.J.H. Gregory, Chem. Rev. 99 (1999) 3649–3682.
doi: 10.1021/cr9902906
F. Fei, H. An, C. Meng, et al., RSC Adv. 5 (2015) 18796–18805.
doi: 10.1039/C4RA16237D
J. Li, S. Shang, Z. Lin, et al., Front. Chem. 8 (2020) 598961–598971.
doi: 10.3389/fchem.2020.598961
S. Li, Y. Zhou, Q. Peng, et al., Inorg. Chem. 57 (2018) 6624–6631.
doi: 10.1021/acs.inorgchem.8b00763
W. Xiao, S. Li, Y. Zhao, et al., Dalton Trans. 50 (2021) 8690–8695.
doi: 10.1039/d1dt00924a
D.L. Collins-Wildman, M. Kim, K.P. Sullivan, et al., ACS Catal. 8 (2018) 7068–7076.
doi: 10.1021/acscatal.8b00394
M. Nakamura, M.S. Islam, M.A. Rahman, et al., RSC Adv. 11 (2021) 34558–34563.
doi: 10.1039/d1ra04426e
Y. Liu, W. Liu, L. Wang, et al., Ind. Eng. Chem. Res. 57 (2018) 5207–5214.
doi: 10.1021/acs.iecr.8b00240
D. Zhang, W. Zhang, Z. Lin, et al., Inorg. Chem. 59 (2020) 9756–9764.
doi: 10.1021/acs.inorgchem.0c00976
Dan Feng LI , Yi Hang GUO , Chang Wen HU , Li MAO , En Bo WANG . Kinetics of Photocatalytic Degradation of Formic Acid over Silica Composite Films Based on Polyoxometalates. Chinese Chemical Letters, 2002, 13(6): 575-578.
Kejie Qin , Dejin Zang , Yongge Wei . Polyoxometalates based compounds for green synthesis of aldehydes and ketones. Chinese Chemical Letters, 2023, 34(8): 107999-1-107999-12. doi: 10.1016/j.cclet.2022.107999
Guoping Yang , Yufeng Liu , Ke Li , Wei Liu , Bing Yu , Changwen Hu . H3PMo12O40-catalyzed coupling of diarylmethanols with epoxides/diols/aldehydes toward polyaryl-substituted aldehydes. Chinese Chemical Letters, 2020, 31(12): 3233-3236. doi: 10.1016/j.cclet.2020.07.018
Jing Yang , Juan Zhang , Tian Tian Chen , De Mei Sun , Ji Li , Xue Fen Wu . Sulfamic acid as a cost-effective and recyclable solid acid catalyst for Friedel-Crafts alkylation of indole with α,β-unsaturated carbonyl compound and benzyl alcohol. Chinese Chemical Letters, 2011, 22(12): 1391-1394. doi: 10.1016/j.cclet.2011.06.006
Jing Ping WANG , Xiao Di DU , Xian Ying DUAN , Jing Yang NIU . Synthesis and Crystal Structure of an Organic-inorganic Complex [Hg(DMSO)2(H2O)]2 [GeW12O40]·DMSO·H2O. Chinese Chemical Letters, 2006, 17(8): 1081-1084.
Zhen Gang SUN , Jing Fu LIU , Xiao Hong WANG , Shu Mei YUE , Jian Xin LI . Synthesis, Structure of Organophosphonyl Polyoxotungstates of Formula [C6H11P(O)]2 Xn+W11O39(8-n)-(Xn+=P5+, Si4+, B3+, Ga3+). Chinese Chemical Letters, 1999, 10(8): 705-706.
Zhen Gang SUN , Jian Xin LI , Qun LIU , Jing Fu LIU . Synthesis, structure and spectroscopic properties oforganophosphoryl polyoxotungstates of Formula α-[R2PW9O34]5-(R=C6H5P(S), C6H11P(O)). Chinese Chemical Letters, 1999, 10(11): 971-972.
Zhong Sun , Hai-Zhou Bie , Mei-Jie Wei , Jing-Jing Wang , Xu-Guang Mi , Xiao-Hong Wang , Yin Wu . Fabrication of inorganic-organic hybrid based on polyoxometalate SiW10Fe2 and folate as peroxidases for colorimetric immunoassay of cancer cells. Chinese Chemical Letters, 2013, 24(01): 76-78.
