Recent status and advanced progress of tip effect induced by micro-nanostructure
-
* Corresponding author.
E-mail addresses: wanglonglu@hnu.edu.cn, 947011003@qq.com (L. Wang).
Citation:
Jingwen Li, Junan Pan, Weinan Yin, Yuntao Cai, Hao Huang, Yuhao He, Gu Gong, Ye Yuan, Chengpeng Fan, Qingfeng Zhang, Longlu Wang. Recent status and advanced progress of tip effect induced by micro-nanostructure[J]. Chinese Chemical Letters,
;2023, 34(8): 108049.
doi:
10.1016/j.cclet.2022.108049
X.M. Bin, E.H. Sargent, S.O. Kelley, Anal. Chem. 82 (2010) 5928-5931.
doi: 10.1021/ac101164n
S. Back, M.S. Yeom, Y.S. Jung, ACS Catal. 5 (2015) 5089-5096.
doi: 10.1021/acscatal.5b00462
J. He, C.M. Lilley, Nano Lett. 8 (2008) 1798-1802.
doi: 10.1021/nl0733233
E. Roduner, Chem. Soc. Rev. 35 (2006) 583-592.
doi: 10.1039/b502142c
D.D. Awschalom, D.P. DiVincenzo, J.F. Smyth, Science 258 (1992) 414-421.
doi: 10.1126/science.258.5081.414
A.G. Akerdi, S.H. Bahrami, J. Environ. Chem. Eng. 7 (2019) 103283.
doi: 10.1016/j.jece.2019.103283
N.T. Yardimci, H. Lu, M. Jarrahi, Appl. Phys. Lett. 109 (2016) 191103.
doi: 10.1063/1.4967440
S. Mohanty, I.S.M. Khalil, S. Misra, Proc. R. Soc. A 476 (2020) 2243.
doi: 10.1098/RSPA.2020.0621
J.R.P. Videa, L.J. Zhao, M.L.L. Moreno, et al., J. Hazard. Mater. 186 (2011) 1-15.
doi: 10.1016/j.jhazmat.2010.11.020
G.Y. Chen, J.W. Seo, C.H. Yang, et al., Chem. Soc. Rev. 42 (2013) 8304-8338.
doi: 10.1039/c3cs60054h
C.N.R. Rao, A.K. Cheetham, J. Mater. Chem. 11 (2001) 2887-2894.
doi: 10.1039/b105058n
X. Wang, S.C. Huang, T.X. Huang, et al., Chem. Soc. Rev. 46 (2017) 4020-4041.
doi: 10.1039/C7CS00206H
M. Liu, Y.J. Pang, B. Zhang, et al., Nature 537 (2016) 382-386.
doi: 10.1038/nature19060
D.K. Pathak, A. Chaudhary, M. Tanwar, et al., ACS Appl. Nano Mater. 4 (2021) 2143-2152.
doi: 10.1021/acsanm.0c03451
Y.Y. Yang, H.X. Meng, C. Kong, et al., Int. J. Hydrog. 46 (2021) 28053-28063.
doi: 10.1016/j.ijhydene.2021.06.047
L.Z. Ma, J.X. Guo, Mater. Lett. 307 (2022) 131005.
doi: 10.1016/j.matlet.2021.131005
J.K. Zhang, F.Y. Dong, C.Q. Wang, et al., ACS Appl. Mater. Interfaces 13 (2021) 32435-32441.
doi: 10.1021/acsami.1c04993
F. Bai, J.T. Wu, G.M. Gong, L. Guo, Adv. Sci. 2 (2015) 1500047.
doi: 10.1002/advs.201500047
A. Shlanta, C.B. Moore, J. Geophys. Res. 77 (1972) 4500-4510.
doi: 10.1029/JC077i024p04500
M. Akyuz, V. Cooray, J. Electrostat. 51-52 (2001) 319-325.
doi: 10.1016/S0304-3886(01)00113-9
N.K. Zanjani, S. Vedraine, F.L. Labarthet, Opt. Express 21 (2013) 25271-25276.
