Advances in component and operation optimization of solid oxide electrolysis cell
-
* Corresponding authors.
E-mail addresses: jialc@hust.edu.cn (L. Jia), yfsun@xmu.edu.cn (Y. Sun).
Citation:
Xiaoxin Zhang, Bo Liu, Yanling Yang, Jianhui Li, Jian Li, Yingru Zhao, Lichao Jia, Yifei Sun. Advances in component and operation optimization of solid oxide electrolysis cell[J]. Chinese Chemical Letters,
;2023, 34(5): 108035.
doi:
10.1016/j.cclet.2022.108035
Z. Caineng, Y. Zhi, H. Dongbo, et al., Pet. Explor. Dev. 45 (2018) 604–618.
doi: 10.1016/S1876-3804(18)30066-1
J.E. Bistline, Joule 5 (2021) 2551–2563.
doi: 10.1016/j.joule.2021.09.012
K.O. Yoro, M.O. Daramola, CO2 emission sources, greenhouse gases, and the global warming effect, in: K.O. Yoro (Ed. ) Advances in carbon capture, Elsevier, New York, 2020, pp. 3-28.
J.B. Hansen, Faraday Discuss. 182 (2015) 9–48.
doi: 10.1039/C5FD90071A
M.S. Ziegler, J. Song, J.E. Trancik, Energy Environ. Sci. 14 (2021) 6074–6098.
doi: 10.1039/D1EE01313K
D. Connolly, H. Lund, B.V. Mathiesen, Renew. Sust. Energ. Rev. 60 (2016) 1634–1653.
doi: 10.1016/j.rser.2016.02.025
M. Aresta, A. Dibenedetto, A. Angelini, Chem. Rev. 114 (2014) 1709–1742.
doi: 10.1021/cr4002758
Y. Tian, N. Abhishek, C. Yang, et al., Matter 5 (2022) 482–514.
doi: 10.1016/j.matt.2021.11.013
K.R. Sridhar, B.T. Vaniman, Solid State Ionics 93 (1997) 321–328.
doi: 10.1016/S0167-2738(96)00513-9
Y. Zheng, J. Wang, B. Yu, et al., Chem. Soc. Rev 46 (2017) 1427–1463.
doi: 10.1039/C6CS00403B
Y. Song, X. Zhang, K. Xie, et al., Adv. Mater. 31 (2019) 1902033.
doi: 10.1002/adma.201902033
Y. Zhou, Study on Fabrication and Performance of Metal-Supported Solid Oxide Fuel Cells, Springer, Shanghai, 2017.
D. Gu, G. Zhang, J. Zou, Chin. Chem. Lett. 32 (2021) 3548–3552.
doi: 10.1016/j.cclet.2021.01.050
C. Graves, S.D. Ebbesen, M. Mogensen, K.S. Lackner, Renew. Sust. Energ. Rev. 15 (2011) 1–23.
doi: 10.1016/j.rser.2010.07.014
A. Körner, C. Tam, S. Bennett, Gagné, Technology roadmap-hydrogen and fuel cells, International Energy Agency, Paris, 2015.
S. Shiva Kumar, V. Himabindu, Mater. Sci. Energy Technol. 2 (2019) 442–454.
R. Küngas, J. Electrochem. Soc. 167 (2020) 044508.
doi: 10.1149/1945-7111/ab7099
R. Küngas, P. Blennow, T. Heiredal-Clausen, et al., Progress in SOEC Development Activities at Haldor Topsøe, 2019.
L. Wang, M. Chen, R. Küngas, et al., Renew. Sust. Energ. Rev. 110 (2019) 174–187.
doi: 10.1016/j.rser.2019.04.071
I. Zvonareva, X.Z. Fu, D. Medvedev, Z. Shao, Energy Environ. Sci. 15 (2022) 439–465.
doi: 10.1039/D1EE03109K
A. Hauch, R. Kungas, P. Blennow, et al., Science 370 (2020) eaba6118.
doi: 10.1126/science.aba6118
X. Zhang, L. Ye, K. Xie, Energ. Fuel 36 (2022) 11576–11583.
doi: 10.1021/acs.energyfuels.1c03830
N. Shi, Y. Xie, D. Huan, et al., J. Mater. Chem. A 7 (2019) 4855–4864.
doi: 10.1039/C8TA12458B
L. Lei, J. Zhang, Z. Yuan, et al., Adv. Funct. Mater. 29 (2019) 1903805.
doi: 10.1002/adfm.201903805
M. Laguna-Bercero, J. Power Sources 203 (2012) 4–16.
doi: 10.1016/j.jpowsour.2011.12.019
M. Ni, M.K. Leung, D.Y. Leung, Int. J. Hydrogen Energy 33 (2008) 2337–2354.
doi: 10.1016/j.ijhydene.2008.02.048
D.W. Strickler, W.G. Carlson, J. Am. Ceram. Soc. 47 (1964) 122–127.