Chun-Hong Li , Qiang Wang , Ying-Nan Chi , Xin-Fang Wang , Chang-Wen Hu . Supramolecular assembly of Keggin polyoxomolybdate and 2, 2'-bipyridine generated in situ from a decarboxylation coupling reaction. Chinese Chemical Letters, 2013, 24(07): 578-580.
Fa Wang Chen , Tao Dong , Xiao Fang Li , Tie Gang Xu , Chang Wen Hu . Tetrabutylammonium salts of tritransition-metal-substituted A-α-tungstogermanate:Halogen-free and single-component catalysts for the coupling reaction of carbon dioxide and epichlorohydrin. Chinese Chemical Letters, 2011, 22(7): 871-874. doi: 10.1016/j.cclet.2011.01.004
Masoumeh Tabatabaee , Maria Roozbeh , Mandana Roozbeh . Catalytic effect of lucunary heteropolyanion containing molybdenum and tungsten atoms on decolorization of direct blue 71. Chinese Chemical Letters, 2011, 22(12): 1501-1504. doi: 10.1016/j.cclet.2011.07.016
Guoping Yang , Yufeng Liu , Xiaoling Lin , Bangming Ming , Ke Li , Changwen Hu . Self-assembly of a new 3D platelike ternary-oxo-cluster: An efficient catalyst for the synthesis of pyrazoles. Chinese Chemical Letters, 2022, 33(1): 354-357. doi: 10.1016/j.cclet.2021.05.008
Xiaofeng Fan , Wei Pang , Hao Feng , Ruiyi Zhang , Wentao Zhu , Qiushi Wang , Jun Miao , Yiwen Li , Yanjun Liu , Xiaoqian Xu . Light-guided tumor diagnosis and therapeutics: From nanoclusters to polyoxometalates. Chinese Chemical Letters, 2022, 33(6): 2783-2798. doi: 10.1016/j.cclet.2021.12.057
Shurong Li , Zhenzhang Weng , Linpeng Jiang , Rongjia Wei , Haifeng Su , Lasheng Long , Lansun Zheng , Xiangjian Kong . A series of heterometallic 3d-4f polyoxometalates as single-molecule magnets. Chinese Chemical Letters, 2023, 34(3): 107251-1-107251-4. doi: 10.1016/j.cclet.2022.02.056
Qianxia Gu , Xiao-Li Zhao , Min Meng , Zhiyu Shao , Qi Zheng , Weimin Xuan . Crystalline porous ionic salts assembled from polyoxometalates and cationic capsule for the selective photocatalytic aerobic oxidation of aromatic alcohols to aldehydes. Chinese Chemical Letters, 2023, 34(4): 107444-1-107444-4. doi: 10.1016/j.cclet.2022.04.042
Yubin Ma , Fan Gao , Wanru Xiao , Na Li , Shujun Li , Bing Yu , Xuenian Chen . Two transition-metal-modified Nb/W mixed-addendum polyoxometalates for visible-light-mediated aerobic benzylic C–H oxidations. Chinese Chemical Letters, 2022, 33(9): 4395-4399. doi: 10.1016/j.cclet.2021.12.023
Feng Enqi , Hou Zhongwei , Xu Haichao . Electrochemical Synthesis of Tetrasubstituted Hydrazines by Dehydrogenative N-N Bond Formation. Chinese Journal of Organic Chemistry, 2019, 39(5): 1424-1428. doi: 10.6023/cjoc201812007
Hou Jiao , Zhang Xinting , Yu Wenquan , Chang Junbiao . I2-Mediated Oxidative C-O Bond Formation for the Synthesis of Isoxazoles. Chinese Journal of Organic Chemistry, 2018, 38(12): 3236-3241. doi: 10.6023/cjoc201806026
Daoshan Yang , Qiuli Yan , Enjie Zhu , Jian Lv , Wei-Min He . Carbon–sulfur bond formation via photochemical strategies: An efficient method for the synthesis of sulfur-containing compounds. Chinese Chemical Letters, 2022, 33(4): 1798-1816. doi: 10.1016/j.cclet.2021.09.068
Hong-Qiang Liu , Jun Liu , Yang-Hui Zhang , Chang-Dong Shao , Jing-Xun Yu . Copper-catalyzed amide bond formation from formamides and carboxylic acids. Chinese Chemical Letters, 2015, 26(1): 11-14. doi: 10.1016/j.cclet.2014.09.007