Citation: Dazhi Feng, Lihua Liu, Yuqi Shi, Pian Du, Shengtao Xu, Zheying Zhu, Jinyi Xu, Hong Yao. Current development of bicyclic peptides[J]. Chinese Chemical Letters, ;2023, 34(6): 108026. doi: 10.1016/j.cclet.2022.108026 shu

Current development of bicyclic peptides

    * Corresponding authors.
    E-mail addresses: cpuxst@163.com (S. Xu), jinyixu@china.com (J. Xu), hyao1989@sina.cn (H. Yao).
  • Received Date: 23 August 2022
    Revised Date: 22 November 2022
    Accepted Date: 28 November 2022
    Available Online: 29 November 2022

Figures(18)

  • Bicyclic peptides, a class of polypeptides with two loops within their structure, have emerged as powerful tools in the development of new peptide drugs. They have the potential to bind to challenged drug targets, with antibody-like affinity and selectivity. Meanwhile, bicyclic peptides possess small molecule-like access to chemical synthesis, which is conducive to large-scale synthesis and screening. In the last five years, bicyclic peptide technology has been increasingly developed, and researchers have carried out a variety of studies to elucidate the potential functions of bicyclic peptides. With the continuous development of synthetic methods and the advances of new technology to build bicyclic peptide libraries, bicyclic peptides are now becoming widely used in the development of new drugs for various diseases. This perspective provides an overview of the structure types, synthesis and applications of bicyclic peptides in current drug development, and our own views on future challenges of bicyclic peptides.
  • 加载中
    1. [1]

      A. Mullard, Nat. Rev. Drug. Discov. 20 (2021) 85-90.  doi: 10.1038/d41573-021-00002-0

    2. [2]

      C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Adv. Drug. Deliv. Rev. 46 (2001) 3-26.

    3. [3]

      J.A. Robinson, S. Demarco, F. Gombert, K. Moehle, D. Obrecht, Drug Discov. Today 13 (2008) 944-951.

    4. [4]

      E.V. Gurevich, V.V. Gurevich, Handb. Exp. Pharmacol. 219 (2014) 1-12.  doi: 10.1007/978-3-642-41199-1_1

    5. [5]

      L.K. Buckton, M.N. Rahimi, S.R. McAlpine, Chem. Eur. J. 27 (2021) 1487-1513.  doi: 10.1002/chem.201905385

    6. [6]

      P.M. O'Neil, A.L. Birkenfeld, B. McGowan, et al., Lancet 392 (2018) 637-649.

    7. [7]

      P.G. Dougherty, A. Sahni, D. Pei, Chem. Rev. 119 (2019) 10241-10287.  doi: 10.1021/acs.chemrev.9b00008

    8. [8]

      Z. Qian, P.G. Dougherty, D. Pei, Curr. Opin. Chem. Biol. 38 (2017) 80-86.

    9. [9]

      F. Giordanetto, J. Kihlberg, J. Med. Chem. 57 (2014) 278-295.  doi: 10.1021/jm400887j

    10. [10]

      J.E. Bock, J. Gavenonis, J.A. Kritzer, ACS Chem. Biol. 8 (2013) 488-499.  doi: 10.1021/cb300515u

    11. [11]

      C.A. Rhodes, D. Pei, Chem. Eur. J. 23 (2017) 12690-12703.  doi: 10.1002/chem.201702117

    12. [12]

      G.M. Watson, K. Kulkarni, J. Sang, et al., J. Med. Chem. 60 (2017) 9349-9359.  doi: 10.1021/acs.jmedchem.7b01320

    13. [13]

      T. Mund, M.J. Lewis, S. Maslen, H.R. Pelham, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 16736-16741.  doi: 10.1073/pnas.1412152111

    14. [14]

      J.S. Quartararo, M.R. Eshelman, L. Peraro, et al., Bioorg. Med. Chem. 22 (2014) 6387-6391.