doi: 10.1111/j.1151-2916.1964.tb14368.x
K. Yamaji, H. Yokokawa, 8 - Oxygen ionic conductor, in: C.C. Sorrell, S. Sugihara, J. Nowotny (Eds. ), Materials for Energy Conversion Devices, Woodhead Publishing, New York, 2005, pp. 212–234.
H. Sumi, E. Suda, M. Mori, Int. J. Hydrogen Energy 42 (2017) 4449–4455.
doi: 10.1016/j.ijhydene.2016.09.176
T. Ishihara, H. Matsuda, Y. Takita, JACS 116 (1994) 3801–3803.
doi: 10.1021/ja00088a016
Z. Gao, H. Wang, E. Miller, et al., ACS Appl. Mater. Interfaces 9 (2017) 7115–7124.
doi: 10.1021/acsami.6b15224
C. Duan, R. Kee, H. Zhu, et al., Nat. Energy 4 (2019) 230–240.
doi: 10.1038/s41560-019-0333-2
N.L.R.M. Rashid, A.A. Samat, A.A. Jais, et al., Ceram. Int. 45 (2019) 6605–6615.
doi: 10.1016/j.ceramint.2019.01.045
L. Gan, L. Ye, S. Wang, et al., Int. J. Hydrogen Energy 41 (2016) 1170–1175.
doi: 10.1016/j.ijhydene.2015.11.032
L. Yang, S. Wang, K. Blinn, et al., Science 326 (2009) 126–129.
doi: 10.1126/science.1174811
C. Duan, J. Tong, M. Shang, et al., Science 349 (2015) 1321–1326.
doi: 10.1126/science.aab3987
X. Zhang, Y. Song, G. Wang, X. Bao, J. Energy Chem. 26 (2017) 839–853.
doi: 10.1016/j.jechem.2017.07.003
Y. Zheng, Z. Chen, J. Zhang, Electrochem. Energy Rev. 4 (2021) 508–517.
doi: 10.1007/s41918-021-00097-4
M. Chen, Y.L. Liu, J.J. Bentzen, et al., J. Electrochem. Soc. 160 (2013) F883–F891.
doi: 10.1149/2.098308jes
Y. Song, Z. Zhou, X. Zhang, et al., J. Mater. Chem. A 6 (2018) 13661–13667.
doi: 10.1039/C8TA02858C
T.L. Skafte, Z. Guan, M.L. Machala, et al., Nat. Energy 4 (2019) 846–855.
doi: 10.1038/s41560-019-0457-4
M.C. Tucker, Int. J. Hydrogen Energy 45 (2020) 24203–24218.