doi: 10.1364/OE.21.025271
M.T. Chen, Z.J. Ye, L. Wei, et al., J. Am. Chem. Soc. 144 (2022) 12842-12849.
doi: 10.1021/jacs.2c04202
A. Smogunov, A.D. Corso, E. Tosatti, Phys. Rev. B 73 (2006) 075418.
doi: 10.1103/PhysRevB.73.075418
R. Kortlever, J. Shen, K.J.P. Schouten, F. Calle-Vallejo, M.T. M Koper, J. Phys. Chem. Lett. 6 (2015) 4073-4082.
doi: 10.1021/acs.jpclett.5b01559
Y.J. Zhou, Y.Q. Liang, J.W. Fu, et al., Nano Lett. 22 (2022) 1963-1970.
doi: 10.1021/acs.nanolett.1c04653
M.U. Khan, L.B. Wang, Z. Liu, et al., Angew. Chem. Int. Ed. 55 (2016) 9548-9552.
doi: 10.1002/anie.201602512
J.R. Yang, W.H. Li, K.N. Xu, et al., Angew. Chem. Int. Ed. 61 (2022) e202200366.
doi: 10.1002/anie.202200366
S. Zhang, M.C. Chi, J.L. Mo, et al., Nat. Commun. 13 (2022) 4168.
doi: 10.1038/s41467-022-31987-w
S.L. Feng, J. Delannoy, A. Malod, et al., Sci. Adv. 6 (2020) eabb4540.
doi: 10.1126/sciadv.abb4540
R. Song, H.B. Chi, Q.L. Ma, et al., J. Am. Chem. Soc. 143 (2021) 13664-13674.
doi: 10.1021/jacs.1c05008
F.Y. Gao, S.J. Hu, X.L. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 8706-8712.
doi: 10.1002/anie.201912348
H.J. Jiang, Z.H. Hou, Y. Luo, Angew. Chem. Int. Ed. 56 (2017) 15617-15621.
doi: 10.1002/anie.201708825
Y.J. Hu, H.Y. Ma, M.M. Wu, et al., Nat. Commun. 13 (2022) 4335.
doi: 10.1038/s41467-022-32051-3
D. Wakerley, S. Lamaison, F. Ozanam, et al., Nat. Mater. 18 (2019) 1222-1227.
doi: 10.1038/s41563-019-0445-x
J.A. Diez, R. Gratton, L.P. Thomas, Phys. Fluids 6 (1994) 24-33.
doi: 10.1063/1.868072
Y.Z. He, S.S. Liu, M.F. Wang, et al., Adv. Funct. Mater. (2022) 2208474.
S.P. Li, Y. Du, T. He, et al., J. Am. Chem. Soc. 139 (2017) 14277-14284.
doi: 10.1021/jacs.7b08523
T. Zhang, S.P. Li, Y. Du. et al., J. Phys. Chem. Lett. 9 (2018) 5630-5635.
doi: 10.1021/acs.jpclett.8b02302
G.Z. Chen, H.J.W. Li, Y.J. Zhou, et al., Nanoscale 13 (2021) 13604.
doi: 10.1039/d1nr03221f
W.J. Dong, J.W. Lim, J.Y. Park, et al., Appl. Surf. Sci. 565 (2021) 150460.
doi: 10.1016/j.apsusc.2021.150460
W. Schmickler, Chem. Rev. 96 (1996) 3177-3200.
doi: 10.1021/cr940408c
D. Henderson, Prog. Surf. Sci. 13 (1983) 197-224.
doi: 10.1016/0079-6816(83)90004-7
H.M. Behrens, M.H. Weisenseel, A. Sievers, Plant Physiol. 70 (1982) 1079-1083.