    15. [15]

      M. Wendt, R. Bellavita, A. Gerber, et al., Angew. Chem. Int. Ed. 60 (2021) 13937-13944.  doi: 10.1002/anie.202102082

    16. [16]

      H. Ueda, T. Manda, S. Matsumoto, et al., J. Antibiot. 47 (1994) 315-323.  doi: 10.7164/antibiotics.47.315

    17. [17]

      V. Baeriswyl, H. Rapley, L. Pollaro, et al., ChemMedChem 7 (2012) 1173-1176.  doi: 10.1002/cmdc.201200071

    18. [18]

      D. Bernhagen, V. Jungbluth, N.G. Quilis, et al., ACS Comb. Sci. 21 (2019) 198-206.  doi: 10.1021/acscombsci.8b00144

    19. [19]

      D.D. Smith, J. Slaninova, V.J. Hruby, J. Med. Chem. 35 (1992) 1558-1563.  doi: 10.1021/jm00087a009

    20. [20]

      M. Eder, S. Pavan, U. Bauder-Wüst, et al., Cancer Res. 79 (2019) 841-852.  doi: 10.1158/0008-5472.can-18-0238

    21. [21]

      M. Li, X. Shao, C. Wu, et al., Chem. Commun. 56 (2020) 9537-9540.  doi: 10.1039/d0cc01089h

    22. [22]

      I. Di Bonaventura, S. Baeriswyl, A. Capecchi, et al., Chem. Commun. 54 (2018) 5130-5133.  doi: 10.1039/c8cc02412j

    23. [23]

      N.E. Shepherd, R.S. Harrison, G. Ruiz-Gomez, et al., Org. Biomol. Chem. 14 (2016) 10939-10945.

    24. [24]

      S. Ahangarzadeh, M.M. Kanafi, S. Hosseinzadeh, et al., Drug Discov. Today 24 (2019) 1311-1319.

    25. [25]

      Z. Qian, C.A. Rhodes, L.C. McCroskey, et al., Angew. Chem. Int. Ed. 56 (2017) 1525-1529.  doi: 10.1002/anie.201610888

    26. [26]

      G. Zanotti, C. Birr, T. Wieland, Int. J. Pept. Protein Res. 12 (1978) 204-216.

    27. [27]

      K. Matinkhoo, A. Pryyma, M. Todorovic, B.O. Patrick, D.M. Perrin, J. Am. Chem. Soc. 140 (2018) 6513-6517.  doi: 10.1021/jacs.7b12698

    28. [28]

      P.E. Dawson, T.W. Muir, I. Clark-Lewis, S.B. Kent, Science 266 (1994) 776-779.  doi: 10.1126/science.7973629

    29. [29]

      N. Ghalit, J.F. Reichwein, H.W. Hilbers, et al., ChemBioChem 8 (2007) 1540-1554.  doi: 10.1002/cbic.200700244

    30. [30]

      L. Mendive-Tapia, S. Preciado, J. Garcia, et al., Nat. Commun. 6 (2015) 7160.

    31. [31]

      M. Bartoloni, X. Jin, M.J. Marcaida, et al., Chem. Sci. 6 (2015) 5473-5490.

    32. [32]

      C. Xu, J. Xu, H. Liu, X. Li, Chin. Chem. Lett. 29 (2018) 1119-1122.

    33. [33]

      B.K. Chung, A.K. Yudin, Org. Biomol. Chem. 13 (2015) 8768-8779.

    34. [34]

      Y. Wang, B.J. Bruno, S. Cornillie, et al., Chemistry 23 (2017) 7087-7092.  doi: 10.1002/chem.201700572

    35. [35]

      Y. Yin, Q. Fei, W. Liu, et al., Angew. Chem. Int. Ed. 58 (2019) 4880-4885.  doi: 10.1002/anie.201813827

    36. [36]

      P. Lin, H. Yao, J. Zha, Y. Zhao, C. Wu, ChemBioChem 20 (2019) 1514-1518.  doi: 10.1002/cbic.201800788

    37. [37]

      P. Yang, X. Wang, B. Li, et al., Chem. Sci. 12 (2021) 5804-5810.  doi: 10.1039/d1sc00789k

    38. [38]

      W. Muramatsu, T. Hattori, H. Yamamoto, J. Am. Chem. Soc. 141 (2019) 12288-12295.  doi: 10.1021/jacs.9b03850

    39. [39]

      Y. Sun, G. Lu, J.P. Tam, Org. Lett. 3 (2001) 1681-1684.

    40. [40]

      C.H.P. Cheung, J. Xu, C.L. Lee, et al., Chem. Sci. 12 (2021) 7091-7097.  doi: 10.1039/d1sc01174j

    41. [41]

      X. Elduque, E. Pedroso, A. Grandas, Org. Lett. 15 (2013) 2038-2041.  doi: 10.1021/ol400726y

    42. [42]

      P.M. Cromm, S. Schaubach, J. Spiegel, et al., Nat. Commun. 7 (2016) 11300.

