Ultrathin two-dimensional porphyrinic metal-organic framework nanosheets induced by the axial aryl substituent
-
* Corresponding author.
E-mail address: zhli99@mail.sysu.edu.cn (L. Zhang).
Citation:
Jurong Dong, Yufei Wang, Yu-Lin Lu, Li Zhang. Ultrathin two-dimensional porphyrinic metal-organic framework nanosheets induced by the axial aryl substituent[J]. Chinese Chemical Letters,
;2023, 34(7): 108052.
doi:
10.1016/j.cclet.2022.108052
M. Zhao, Q. Lu, Q. Ma, H. Zhang, Small Methods 1 (2017) 1600030.
doi: 10.1002/smtd.201600030
Y.Z. Li, Z.H. Fu, G. Xu, Coord. Chem. Rev. 388 (2019) 79-106.
doi: 10.1016/j.ccr.2019.02.033
W. Zhao, J. Peng, W. Wang, et al., Coord. Chem. Rev. 377 (2018) 44-63.
doi: 10.1016/j.ccr.2018.08.023
Q. Jiang, C. Zhou, H. Meng, et al., J. Mater. Chem. A 8 (2020) 15271-15301.
doi: 10.1039/d0ta00468e
Y. Zheng, F.Z. Sun, X. Han, J. Xu. X.H. Bu, Adv. Optical Mater. 8 (2020) 2000110.
doi: 10.1002/adom.202000110
A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, Adv. Mater. 31 (2019) 1900617.
doi: 10.1002/adma.201900617
C. Tan, G. Liu, H. Li, Y. Cui, Y. Liu, Dalton Trans. 49 (2020) 11073-11084.
doi: 10.1039/d0dt01359e
J. Nicks, K. Sasitharan, R.R.R. Prasad, D.J. Ashworth, J.A. Foster, Adv. Funct. Mater. 31 (2021) 2103723.
doi: 10.1002/adfm.202103723
G. Chakraborty, I.H. Park, R. Medishetty, J.J. Vittal, Chem. Rev. 121 (2021) 3751-3891.
doi: 10.1021/acs.chemrev.0c01049
Y. Peng, Y. Li, Y. Ban, et al., Science 346 (2014) 1356-1359.
doi: 10.1126/science.1254227
G. Zhan, H.C. Zeng, Adv. Funct. Mater. 26 (2016) 3268-3281.
doi: 10.1002/adfm.201505380
L. Cao, Z. Lin, F. Peng, et al., Angew. Chem. 128 (2016) 5046-5050.
doi: 10.1002/ange.201512054
D. Zhu, C. Guo, J. Liu, et al., Chem. Commun. 53 (2017) 10906-10909.
doi: 10.1039/C7CC06378D
M. Yuan, R. Wang, W. Fu, et al., ACS Appl. Mater. Interfaces 11 (2019) 11403-11413.
doi: 10.1021/acsami.8b21808
X. Zhang, P. Zhang, C. Chen, et al., Green Chem. 21 (2019) 54-58.
doi: 10.1039/C8GC02835D
S. Jiang, X. Shi, Y. Zu, F. Sun, G. Zhu, Mater. Chem. Front. 5 (2021) 5150-5157.
doi: 10.1039/d1qm00154j
M. Hu, J. Liu, S. Song, et al., ACS Catal. 12 (2022) 3238-3248.
doi: 10.1021/acscatal.1c05984
Q. Deng, X. Hou, Y. Zhong, et al., Angew. Chem. Int. Ed. 61 (2022) e202205453.
W.Y. Gao, M. Chrzanowski, S. Ma, Chem. Soc. Rev. 43 (2014) 5841-5866.
doi: 10.1039/C4CS00001C
Z. Liang, H.Y. Wang, H. Zheng, W. Zhang, R. Cao, Chem. Soc. Rev. 50 (2021) 2540-2581.
doi: 10.1039/d0cs01482f
J. Liu, L. Chen, H. Cui, et al., Chem. Soc. Rev. 43 (2014) 6011-6061.
doi: 10.1039/C4CS00094C
Y. Wang, X. Zhang, H. Lei, et al., CCS Chem. 4 (2022) 2959-2967.
doi: 10.31635/ccschem.022.202101706
H. Li, H. Ye, X. Zhao, et al., Chin. Chem. Lett. 32 (2021) 2851–2855.
doi: 10.1016/j.cclet.2021.02.042
K. Guo, X. Li, H. Lei, et al., Angew. Chem. Int. Ed. 61 (2022) e202209602.
K. Guo, H. Lei, X. Li, et al., Chin. J. Catal. 42 (2021) 1439-1444.
doi: 10.1016/S1872-2067(20)63762-7
Y. Zhang, K. Ren, L. Wang, L. Wang, Z. Fan, Chin. Chem. Lett. 33 (2022) 33-60.
doi: 10.1016/j.cclet.2021.06.013
H.Q. Xu, J. Hu, D. Wang, et al., J. Am. Chem. Soc. 137 (2015) 13440-13443.