doi: 10.1104/pp.70.4.1079
A. Hamo, A. Benyamini, I. Shapir, et al., Nature 535 (2016) 395-400.
doi: 10.1038/nature18639
K. Adamiak, P. Atten, J. Electrostat. 61 (2004) 85-98.
doi: 10.1016/j.elstat.2004.01.021
F. Albrecht, S. Fatayer, I. Pozo, et al., Science 377 (2022) 298-301.
doi: 10.1126/science.abo6471
Y.H. Li, P.F. Liu, C.Z. Li, et al., Chem. Eur. J. 24 (2018) 15486-15490.
doi: 10.1002/chem.201803015
X.L. Zheng, B. Zhang, P.D. Luna, et al., Nat. Chem. 10 (2018) 149-154.
doi: 10.1038/nchem.2886
Q. Zhang, M.S. Sun, J. Zhu, et al., Chem. Eng. J. 432 (2022) 134275.
doi: 10.1016/j.cej.2021.134275
K. Min, R. Yoo, S. Kim, et al., Electrochim. Acta 396 (2021) 139236.
doi: 10.1016/j.electacta.2021.139236
K. Liu, Z.Y. Zhu, M.Q. Jiang, et al., Chem. Eur. J. 28 (2022) e202200664.
doi: 10.1002/chem.202200664
R.L. Zhang, J.J. Feng, Y.Q. Yao, et al., Appl. Surf. Sci. 548 (2021) 149280.
doi: 10.1016/j.apsusc.2021.149280
D.B. Liu, X.Y. Li, S.M. Chen, et al., Nat. Energy 4 (2019) 512-518.
doi: 10.1038/s41560-019-0402-6
Z.Y. Lin, Y.N. Zhou, J.Y. Fu, et al., J. Colloid Interface Sci. 604 (2021) 141-149.
doi: 10.1016/j.jcis.2021.06.166
Y. Jiang, S.S. Gao, G.C. Xu, et al., J. Mater. Chem. A 9 (2021) 5664-5674.
doi: 10.1039/d0ta08475a
W.H. Zhang, X.D. Cui, O.J.F. Martin, J. Raman Spectrosc. 40 (2009) 1338-1342.
doi: 10.1002/jrs.2439
Q. Lin, D.Y. Guo, L. Zhou, et al., ACS Nano 16 (2022) 15460-15470.
doi: 10.1021/acsnano.2c07588
S.C. Perry, P.K. Leung, L. Wang, et al., Curr. Opin. Electrochem. 20 (2020) 88-98.
doi: 10.1016/j.coelec.2020.04.014
Y.H. Huang, H.C. Lin, S.L. Cheng, J. Phys. Chem. Solids 150 (2021) 109892.
doi: 10.1016/j.jpcs.2020.109892
D.F. Gao, R.M. Arán-Ais, H.S. Jeon, et al., Nat. Catal. 2 (2019) 198-210.
doi: 10.1038/s41929-019-0235-5
Y.Y. Birdja, E.P. Gallent, M.C. Figueiredo, et al., Nat. Energy 4 (2019) 732-745.
doi: 10.1038/s41560-019-0450-y
S. Nitopi, E. Bertheussen, S.B. Scott, et al., Chem. Rev. 119 (2019) 7610-7672.
doi: 10.1021/acs.chemrev.8b00705
G.X. Wang, J.X. Chen, Y.C. Ding, et al., Chem. Soc. Rev. 50 (2021) 4993-5061.
doi: 10.1039/d0cs00071j
M.B. Ross, P.D. Luna, Y.F. Li, et al., Nat. Catal. 2 (2019) 648-658.
doi: 10.1038/s41929-019-0306-7
M.A. Seo, H.R. Park, S.M. Koo, et al., Nat. Photonics 3 (2009) 152-156.
doi: 10.1038/nphoton.2009.22
A.D. Mayevsky, A.M. Funston, J. Phys. Chem. C 122 (2018) 18012-18020.
doi: 10.1021/acs.jpcc.8b05805
G. Yang, I.N. Ivanov, R.E. Ruther, et al., ACS Nano 12 (2018) 10159-10170.
doi: 10.1021/acsnano.8b05038
M.R. Singh, Y. Kwon, Y. Lum, et al., J. Am. Chem. Soc. 138 (2016) 13006-13012.