    43. [43]

      T. Ikenoue, F.A. Aprile, P. Sormanni, et al., Sci. Rep. 10 (2020) 15280.

    44. [44]

      J. Zhang, J. Kemmink, D.T. Rijkers, R.M. Liskamp, Chem. Commun. 49 (2013) 4498-4500.  doi: 10.1039/c3cc40628h

    45. [45]

      W. Lian, P. Upadhyaya, C.A. Rhodes, Y. Liu, D. Pei, J. Am. Chem. Soc. 135 (2013) 11990-11995.  doi: 10.1021/ja405106u

    46. [46]

      H. vandeLangemheen, V. Korotkovs, J. Bijl, et al., ChemBioChem 18 (2017) 387-395.  doi: 10.1002/cbic.201600612

    47. [47]

      S. Fodor, J. Read, M. Pirrung, et al., Science 251 (1991) 767-773.  doi: 10.1126/science.1990438

    48. [48]

      A. Furka, F. Sebestyen, M. Asgedom, G. Dibo, Int. J. Pept. Protein Res. 37 (1991) 487-493.

    49. [49]

      K.S. Lam, S.E. Salmon, E.M. Hersh, et al., Nature 354 (1991) 82-84.

    50. [50]

      R. Liu, J. Marik, K.S. Lam, J. Am. Chem. Soc. 124 (2002) 7678-7680.

    51. [51]

      S.H. Joo, Q. Xiao, Y. Ling, B. Gopishetty, D. Pei, J. Am. Chem. Soc. 128 (2006) 13000-13009.  doi: 10.1021/ja063722k

    52. [52]

      Z.J. Gartner, B.N. Tse, R. Grubina, et al., Science 305 (2004) 1601-1605.

    53. [53]

      C.J. Stress, B. Sauter, L.A. Schneider, T. Sharpe, D. Gillingham, Angew. Chem. Int. Ed. 58 (2019) 9570-9574.  doi: 10.1002/anie.201902513

    54. [54]

      Z. Zhu, A. Shaginian, L.C. Grady, et al., ACS Chem. Biol. 13 (2018) 53-59.  doi: 10.1021/acschembio.7b00852

    55. [55]

      Y. Onda, G. Bassi, A. Elsayed, et al., Chemistry 27 (2021) 7160-7167.  doi: 10.1002/chem.202005423

    56. [56]

      C. Heinis, T. Rutherford, S. Freund, G. Winter, Nat. Chem. Biol. 5 (2009) 502-507.  doi: 10.1038/nchembio.184

    57. [57]

      D.E. Hacker, J. Hoinka, E.S. Iqbal, T.M. Przytycka, M.C.T. Hartman, ACS Chem. Biol. 12 (2017) 795-804.  doi: 10.1021/acschembio.6b01006

    58. [58]

      N. Bionda, R. Fasan, ChemBioChem 16 (2015) 2011-2016.  doi: 10.1002/cbic.201500179

    59. [59]

      R.H. Kimura, A.T. Tran, J.A. Camarero, Angew. Chem. Int. Ed. 118 (2006) 987-990.  doi: 10.1002/ange.200503882

    60. [60]

      S. Luckett, R.S. Garcia, J.J. Barker, et al., J. Mol. Biol. 290 (1999) 525-533.

    61. [61]

      Y. Sako, J. Morimoto, H. Murakami, H. Suga, J. Am. Chem. Soc. 130 (2008) 7232-7234.  doi: 10.1021/ja800953c

    62. [62]

      S. Wada, S. Matsunaga, N. Fusetani, S. Watabe, Mar. Biotechnol. 1 (1999) 337-341.

    63. [63]

      O. Potterat, K. Wagner, G. Gemmecker, et al., J. Nat. Prod. 67 (2004) 1528-1531.  doi: 10.1021/np040093o

    64. [64]

      R.I. Lehrer, A.M. Cole, M.E. Selsted, J. Biol. Chem. 287 (2012) 27014-27019.  doi: 10.1074/jbc.R112.346098

    65. [65]

      G.J. Kim, X. Li, S.H. Kim, et al., Org. Lett. 20 (2018) 7539-7543.  doi: 10.1021/acs.orglett.8b03293

    66. [66]

      S.B. Keysar, N. Gomes, B. Miller, et al., Cancer Res. 80 (2020) 1183-1198.  doi: 10.1158/0008-5472.can-19-3232

    67. [67]

      J. Kobayashi, H. Suzuki, K. Shimbo, K. Takeya, H. Morita, J. Org. Chem. 66 (2001) 6626-6633.

    68. [68]