doi: 10.1021/jacs.5b08773
C. Xu, H. Liu, D. Li, J.H. Sub, H.L. Jiang, Chem. Sci. 9 (2018) 3152-3158.
doi: 10.1039/C7SC05296K
J. Liang, Y.Q. Xie, Q. Wu, et al., Inorg. Chem. 57 (2018) 2584-2593.
doi: 10.1021/acs.inorgchem.7b02983
Y.R. Wang, Q. Huang, C.T. He, et al., Nat. Commun. 9 (2018) 4466.
doi: 10.1038/s41467-018-06938-z
Y. Wang, Z. Zhou, L. Zhao, et al., ACS Appl. Mater. Interfaces 13 (2021) 10925-10932.
doi: 10.1021/acsami.0c22276
L. Yang, P. Cai, L. Zhang, et al., J. Am. Chem. Soc. 143 (2021) 12129-12137.
doi: 10.1021/jacs.1c03960
Q. Huang, J. Liu, L. Feng, et al., Natl. Sci. Rev. 7 (2020) 53-63.
doi: 10.1093/nsr/nwz096
H. Hu, L. Zeng, Z. Li, T. Zhu, C. Wang, Chin. J. Catal. 42 (2021) 1345-1351.
doi: 10.1016/S1872-2067(20)63738-X
Z. Liang, H. Guo, H. Lei, R. Cao, Chin. Chem. Lett. 33 (2022) 3999-4002.
doi: 10.1016/j.cclet.2021.11.055
S. Li, J.H. Wang, L.Z. Dong, et al., Chin. Chem. Lett. 34 (2023) 107633.
doi: 10.1016/j.cclet.2022.06.056
Y. Wang, H. Cui, Z. Wei, et al., Chem. Sci. 8 (2017) 775-780.
doi: 10.1039/C6SC03288E
J. Liu, Y.Z. Fan, X. Li, et al., Appl. Catal. B 231 (2018) 173-181.
doi: 10.1007/s41230-018-7245-9
S. Li, H. Mei, S. Yao, et al., Chem. Sci. 10 (2019) 10577-10585.
doi: 10.1039/c9sc01866b
J. Liu, Y.Z. Fan, K. Zhang, L. Zhang, C.Y. Su, J. Am. Chem. Soc. 142 (2020) 14548-14556.
doi: 10.1021/jacs.0c05909
C. Chen, Q. Mo, J. Fu, et al., ACS Catal. 12 (2022) 3604-3614.
doi: 10.1021/acscatal.1c05922
R. Makiura, O. Konovalov, Dalton Trans. 42 (2013) 15931-15936.
doi: 10.1039/c3dt51703a
R. Makiura, R. Usui, Y. Sakai, et al., ChemPlusChem 79 (2014) 1352-1360.
doi: 10.1002/cplu.201402150
R. Makiura, S. Motoyama, Y. Umemura, et al., Nat. Mater. 9 (2010) 565-571.
doi: 10.1038/nmat2769
S. Motoyama, R. Makiura, O. Sakata, H. Kitagawa, J. Am. Chem. Soc. 133 (2011) 5640-5643.
doi: 10.1021/ja110720f
C. Wang, F.F. Liu, Z. Tan, et al., Adv. Funct. Mater. 30 (2020) 1908804.
doi: 10.1002/adfm.201908804
M. Zhao, Y. Wang, Q. Ma, et al., Adv. Mater. 27 (2015) 7372-7378.
doi: 10.1002/adma.201503648
Y. Wang, M. Zhao, J. Ping, et al., Adv. Mater. 28 (2016) 4149-4155.
doi: 10.1002/adma.201600108
Q. Zuo, T. Liu, C. Chen, et al., Angew. Chem. Int. Ed. 58 (2019) 10198-10203.
doi: 10.1002/anie.201904058
L. Yea, Y. Gao, S. Cao, et al., Appl. Catal. B 227 (2018) 54-60.
doi: 10.1016/j.apcatb.2018.01.028
D. Yang, S. Zuo, H. Yang, Y. Zhou, X. Wang, Angew. Chem. Int. Ed. 59 (2020) 18954-18959.
doi: 10.1002/anie.202006899
W. Zhao, W. Wang, J. Peng, et al., Dalton Trans. 48 (2019) 9631-9638.
doi: 10.1039/c8dt05069d
T. He, B. Ni, S. Zhang, et al., Small 14 (2018) 1703929.
doi: 10.1002/smll.201703929
Y. Xiao, W. Guo, H. Chen, et al., Mater. Chem. Front. 3 (2019) 1580-1585.
doi: 10.1039/c9qm00201d
Y. Wang, L. Feng, J. Pang, et al., Adv. Sci. 6 (2019) 1802059.
doi: 10.1002/advs.201802059
Z.W. Jiang, Y.C. Zou, T.T. Zhao, et al., Angew. Chem. Int. Ed. 59 (2020) 3300-3306.