doi: 10.1021/jacs.6b07612
A.S. Varela, M. Kroschel, T. Reier, et al., Catal. Today 260 (2016) 8-13.
doi: 10.1016/j.cattod.2015.06.009
L.N. Zhou, D.F. Swearer, C. Zhang, et al., Science 362 (2018) 69-72.
doi: 10.1126/science.aat6967
R. Kamarudheen, G.J.W. Aalbers, R.F. Hamans, et al., ACS Energy Lett. 5 (2020) 2605-2613.
doi: 10.1021/acsenergylett.0c00989
X. Wang, Z.J. Ye, J.H. Hua, et al., CCS Chem. 3 (2021) 1185-1197.
doi: 10.3390/genes12081185
L. Ma, K. Chen, F. Nan, et al., Adv. Funct. Mater. 26 (2016) 6076-6083.
doi: 10.1002/adfm.201601651
U. Aslam, V.G. Rao, S. Chavez, et al., Nat. Catal. 1 (2018) 656-665.
doi: 10.1038/s41929-018-0138-x
Y.C. Zhang, S. He, W.X. Guo, et al., Chem. Rev. 118 (2018) 2927-2954.
doi: 10.1021/acs.chemrev.7b00430
W.L. Xu, P.K. Jain, B.J. Beberwyck, et al., J. Am. Chem. Soc. 134 (2012) 3946-3949.
doi: 10.1021/ja210010k
H.D. Ha, C. Yan, G. Katsoukis, et al., Nano Lett. 20 (2020) 8661-8667.
doi: 10.1021/acs.nanolett.0c03431
J.W. Ha, T.P.A. Ruberu, R. Han, et al., J. Am. Chem. Soc. 136 (2014) 1398-1408.
doi: 10.1021/ja409011y
E. Cortés, L.V. Besteiro, A. Alabastri, et al., ACS Nano 14 (2020) 16202-16219.
doi: 10.1021/acsnano.0c08773
J. Guo, Y. Zhang, L. Shi, et al., J. Am. Chem. Soc. 139 (2017) 17964-17972.
doi: 10.1021/jacs.7b08903
H. Robatjazi, M.H. Lou, B.D. Clark, et al., Nano Lett. 20 (2020) 4550-4557.
doi: 10.1021/acs.nanolett.0c01405
Z.K. Zheng, T. Tachikawa, T. Majima, J. Am. Chem. Soc. 136 (2014) 6870-6873.
doi: 10.1021/ja502704n
X.Z. Zhu, H.L. Jia, X.M. Zhu, et al., Adv. Funct. Mater. 27 (2017) 1700016.
doi: 10.1002/adfm.201700016
I. Gorelikov, N. Matsuura, Nano Lett. 8 (2008) 369-373.
doi: 10.1021/nl0727415
J.F. Li, X.D. Tian, S.B. Li, et al., Nat. Protoc. 8 (2013) 52-65.
doi: 10.1038/nprot.2012.141
P. Liu, B. Chen, C.W. Liang, et al., Adv. Mater. 33 (2021) 2007377.
doi: 10.1002/adma.202007377
A. Downes, D. Salter, A. Elfick. Opt. Express 14 (2006) 5216-5222.
doi: 10.1364/OE.14.005216
B.P. Yang, K. Liu, H.J.W. Li, et al., J. Am. Chem. Soc. 144 (2022) 3039-3049.
doi: 10.1021/jacs.1c11253
M. Dunwell, W. Luc, Y. Yan, et al., ACS Catal. 8 (2018) 8121-8129.
doi: 10.1021/acscatal.8b02181
H.J.W. Li, H.M. Zhou, Y.J. Zhou, et al., Chin. J. Catal. 43 (2022) 519-525.
doi: 10.1016/S1872-2067(21)63866-4
M.J. Cadena, S.H. Sung, B.W. Boudouris, et al., ACS Nano 10 (2016) 4062-4071.