      H. Morita, K. Shimbo, H. Shigemori, J. Kobayashi, Bioorg. Med. Chem. Lett. 10 (2000) 469-471.

    69. [69]

      Y. Qiu, M. Taichi, N. Wei, et al., J. Med. Chem. 60 (2017) 504-510.  doi: 10.1021/acs.jmedchem.6b01011

    70. [70]

      T. Durek, Q. Kaas, A.M. White, et al., J. Med. Chem. 64 (2021) 9906-9915.  doi: 10.1021/acs.jmedchem.1c00095

    71. [71]

      M.R.U. Karim, Y. In, T. Zhou, et al., Org. Lett. 23 (2021) 2109-2113.  doi: 10.1021/acs.orglett.1c00210

    72. [72]

      T. Miyata, F. Tokunaga, T. Yoneya, et al., J. Biochem. 106 (1989) 663-668.  doi: 10.1093/oxfordjournals.jbchem.a122913

    73. [73]

      G. Bennett, R. Lutz, P. Park, H. Harrison, K. Lee, Cancer Res. 77 (13_Supplement) (2017) 1167.  doi: 10.1158/1538-7445.am2017-1167

    74. [74]

      H. Sato, T. Takino, Y. Okada, et al., Nature 370 (1994) 61-65.

    75. [75]

      K. Zarrabi, A. Dufour, J. Li, et al., J. Biol. Chem. 286 (2011) 33167-33177.

    76. [76]

      U. Banerji, N. Cook, T.J. Evans, et al., J. Clin. Oncol. 36 (15_Supplement) (2018) TPS2610-TPS2610.

    77. [77]

      P. Hart, P. Hommen, A. Noisier, et al., Angew. Chem. Int. Ed. 60 (2021) 1813-1820.  doi: 10.1002/anie.202009749

    78. [78]

      M. Rigby, P. Beswick, G. Mudd, et al., Cancer Res. 79 (13_Supplement) (2019) 4479.

    79. [79]

      P. Upadhyaya, J. Kristensson, J. Lahdenranta, et al., J. Med. Chem. 65 (2022) 9858-9872.  doi: 10.1021/acs.jmedchem.2c00505

    80. [80]

      K.P. Papadopoulos, A. Dowlati, A. Dickson, et al., J. Clin. Oncol. 40 (2022) TPS2689.  doi: 10.1200/jco.2022.40.16_suppl.tps2689

    81. [81]

      J.A. Wells, C.L. McClendon, Nature 450 (2007) 1001-1009.  doi: 10.1038/nature06526

    82. [82]

      S. Guardiola, J. Seco, M. Varese, et al., ChemBioChem 19 (2018) 76-84.  doi: 10.1002/cbic.201700519

    83. [83]

      D.P. Teufel, G. Bennett, H. Harrison, et al., J. Med. Chem. 61 (2018) 2823-2836.  doi: 10.1021/acs.jmedchem.7b01625

    84. [84]

      N.G. Seidah, Z. Awan, M. Chrétien, M. Mbikay, Circ. Res. 114 (2014) 1022-1036.

    85. [85]

      M.S. Sabatine, R.P. Giugliano, A.C. Keech, et al., N. Engl. J. Med. 376 (2017) 1713-1722.  doi: 10.1056/NEJMoa1615664

    86. [86]

      M. Szarek, H.D. White, G.G. Schwartz, et al., J. Am. Coll. Cardiol. 73 (2019) 387-396.

    87. [87]

      C. Alleyne, R.P. Amin, B. Bhatt, et al., J. Med. Chem. 63 (2020) 13796-13824.  doi: 10.1021/acs.jmedchem.0c01084

    88. [88]

      T.J. Tucker, M.W. Embrey, C. Alleyne, et al., J. Med. Chem. 64 (2021) 16770-16800.  doi: 10.1021/acs.jmedchem.1c01599

    89. [89]

      K. Sakamoto, R. Koyama, Y. Kamada, M. Miwa, A. Tani, Biochem. Biophys. Res. Commun. 503 (2018) 1973-1979.

    90. [90]

      A. Angelini, L. Cendron, S. Chen, et al., ACS Chem. Biol. 7 (2012) 817-821.  doi: 10.1021/cb200478t

    91. [91]

      Y. Luo, J.A. Schofield, Z. Na, et al., Cell Chem. Biol. 28 (2021) 463-474.

    92. [92]

      I.R. Rebollo, C. Heinis, Methods. 60 (2013) 46-54.