doi: 10.1016/j.ijhydene.2020.06.300
J. Druce, H. Téllez, M. Burriel, et al., Energy Environ. Sci. 7 (2014) 3593–3599.
doi: 10.1039/C4EE01497A
C. Zhu, S. Hou, L. Hou, K. Xie, Int. J. Hydrogen Energy 43 (2018) 17040–17047.
doi: 10.1016/j.ijhydene.2018.07.148
L. Ye, X. Hu, X. Wang, et al., J. Mater. Chem. A 7 (2019) 2764–2772.
doi: 10.1039/C8TA10188D
Y. Zhou, Z. Zhou, Y. Song, et al., Nano Energy 50 (2018) 43–51.
doi: 10.1016/j.nanoen.2018.04.054
Y. Niu, W. Huo, Y. Yu, et al., Chin. Chem. Lett. 33 (2022) 674–682.
doi: 10.1016/j.cclet.2021.07.037
C. Ruan, K. Xie, L. Yang, et al., Int. J. Hydrogen Energy 39 (2014) 10338–10348.
doi: 10.1016/j.ijhydene.2014.04.204
J. Carneiro, X.K. Gu, E. Tezel, E. Nikolla, Ind. Eng. Chem. Res. 59 (2020) 15884–15893.
doi: 10.1021/acs.iecr.0c02773
C. Zhu, L. Hou, S. Li, et al., J. Power Sources 363 (2017) 177–184.
doi: 10.1016/j.jpowsour.2017.07.070
L. Zhang, Y. Tian, Y. Liu, et al., ChemElectroChem 6 (2019) 1359–1364.
doi: 10.1002/celc.201801831
O. Kwon, S. Joo, S. Choi, et al., J. Phys. Energy 2 (2020) 032001.
doi: 10.1088/2515-7655/ab8c1f
D. Neagu, G. Tsekouras, D.N. Miller, et al., Nat. Chem. 5 (2013) 916–923.
doi: 10.1038/nchem.1773
S. Joo, O. Kwon, K. Kim, et al., Nat. Commun. 10 (2019) 697.
doi: 10.1038/s41467-019-08624-0
H. Han, J. Park, S.Y. Nam, et al., Nat. Commun. 10 (2019) 1471.
doi: 10.1038/s41467-019-09395-4
J.H. Myung, D. Neagu, D.N. Miller, J.T. Irvine, Nature 537 (2016) 528–531.
doi: 10.1038/nature19090
C. Ruan, K. Xie, Catal. Sci. Technol. 5 (2015) 1929–1940.
doi: 10.1039/C4CY01254B
G. Tsekouras, D. Neagu, J.T.S. Irvine, Energy Environ. Sci. 6 (2013) 256–266.
doi: 10.1039/C2EE22547F
S. Liu, Q. Liu, J.L. Luo, J. Mater. Chem. A 4 (2016) 17521–17528.
doi: 10.1039/C6TA06365A
X. Sun, Y. Ye, M. Zhou, et al., J. Mater. Chem. A (2022) 2327–2335.
S. Ding, M. Li, W. Pang, et al., Electrochim. Acta 335 (2020) 135683.
doi: 10.1016/j.electacta.2020.135683
Y. Tian, Y. Liu, A. Naden, et al., J. Mater. Chem. A 8 (2020) 14895–14899.
doi: 10.1039/D0TA05518B
H. Lv, L. Lin, X. Zhang, et al., J. Mater. Chem. A 7 (2019) 11967–11975.
doi: 10.1039/C9TA03065D
H. Lv, L. Lin, X. Zhang, et al., Nat. Commun. 12 (2021) 1–11.
doi: 10.1038/s41467-020-20314-w
J. Lu, C. Zhu, C. Pan, et al., Sci. Adv. 4 (2018) eaar5100.
doi: 10.1126/sciadv.aar5100
H. Lv, L. Lin, X. Zhang, et al., Adv. Mater. 32 (2020) 1906193.
doi: 10.1002/adma.201906193
N. Han, R. Ren, M. Ma, et al., Chin. Chem. Lett. 33 (2022) 2658–2662.
doi: 10.1016/j.cclet.2021.09.100
J. Sun, R. Ren, H. Yue, et al., Chin. Chem. Lett. 33 (2022) 107776.
N.P. Brandon, S. Skinner, B.C. Steele, Annu. Rev. Mater. Res. 33 (2003) 183–213.
doi: 10.1146/annurev.matsci.33.022802.094122
J. Fleig, Annu. Rev. Mater. Res. 33 (2003) 361–382.
doi: 10.1146/annurev.matsci.33.022802.093258
K. Chen, N. Ai, Int. J. Hydrogen Energy 39 (2014) 10349–10358.
doi: 10.1016/j.ijhydene.2014.05.013
S.B. Adler, Chem. Rev. 104 (2004) 4791–4844.
doi: 10.1021/cr020724o
M.A. Laguna-Bercero, A.R. Hanifi, H. Monzon, et al., J. Mater. Chem. A 2 (2014) 9764–9770.
