Green process of biomass waste derived fluorescent carbon quantum dots for biological imaging in vitro and in vivo
-
* Corresponding author.
E-mail address: wangchuanyi@sust.edu.cn (C. Wang).
Citation:
Haitao Ren, Yue Yuan, Abdelkader Labidi, Qibing Dong, Ke Zhang, Eric Lichtfouse, Ahmed A. Allam, Jamaan S. Ajarem, Chuanyi Wang. Green process of biomass waste derived fluorescent carbon quantum dots for biological imaging in vitro and in vivo[J]. Chinese Chemical Letters,
;2023, 34(6): 107998.
doi:
10.1016/j.cclet.2022.107998
L. Đorđević, F. Arcudi, M. Cacioppo, et al., Nat. Nanotech. 17 (2022) 112–130.
doi: 10.1038/s41565-021-01051-7
T.C. Wareing, P. Gentile, A.N. Phan, et al., ACS Nano 15 (2021) 15471–15501.
doi: 10.1021/acsnano.1c03886
K. Qian, H. Guo, G. Chen, C. Ma, B. Xing, Sci. Rep. 8 (2018) 7991.
doi: 10.1038/s41598-018-26167-0
A.M. Wagner, J.M. Knipe, G. Orive, et al., Acta Biomater. 94 (2019) 44–63.
doi: 10.1016/j.actbio.2019.05.022
L.J. Desmond, A.N. Phan, P. Gentile, et al., Environ. Sci. Nano 8 (2021) 848–862.
doi: 10.1039/D1EN00017A
B. Wang, S. Lu, Matter 5 (2022) 110–149.
doi: 10.1016/j.matt.2021.10.016
X. Li, Y. Chen, Y. Tao, et al., Chem. Catal. 2 (2022) 1315–1345.
doi: 10.1016/j.checat.2022.04.007
S. Li, L. Li, H. Tu, et al., Mater. Today 51 (2021) 188–207.
doi: 10.1016/j.mattod.2021.07.028
R. Wang, K.Q. Lu, Z.R. Tang, et al., Mater. Chem. A 5 (2017) 3717–3734.
doi: 10.1039/C6TA08660H
W. Chen, J. Shen, Z. Wang, et al., Chem. Sci. 12 (2021) 11722–11729.
doi: 10.1039/D1SC02837E
J. Bettles, D.S. Battisti, S.C. Cook-Patton, et al., For. Policy Econ. 130 (2021) 102538.
doi: 10.1016/j.forpol.2021.102538
P. Vasiliki, H.S. Aravani, Z. Yang, G. Liu, W. Wang, Renew. Sustain. Energy Rev. 154 (2022) 111821–111836.
doi: 10.1016/j.rser.2021.111821
J. Gupta, M. Kumari, A. Mishra, et al., Chemosphere 287 (2022) 132321.
doi: 10.1016/j.chemosphere.2021.132321
X. He, N. Zheng, R. Hu, Z. Hu, J.C. Yu, Adv. Funct. Mater. 31 (2021) 2006505.
doi: 10.1002/adfm.202006505
S. Perumal, R. Atchudan, T.N.J.I. Edison, Y.R. Lee, J. Environ. Chem. Eng. 9 (2021) 105802–105816.
doi: 10.1016/j.jece.2021.105802
S.A. Shaik, S. Sengupta, R.S. Varma, et al., ACS Sustain. Chem. Eng. 9 (2021) 3–49.
doi: 10.1021/acssuschemeng.0c04727
F.O. Jimoh, A.A. Adedapo, A.J. Afolayan, et al., Food Chem. Toxicol. 48 (2010) 964–971.