    93. [93]

      N. Machida, D. Takahashi, Y. Ueno, et al., J. Biol. Chem. 169 (2021) 295-302.  doi: 10.1093/jb/mvaa130

    94. [94]

      M. Plessner, R. Grosse, Curr. Opin. Cell Biol. 56 (2019) 1-6.

    95. [95]

      V. Hurst, K. Shimada, S.M. Gasser, Trends Cell Biol. 29 (2019) 462-476.

    96. [96]

      C.P. Caridi, M. Plessner, R. Grosse, I. Chiolo, Nat. Cell Biol. 21 (2019) 1068-1077.  doi: 10.1038/s41556-019-0379-1

    97. [97]

      M. Moreira, A. Ruggiero, E. Iaccarino, et al., Int. J. Biol. Macromol. 182 (2021) 1455-1462.

    98. [98]

      Y. Li, G. Cai, S. Yuan, et al., Am. J. Transl. Res. 7 (2015) 120.

    99. [99]

      I. Di Bonaventura, X. Jin, R. Visini, et al., Chem. Sci. 8 (2017) 6784-6798.

    100. [100]

      T. Ikenoue, F.A. Aprile, P. Sormanni, M. Vendruscolo, Front. Neurosci. 15 (2021) 151.

    101. [101]

      R. Tang, Y. Song, M. Shi, et al., Bioconjug. Chem. 32 (2021) 2173-2183.  doi: 10.1021/acs.bioconjchem.1c00366

  • 加载中
    1. [1]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    2. [2]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

    3. [3]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    4. [4]

      Xiaofang LuoYe WuXiaokun ZhangMin TangFeiye JuZuodong QinGregory J DunsWei-Dong ZhangJiang-Jiang QinXin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724

    5. [5]

      Dake LiuShuyan LiuFanlei HuZhongtang LiZhongjun LiN-Glycosylated type Ⅱ collagen peptides as therapeutic saccharide vaccines for rheumatoid arthritis. Chinese Chemical Letters, 2024, 35(5): 108762-. doi: 10.1016/j.cclet.2023.108762

    6. [6]

      Jian LiJinjin ChenQi-Long HuZhen WangXiao-Feng Xiong . Recent progress of chemical methods for lysine site-selective modification of peptides and proteins. Chinese Chemical Letters, 2025, 36(5): 110126-. doi: 10.1016/j.cclet.2024.110126

    7. [7]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    8. [8]

      Wen SuSiying LiuQingfu ZhangZhongyan ZhouNa WangLei Yue . Temperature-controlled electrospray ionization tandem mass spectrometry study on protein/small molecule interaction. Chinese Chemical Letters, 2025, 36(5): 110237-. doi: 10.1016/j.cclet.2024.110237

    9. [9]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    10. [10]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    11. [11]

      Shaofeng GongZi-Wei DengChao WuWei-Min He . Stabilized carbon radical-mediated three-component functionalization of amino acid/peptide derivatives. Chinese Chemical Letters, 2025, 36(5): 110936-. doi: 10.1016/j.cclet.2025.110936

    12. [12]

      Mengmeng YuanXiwen HuNa LiLimin XuMengxi ZhuXing PeiRui LiLu SunYupeng ChenFei YuHuining He . Kidney targeted delivery of siRNA mediated by peptide-siRNA conjugate for the treatment of acute kidney injury. Chinese Chemical Letters, 2025, 36(6): 110251-. doi: 10.1016/j.cclet.2024.110251

    13. [13]

      Tengteng WangYiming JuYao ChengHaiyang WangDejin Zang . Recent advances in polyoxometalates based strategies for green synthesis of drugs. Chinese Chemical Letters, 2025, 36(5): 109871-. doi: 10.1016/j.cclet.2024.109871

    14. [14]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    15. [15]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    16. [16]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    17. [17]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    18. [18]

      Mingqi WangShixin FaJiate YuGuoxian ZhangYi YanQing LiuQiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124

    19. [19]

      Si HaJiacheng ZhuHua XiangGuoshun Luo . Hydrophobic tag tethering degrader as a promising paradigm of protein degradation: Past, present and future perspectives. Chinese Chemical Letters, 2024, 35(8): 109192-. doi: 10.1016/j.cclet.2023.109192

    20. [20]

      Wenhao WangSiyuan PengZhengwei HuangXin Pan . Tuning amino/hydroxyl ratios of nanovesicles to manipulate protein corona-mediated in vivo fate. Chinese Chemical Letters, 2024, 35(11): 110134-. doi: 10.1016/j.cclet.2024.110134

Metrics
  • PDF Downloads(30)
  • Abstract views(1094)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return