doi: 10.1039/C4TA00665H
A. Chroneos, D. Parfitt, J.A. Kilner, R.W. Grimes, J. Mater. Chem. 20 (2010) 266–270.
doi: 10.1039/B917118E
S. Streule, A. Podlesnyak, D. Sheptyakov, et al., Phys. Rev. B 73 (2006) 094203.
doi: 10.1103/PhysRevB.73.094203
A. Tarancón, D. Marrero-López, J. Peña-Martínez, et al., Solid State Ionics 179 (2008) 611–618.
doi: 10.1016/j.ssi.2008.04.028
Q. Liu, C. Yang, X. Dong, F. Chen, Int. J. Hydrogen Energy 35 (2010) 10039–10044.
doi: 10.1016/j.ijhydene.2010.08.016
Y. Tian, J. Li, Y. Liu, et al., Int. J. Hydrogen Energy 43 (2018) 12603–12609.
doi: 10.1016/j.ijhydene.2018.03.187
Y. Tian, D. Yan, B. Chi, et al., ECS Trans. 78 (2017) 533.
doi: 10.1149/07801.0533ecst
J. Laurencin, M. Hubert, D.F. Sanchez, et al., Electrochim. Acta 241 (2017) 459–476.
doi: 10.1016/j.electacta.2017.05.011
Q. Lyu, N. Wang, Z. Li, et al., J. Power Sources 521 (2022) 230933.
doi: 10.1016/j.jpowsour.2021.230933
X. Zhang, S. Ohara, R. Maric, et al., J. Power Sources 83 (1999) 170–177.
doi: 10.1016/S0378-7753(99)00293-1
M.A. Laguna-Bercero, A.R. Hanifi, L. Menand, et al., Electrochim. Acta 268 (2018) 195–201.
doi: 10.1016/j.electacta.2018.02.055
L. Mingyi, Y. Bo, X. Jingming, C. Jing, Int. J. Hydrogen Energy 35 (2010) 2670–2674.
doi: 10.1016/j.ijhydene.2009.04.027
H. Fan, M. Keane, N. Li, et al., Int. J. Hydrogen Energy 39 (2014) 14071–14078.
doi: 10.1016/j.ijhydene.2014.05.149
N. Li, L. Wang, M. Wang, et al., J. Power Sources 518 (2022) 230787.
doi: 10.1016/j.jpowsour.2021.230787
X. Wang, B. Yu, W. Zhang, et al., Int. J. Hydrogen Energy 37 (2012) 12833–12838.
doi: 10.1016/j.ijhydene.2012.05.093
M.S. Khan, X. Xu, R. Knibbe, Z. Zhu, ACS Appl. Mater. Interfaces 10 (2018) 25295–25302.
doi: 10.1021/acsami.8b05504
H. Xu, B. Chen, J. Irvine, M. Ni, Int. J. Hydrogen Energy 41 (2016) 21839–21849.
doi: 10.1016/j.ijhydene.2016.10.026
Y. Wang, T. Liu, S. Fang, et al., J. Power Sources 277 (2015) 261–267.
doi: 10.1016/j.jpowsour.2014.11.092
C. Zhu, S. Hou, X. Hu, et al., Nat. Commun. 10 (2019) 1173.
doi: 10.1038/s41467-019-09083-3
Y. Song, L. Lin, W. Feng, et al., Angew. Chem. Int. Ed. 58 (2019) 16043–16046.
doi: 10.1002/anie.201908388
L. Lei, Y. Wang, S. Fang, et al., Appl. Energy 173 (2016) 52–58.
doi: 10.1016/j.apenergy.2016.03.116
X. Zhang, L. Ye, H. Li, et al., ACS Catal. 10 (2020) 3505–3513.
doi: 10.1021/acscatal.9b05409
M. Li, B. Hua, L.C. Wang, et al., Nat. Catal. 4 (2021) 274–283.
doi: 10.1038/s41929-021-00590-5
Z. Pan, C. Duan, T. Pritchard, et al., Appl. Catal. B 307 (2022) 121196.
doi: 10.1016/j.apcatb.2022.121196
J.C.W. Mah, A. Muchtar, M.R. Somalu, M.J. Ghazali, Int. J. Hydrogen Energy 42 (2017) 9219–9229.