doi: 10.1002/anie.201913748
Y. Zhao, J. Wang, R. Pei, J. Am. Chem. Soc. 142 (2020) 10331-10336.
doi: 10.1021/jacs.0c04442
Y. Zhou, L. Zheng, D. Yang, et al., Small Methods 5 (2020) 2000991.
J. Dong, Q. Mo, Y. Wang, et al., Chem. Eur. J. 28 (2022) e202200555.
W. Yang, H. Zuo, W.Y. Lai, et al., Organometallics 34 (2015) 4051-4057.
doi: 10.1021/acs.organomet.5b00488
C. Chen, K.S. Chan, Organometallics 36 (2017) 3456-3464.
doi: 10.1021/acs.organomet.7b00386
C.W. Cheung, K.S. Chan, Organometallics 30 (2011) 4999-5009.
doi: 10.1021/om200618m
Y.Y. Qian, K.S. Chan, Organometallics 31 (2012) 5452-5462.
doi: 10.1021/om300441p
C.W. Cheung, K.S. Chan, Organometallics 30 (2011) 4269-4283.
doi: 10.1021/om200251k
Y.Y. Qian, B.Z. Li, K.S. Chan, Organometallics 32 (2013) 1567-1570.
doi: 10.1021/om301196t
S. Mori, S. Saito, Green Chem. 23 (2021) 3575-3580.
doi: 10.1039/d1gc00753j
K.S. Chan, C.M. Lau, Organometallics 25 (2006) 260-265.
doi: 10.1021/om0507878
Y.Y. Qian, M.H. Lee, W. Yang, K.S. Chan, J Organomet Chem. 791 (2015) 82-89.
doi: 10.1016/j.jorganchem.2015.05.039
L. Zhang, K.S. Chan, Organometallics 25 (2006) 4822-4829.
doi: 10.1021/om0604472
A.F. Perez-Cadenas, F.J. Maldonado-Hodar, C. Moreno-Castilla, Carbon 41 (2003) 473-478.
doi: 10.1016/S0008-6223(02)00353-6
J.L. F. Díaz, F.L. Urías, E.M. Sandoval, Carbon 164 (2020) 324-336.
doi: 10.1016/j.carbon.2020.04.016
A.B. Kroner, M.A. Newton, M. Tromp, et al., ChemPhysChem 14 (2013) 3606-3617.
doi: 10.1002/cphc.201300537
T. Nishino, M. Saruyama, Z. Li, et al., Chem. Sci. 11 (2020) 6862-6867.
doi: 10.1039/d0sc01363c
Y. Dwivedi, S.N. Thakur, S.B. Rai, Spectrochim. Acta Part A 71 (2009) 1952-1958.
doi: 10.1016/j.saa.2008.07.027
Y. Chen, M. Bouvet, T. Sizun, et al., Phys. Chem. Chem. Phys. 12 (2010) 12851-12861.
doi: 10.1039/c0cp00381f
Y. Chen, X. Kong, G. Lu, et al., Mater. Chem. Front. 2 (2018) 1009-1016.
doi: 10.1039/C7QM00607A
N.C. Maiti, S. Mazumdar, N. Periasamy, J. Phys. Chem. B 102 (1998) 1528-1538.
doi: 10.1021/jp9723372
D. Feng, Z.Y. Gu, J.R. Li, et al., Angew. Chem. Int. Ed. 51 (2012) 10307-10310.
doi: 10.1002/anie.201204475
J. Qin, P. Xu, Y. Huang, et al., Chem. Commun. 57 (2021) 8468-8471.
doi: 10.1039/d1cc02847b
J. Rezac, P. Hobza, J. Chem. Theory Comput. 8 (2012) 141-151.
doi: 10.1021/ct200751e
Z. Fang, T. Liu, J. Liu, et al., J. Am. Chem. Soc. 142 (2020) 12515-12523.
doi: 10.1021/jacs.0c05530
D. Lv, R. Shi, Y. Chen, et al., Ind. Eng. Chem. Res. 57 (2018) 12215-1222.
doi: 10.1021/acs.iecr.8b02596
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
Wen-Jing Li , Jun-Bo Wang , Yu-Heng Liu , Mo Zhang , Zhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
Huirong Chen , Yingzhi He , Yan Han , Jianbo Hu , Jiantang Li , Yunjia Jiang , Basem Keshta , Lingyao Wang , Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508
Yuan Teng , Zichun Zhou , Jinghua Chen , Siying Huang , Hongyan Chen , Daibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Jaeyong Ahn , Zhenping Li , Zhiwei Wang , Ke Gao , Huagui Zhuo , Wanuk Choi , Gang Chang , Xiaobo Shang , Joon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777