doi: 10.1021/acsnano.5b06893
G. Zhou, Y.Y. Hu, L.Y. Long, et al., Appl. Catal. B: Environ. 262 (2020) 118305.
doi: 10.1016/j.apcatb.2019.118305
A. Sivanantham, P. Ganesan, S. Shanmugam, Adv. Funct. Mater. 26 (2016) 4661-4672.
doi: 10.1002/adfm.201600566
G.J. Wang, Y.Z. Sun, Y.D. Zhao, et al. Nano. Res. 15 (2022) 8771-8782.
doi: 10.1007/s12274-022-4534-9
S.W. Liu, H.P. Wang, Q. Xu, et al., Nat. Commun. 8 (2017) 14029.
doi: 10.1038/ncomms14029
B.P. Jia, L. Gao, J. Phys. Chem. C 112 (2008) 666-671.
doi: 10.1021/jp0763477
T. Phenrat, N. Saleh, K. Sirk, et al., Environ. Sci. Technol. 41 (2007) 284-290.
doi: 10.1021/es061349a
Z.W. Han, S.C. Niu, C.H. Shang, et al., Nanoscale 4 (2012) 2879-2883.
doi: 10.1039/c2nr12059c
Z.W. Han, S.C. Niu, M. Yang, et al., Nanoscale 5 (2013) 8500-8506.
doi: 10.1039/c3nr01455j
Z.Z. Sun, C.L. Han, S.W. Gao, et al., Nat. Commun. 13 (2022) 5077.
doi: 10.1038/s41467-022-32820-0
S. Suter, R. Graf, D.M. García, et al., ACS Appl. Mater. Interfaces 12 (2020) 5739–5749.
doi: 10.1021/acsami.9b17856
J.C. Sun, P.D. Li, J.Y. Qu, et al., Nano Energy 57 (2019) 269-278.
doi: 10.1016/j.nanoen.2018.12.042
T.P. Ding, K. Liu, J. Li, et al., Adv. Funct. Mater. 27 (2007) 1700551.
K. Liu, T.P. Ding, J. Li, et al., Adv. Funct. Mater. 8 (2018) 1702481.
doi: 10.1002/aenm.201702481
T.T. Dong, Y.G. Fu, C. Chen, et al., Acta Opt. Sin. 36 (2016) 236-242.
doi: 10.1007/s11434-016-0994-1
D. Neumann, D. Woermann, SpringerPlus 2 (2013) 694.
doi: 10.1186/2193-1801-2-694
B.V. Hokmabad, S. Ghaemi, Sci. Rep. 7 (2017) 41448.
doi: 10.1038/srep41448
C.T. Dinh, T. Burdyny, M.G. Kibria, et al., Science 360 (2018) 783-787.
doi: 10.1126/science.aas9100
J.T. Simpson, S.R. Hunter, T. Aytug, Rep. Prog. Phys. 78 (2015) 086501.
doi: 10.1088/0034-4885/78/8/086501
B. Zahiri, P.K. Sow, C.H. Kung, et al., Adv. Mater. Interfaces 4 (2017) 1700121.
doi: 10.1002/admi.201700121
Y.M. Zheng, H. Bai, Z.B. Huang, et al., Nature 463 (2010) 640-643.
doi: 10.1038/nature08729
J. Ju, H. Bai, Y.M. Zheng, et al., Nat. Commun. 3 (2012) 1247.
doi: 10.1038/ncomms2253
Q.B. Wang, B. Su, H. Liu, et al., Adv. Mater. 26 (2014) 4889-4894.
doi: 10.1002/adma.201400865
J. Ju, K. Xiao, X. Yao, et al., Adv. Mater. 25 (2013) 5937-5942.
doi: 10.1002/adma.201301876
C.M. Yu, M.Y. Cao, Z.C. Dong, et al., Adv. Funct. Mater. 26 (2016) 3236-3243.
doi: 10.1002/adfm.201505234
C.M. Yu, M.Y. Cao, Z.C. Dong, et al., Adv. Funct. Mater. 26 (2016) 6830-6835.