doi: 10.1016/j.ijhydene.2016.03.195
E. Dogdibegovic, S. Ibanez, A. Wallace, et al., Int. J. Hydrogen Energy 47 (2022) 24279–24286.
doi: 10.1016/j.ijhydene.2022.05.206
P. Piccardo, R. Spotorno, C. Geipel, Energies 15 (2022) 3458.
doi: 10.3390/en15093458
K. Singh, T. Walia, Int. J. Energy Res. 45 (2021) 20559–20582.
doi: 10.1002/er.7161
A. Hauch, J.R. Bowen, L.T. Kuhn, M. Mogensen, Electrochem. Solid St. 11 (2008) B38–B41.
doi: 10.1149/1.2828845
Y. Zheng, Q. Li, W. Guan, et al., Ceram. Int. 40 (2014) 5801–5809.
doi: 10.1016/j.ceramint.2013.11.020
Y. Zheng, Q. Li, T. Chen, et al., Int. J. Hydrogen Energy 40 (2015) 2460–2472.
doi: 10.1016/j.ijhydene.2014.12.101
X. Zhang, J.E. O'Brien, R.C. O'Brien, et al., Int. J. Hydrogen Energy 38 (2013) 20–28.
doi: 10.1016/j.ijhydene.2012.09.176
J. Mougin, A. Chatroux, K. Couturier, et al., Energy Procedia 29 (2012) 445–454.
doi: 10.1016/j.egypro.2012.09.052
Q. Fang, L. Blum, N.H. Menzler, J. Electrochem. Soc. 162 (2015) F907–F912.
doi: 10.1149/2.0941508jes
M. Reytier, S. Di Iorio, A. Chatroux, et al., Int. J. Hydrogen Energy 40 (2015) 11370–11377.
doi: 10.1016/j.ijhydene.2015.04.085
M. Riedel, M.P. Heddrich, A. Ansar, et al., J. Power Sources 475 (2020) 228682.
doi: 10.1016/j.jpowsour.2020.228682
R. Küngas, P. Blennow, T. Heiredal-Clausen, et al., ECS Trans. 91 (2019) 215–223.
doi: 10.1149/09101.0215ecst
Yinghua Niu , Weirong Huo , Yuandong Yu , Wenjun Li , Yulin Chen , Weiqiang Lv . Cathode infiltration with enhanced catalytic activity and durability for intermediate-temperature solid oxide fuel cells. Chinese Chemical Letters, 2022, 33(2): 674-682. doi: 10.1016/j.cclet.2021.07.037
Su Lijun , Liu Lingyang , Wang Yue , Lu Yulan , Yan Xingbin . Synergetic ternary metal oxide nanodots-graphene cathode for high performance zinc energy storage. Chinese Chemical Letters, 2020, 31(9): 2358-2364. doi: 10.1016/j.cclet.2020.03.014
Nan Han , Rongzheng Ren , Minjian Ma , Chunming Xu , Jinshuo Qiao , Wang Sun , Kening Sun , Zhenhua Wang . Sn and Y co-doped BaCo0.6Fe0.4O3-δ cathodes with enhanced oxygen reduction activity and CO2 tolerance for solid oxide fuel cells. Chinese Chemical Letters, 2022, 33(5): 2658-2662. doi: 10.1016/j.cclet.2021.09.100
Sun Li , Wang Kai , Li Ningning , Zhang Jun , Guo Xiangxin , Liu Xianghong . Multilayered structure of N-carbonenvelopediron oxide/graphene nanocomposites as an improved anode for Li-ion battery. Chinese Chemical Letters, 2020, 31(9): 2333-2338. doi: 10.1016/j.cclet.2020.02.006
Peng Jun , Zuo Yong-Tao , Li Gang , Wang Gang . Preparation of few-layer reduced graphene oxide-wrapped mesoporous Li4Ti5O12 spheres and its application as an anode material for lithium-ion batteries. Chinese Chemical Letters, 2016, 27(9): 1559-1562. doi: 10.1016/j.cclet.2016.02.028
HOU Quan , GUAN Chengzhi , XIAO Guoping , WANG Jian-Qiang , ZHU Zhiyuan . Effect of Oxygen Partial Pressure on Solid Oxide Electrolysis Cells. Acta Physico-Chimica Sinica, 2019, 35(3): 284-291. doi: 10.3866/PKU.WHXB201804171
Ting Wang , Zhixiong Huang , Donghuang Wang , Jiqi Wu , Junjie Lu , Zihan Jin , Shaojun Shi , Yongqi Zhang . PxSy nanoparticles encapsulated in graphene as highly reversible cathode for sodium ion batteries. Chinese Chemical Letters, 2023, 34(1): 107216-1-107216-8. doi: 10.1016/j.cclet.2022.02.021
Sun Yi , Liang Xin , Xiang Hongfa , Yu Yan . Free-standing vanadium pentoxide nanoribbon film as a high-performance cathode for rechargeable sodium batteries. Chinese Chemical Letters, 2017, 28(12): 2251-2253. doi: 10.1016/j.cclet.2017.11.028