doi: 10.1016/j.fct.2010.01.007
S. Zhao, X. Song, X. Chai, et al., J. Clean. Prod. 263 (2020) 121561.
doi: 10.1016/j.jclepro.2020.121561
L. Yang, Q. Zhang, Y. Han, et al., Nanoscale 13 (2021) 13057–13064.
doi: 10.1039/D1NR02432A
R. Atchudan, T.N.J.I. Edison, D. Chakradhar, et al., Sens. Actuators B 246 (2017) 497–509.
doi: 10.1016/j.snb.2017.02.119
R. Atchudan, T.N.J.I. Edison, S. Perumal, et al., J. Photoch. Photob. A: Chem. 327 (2019) 99–107.
J. Yue, Q. Mei, P. Wang, et al., ACS Appl. Mater. Interfaces 14 (2022) 17119–17127.
doi: 10.1021/acsami.2c01857
Q. Zhang, R. Wang, B. Feng, X. Zhong, K. Ostrikov, Nat. Commun. 12 (2021) 6856–6868.
doi: 10.1038/s41467-021-27071-4
L. Lin, Y. Yin, Z. Li, et al., Chem. Eng. Res. Des. 178 (2022) 395–404.
doi: 10.1016/j.cherd.2021.12.037
J. Tang, J. Zhang, W. Zhang, et al., J. Mater. Sci. Technol. 83 (2021) 58–65.
doi: 10.1016/j.jmst.2020.11.072
S. Liu, J. Tian, L. Wang, et al., Adv. Mater. 24 (2012) 2037–2041.
doi: 10.1002/adma.201200164
D. Rodríguez-Padrón, M. Algarra, L.A.C. Tarelho, et al., ACS Sustain. Chem. Eng. 6 (2018) 7200–7205.
doi: 10.1021/acssuschemeng.7b03848
S.L. D'souza, S.S. Chettiar, J.R. Koduru, et al., Optik 158 (2018) 893–900 (Stuttg).
doi: 10.1016/j.ijleo.2017.12.200
S. Jing, Y. Zhao, R.C. Sun, et al., ACS Sustain. Chem. Eng. 7 (2019) 7833–7843.
doi: 10.1021/acssuschemeng.9b00027
L. Yang, B. Fu, X. Li, et al., J. Mater. Chem. C 9 (2021) 1983–1991.
doi: 10.1039/D0TC05103A
Z. Liu, H. Zou, N. Wang, et al., Sci. China Chem. 61 (2018) 490–496.
doi: 10.1007/s11426-017-9172-0
H.A. Nguyen, I. Srivastava, D. Pan, et al., ACS Nano 14 (2020) 6127–6137.
doi: 10.1021/acsnano.0c01924
Q. Liang, W. Ma, Y. Shi, et al., Carbon 60 (2013) 421–428.
doi: 10.1016/j.carbon.2013.04.055
Q. Wang, H. Zhang, D. Yu, W. Qin, X. Wu, Carbon 198 (2022) 162–170.
doi: 10.1016/j.carbon.2022.07.036
A. Sachdev, P. Gopinath, Analyst 140 (2015) 4260–4269.
doi: 10.1039/C5AN00454C
H. Li, X. Yan, D. Kong, et al., Nanoscale Horiz. 5 (2020) 218–234.
doi: 10.1039/C9NH00476A
C. Duan, M. Won, P. Verwilst, et al., Anal. Chem. 91 (2019) 4172–4178.
doi: 10.1021/acs.analchem.9b00224
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
Fengkai Zou , Borui Su , Han Leng , Nini Xin , Shichao Jiang , Dan Wei , Mei Yang , Youhua Wang , Hongsong Fan . Red-emissive carbon quantum dots minimize phototoxicity for rapid and long-term lipid droplet monitoring. Chinese Chemical Letters, 2024, 35(10): 109523-. doi: 10.1016/j.cclet.2024.109523
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Peide Zhu , Yangjia Liu , Yaoyao Tang , Siqi Zhu , Xinyang Liu , Lei Yin , Quan Liu , Zhiqiang Yu , Quan Xu , Dixian Luo , Juncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689
Tong Zhao , Ke Wang , Feiyu Liu , Shiyu Zhang , Shih-Hsin Ho . Recent progress of tailoring valuable graphene quantum dots from biomass. Chinese Chemical Letters, 2025, 36(6): 110321-. doi: 10.1016/j.cclet.2024.110321
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Biao Huang , Tao Tang , Fushou Liu , Shi-Hui Chen , Zhi-Ling Zhang , Mingxi Zhang , Ran Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694
Chengcheng Si , Linshan Chai , Huiyuan Liu , Liye Sun , Shijian Cheng , Hailing Li , Wenyun Wang , Fang Liu , Qing Feng , Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069
Yihan Xue , Xue Han , Jie Zhang , Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072
Rui Cheng , Tingting Zhang , Xin Huang , Jian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763
Zhanheng Yan , Weiqing Su , Weiwei Xu , Qianhui Mao , Lisha Xue , Huanxin Li , Wuhua Liu , Xiu Li , Qiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217
Xuehua SUN , Min MA , Jianting LIU , Rui TIAN , Hongmei CHAI , Huali CUI , Loujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294
Yiqiao Chen , Ao Liu , Biwen Yang , Zhenzhen Li , Binggang Ye , Zhouyi Guo , Zhiming Liu , Haolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295
Huipeng Zhao , Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246
Xuan Liu , Qing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670
Liwen Wang , Boyang Wang , Siyu Lu , Shubo Lv , Xiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497