doi: 10.1002/adfm.201601960
S. Ben, Y.Z. Ning, Z.H. Zhao, et al., Adv. Funct. Mater. 32 (2022) 2113374.
doi: 10.1002/adfm.202113374
J.L. Yong, F. Chen, W.T. Li, et al., Glob. Chall. 2 (2018) 1700133.
doi: 10.1002/gch2.201700133
X.M. Dai, N. Sun, S.O. Nielsen, et al., Sci. Adv. 4 (2018) eaaq0919.
doi: 10.1126/sciadv.aaq0919
H.Y. Bai, T.H. Zhao, X.S. Wang, et al., J. Mater. Chem. A 8 (2020) 13452-13458.
doi: 10.1039/d0ta01204a
A.R. Parker, C.R. Lawrence, Nature 414 (2001) 33-34.
doi: 10.1038/35102108
C. Chang, L. Wang, L. Xie, et al., Nano Res. 15 (2022) 8613-8635.
doi: 10.1007/s12274-022-4507-z
M. Tang, W. Yin, S. Liu, et al., Crystals 12 (2022) 1218-1225.
doi: 10.3390/cryst12091218
J. Chen, Y. Tang, S. Wang, et al., Chin. Chem. Lett. 33 (2022) 1468-1474.
doi: 10.1016/j.cclet.2021.08.103
X. Liu, Y.H. Hou, M. Tang, L.L. Wang, Chin. Chem. Lett. 34 (2023) 107489.
doi: 10.1016/j.cclet.2022.05.003
S. Wang, L. Wang, L. Xie, et al., Nano Res. 15 (2022) 4996-5003.
doi: 10.1007/s12274-022-4158-0
Y. Li, B. Yu, H.M. Li, et al., Chin. Chem. Lett. 34 (2023) 107874.
doi: 10.1016/j.cclet.2022.107874
X. Cheng, L. Wang, L. Xie, et al., Chem. Eng. J. 439 (2022) 135757.
doi: 10.1016/j.cej.2022.135757
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
Guilong Li , Wenbo Ma , Jialing Zhou , Caiqin Wu , Chenling Yao , Huan Zeng , Jian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449
Shuangying Li , Qingxiang Zhou , Zhi Li , Menghua Liu , Yanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693
Yanhua Peng , Xin Yu , Ting Wang . Adaptive nanoconfined Fenton-like reactions: Tailoring carbon pathways for sustainable water treatment and energy harvesting. Chinese Chemical Letters, 2024, 35(12): 110198-. doi: 10.1016/j.cclet.2024.110198
Xiaoyao Ma , Jinling Zhang , Ge Fang , He Gao , Jie Gao , Li Fu , Yuanyuan Hou , Gang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823
Lixian Fu , Yiyun Tan , Yue Ding , Weixia Qing , Yong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886
Yuqing Liu , Yu Yang , Yuhan E , Changlong Pang , Di Cui , Ang Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651
Pengcheng Su , Shizheng Chen , Zhihong Yang , Ningning Zhong , Chenzi Jiang , Wanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357
Yuchen Zhang , Lifeng Ding , Zhenghe Xie , Xin Zhang , Xiaofeng Sui , Jian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
Linshan Peng , Qihang Peng , Tianxiang Jin , Zhirong Liu , Yong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891
Xin Li , Xuan Ding , Junkun Zhou , Hui Shi , Zhenxi Dai , Jiayi Liu , Yongcun Ma , Penghui Shao , Liming Yang , Xubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201
Sushu Zhang , Yang Yang , Jingyu Wang . Pyridinic nitrogen-substituted graphene membranes for exceptional CO2 capture. Chinese Journal of Structural Chemistry, 2025, 44(2): 100440-100440. doi: 10.1016/j.cjsc.2024.100440
Er-Meng Wang , Ziyi Wang , Xu Ban , Xiaowei Zhao , Yanli Yin , Zhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843
Zhiwei Chen , Heyun Sheng , Xue Li , Menghan Chen , Xin Li , Qiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937