Yang Xia , Wei Jin , Yanyuan Qi , Hang Li , Zelang Jian , Wen Chen . Low-coordination water Prussian white as cathode for high-performance potassium-ion batteries. Chinese Chemical Letters, 2021, 32(8): 2433-2437. doi: 10.1016/j.cclet.2021.01.025
Yiming Dai , Qiujie Chen , Chenchen Hu , Yangyang Huang , Wangyan Wu , Mingliang Yu , Dan Sun , Wei Luo . Copper fluoride as a low-cost sodium-ion battery cathode with high capacity. Chinese Chemical Letters, 2022, 33(3): 1435-1438. doi: 10.1016/j.cclet.2021.08.050
Kena Sun , Huiwu Long , Xiaowu Jie , Huangxu Li . Eliminating crystal water enables enhanced sodium storage performance in an oxalate-phosphate cathode material. Chinese Chemical Letters, 2023, 34(8): 107898-1-107898-4. doi: 10.1016/j.cclet.2022.107898
Liying Shen , Yong Li , Swagata Roy , Xiuping Yin , Wenbo Liu , Shanshan Shi , Xuan Wang , Xuemin Yin , Jiujun Zhang , Yufeng Zhao . A robust carbon coating of Na3V2(PO4)3 cathode material for high performance sodium-ion batteries. Chinese Chemical Letters, 2021, 32(11): 3570-3574. doi: 10.1016/j.cclet.2021.03.005
Chao Lu , Zhi Yang , Yujie Wang , Yun Zhang , Hao Wu , Yi Guo , Wenlong Cai . Ethylene glycol-regulated ammonium vanadate with stable layered structure and favorable interplanar spacing as high-performance cathode for aqueous zinc ion batteries. Chinese Chemical Letters, 2023, 34(8): 108572-1-108572-5. doi: 10.1016/j.cclet.2023.108572
Yang Chenglong , Zhong Xiongwu , Jiang Yu , Yu Yan . Reduced graphene oxide wrapped hollow molybdenum trioxide nanorod for high performance lithium-ion batteries. Chinese Chemical Letters, 2017, 28(12): 2231-2234. doi: 10.1016/j.cclet.2017.11.027
Sun Jinfeng , Guo Lingzhi , Gao Miaomiao , Sun Xuan , Zhang Jinyang , Liang Longwei , Liu Yang , Hou Linrui , Yuan Changzhou . Solid-state template-free fabrication of uniform Mo2C microflowers with lithium storage towards Li-ion batteries. Chinese Chemical Letters, 2020, 31(6): 1670-1673. doi: 10.1016/j.cclet.2019.09.049
Chen Yuanyuan , Wana Bingjie , Hou Tianyi , Hu Xudong , Li Xin , Sun Xiaohong , Cai Shu , Ji Huiming , Zheng Chunming . Enhanced electrochemical performance of SnS nanoparticles/CNTs composite as anode material for sodium-ion battery. Chinese Chemical Letters, 2018, 29(1): 187-190. doi: 10.1016/j.cclet.2017.06.019
Zeng Gan-Ying , Wang Hao , Guo Jing , Cha Li-Mei , Dou Yu-Hai , Ma Jian-Min . Fabrication of Nb2O5/C nanocomposites as a high performance anode for lithium ion battery. Chinese Chemical Letters, 2017, 28(4): 755-758. doi: 10.1016/j.cclet.2017.01.001
Wei Wei , Jia Fang-Fang , Wang Ke-Feng , Qu Peng . SnS2/graphene nanocomposite: A high rate anode material for lithium ion battery. Chinese Chemical Letters, 2017, 28(2): 324-328. doi: 10.1016/j.cclet.2016.09.003
Zhang Na , Li Xin , Hou Tianyi , Guo Jinze , Fan Anran , Jin Shibo , Sun Xiaohong , Cai Shu , Zheng Chunming . MnS hollow microspheres combined with carbon nanotubes for enhanced performance sodium-ion battery anode. Chinese Chemical Letters, 2020, 31(5): 1221-1225. doi: 10.1016/j.cclet.2019.09.050
Yang Juan , Xu Dan , Hou Ruilin , Lang Junwei , Wang Zhaoli , Dong Zhengping , Ma Jiantai . Nitrogen-doped carbon nanotubes by multistep pyrolysis process as a promising anode material for lithium ion hybrid capacitors. Chinese Chemical Letters, 2020, 31(9): 2239-2244. doi: 10.1016/j.cclet.2019.11.044