Efficient reduction of hexavalent chromium with microscale Fe/Cu bimetals: Efficiency and the role of Cu
-
* Corresponding authors.
E-mail addresses: liuyulu@cuit.edu.cn (Y. Liu), laibo@scu.edu.cn (B. Lai).
Citation:
Yue Yuan, Zhikui Zhou, Xinyi Zhang, Xin Li, Yulu Liu, Shengtao Yang, Bo Lai. Efficient reduction of hexavalent chromium with microscale Fe/Cu bimetals: Efficiency and the role of Cu[J]. Chinese Chemical Letters,
;2023, 34(6): 107932.
doi:
10.1016/j.cclet.2022.107932
P. Fan, Y. Sun, B. Zhou, X. Guan, Environ. Sci. Technol. 53 (2019) 14577–14585.
doi: 10.1021/acs.est.9b04956
K. Wang, Y. Sun, J. Tang, J. He, H. Sun, Chemosphere 241 (2020) 125044.
doi: 10.1016/j.chemosphere.2019.125044
Y. Cao, W. Xiao, G. Shen, et al., Bioresour. Technol. 273 (2019) 70–76.
doi: 10.1016/j.biortech.2018.10.065
Y. Ren, J. Yang, J. Li, B. Lai, Chem. Eng. J. 330 (2017) 813–822.
doi: 10.1016/j.cej.2017.08.029
Z. Yang, X. Ma, C. Shan, et al., J. Hazard. Mater. 368 (2019) 698–704.
doi: 10.1016/j.jhazmat.2019.01.105
H. Zhang, Q. Ji, L. Lai, G. Yao, B. Lai, Chin. Chem. Lett. 30 (2019) 1129–1132.
doi: 10.1016/j.cclet.2019.01.025
X. Guan, Y. Sun, H. Qin, et al., Water Res. 75 (2015) 224–248.
doi: 10.1016/j.watres.2015.02.034
A. Liu, J. Liu, J. Han, W.X. Zhang, J. Hazard. Mater. 322 (2017) 129–135.
doi: 10.1016/j.jhazmat.2015.12.070
H. Zhang, Z. Xiong, F. Ji, B. Lai, P. Yang, Chemosphere 176 (2017) 192–201.
doi: 10.1016/j.chemosphere.2017.02.122
Z. Xiong, B. Lai, P. Yang, Chemosphere 194 (2018) 189–199.
doi: 10.1016/j.chemosphere.2017.11.167
S. Zhou, L. Wang, Q. Zhang, et al., J. Water Process. Eng. 47 (2022) 102732.
doi: 10.1016/j.jwpe.2022.102732
J. Li, X. Zhang, M. Liu, et al., Environ. Sci. Technol. 52 (2018) 2988–2997.
doi: 10.1021/acs.est.7b06502
S. Hamid, S. Bae, W. Lee, M.T. Amin, A.A. Alazba, Ind. Eng. Chem. Res. 54 (2015) 6247–6257.
doi: 10.1021/acs.iecr.5b01127
R. Yamaguchi, S. Kurosu, M. Suzuki, Y. Kawase, Chem. Eng. J. 334 (2018) 1537–1549.
doi: 10.1016/j.cej.2017.10.154
Y. Sun, Z. Yang, P. Tian, et al., Appl. Catal. B Environ. 244 (2019) 1–10.
doi: 10.1016/j.apcatb.2018.11.009
Y. Yuan, B. Lai, Y. Tang, P. Yang, Y. Zhou, Environ. Eng. Sci. 34 (2017) 197–206.
doi: 10.1089/ees.2016.0097
S. Chen, W. Chu, H. Wei, et al., Sep. Purif. Technol. 203 (2018) 226–232.
doi: 10.1123/kr.2018-0017
Y. Yue, G. Min, Z. Yuexi, L. Bo, J. Environ. Eng. 140 (2014) 04014016.
doi: 10.1061/(ASCE)EE.1943-7870.0000844
M. Panda, A. Bhowal, S. Datta, Environ. Sci. Technol. 45 (2011) 8460–8466.
doi: 10.1021/es2015346
J. Huang, Y. Cao, B. Qin, Chem. Eng. J. 361 (2019) 547–558.
doi: 10.1016/j.cej.2018.12.081
Y. Fang, X. Wu, M. Dai, et al., J. Clean. Prod. 312 (2021) 127678.
doi: 10.1016/j.jclepro.2021.127678
J. Valentin-Reyes, R.B. Garcia-Reyes, A. Garcia-Gonzalez, E. Soto-Regalado, F. Cerino-Cordova, J. Environ. Manag. 236 (2019) 815–822.
doi: 10.1016/j.jenvman.2019.02.014
W. Song, P. Ge, Q. Ke, et al., Chemosphere 221 (2019) 166–174.
doi: 10.1016/j.chemosphere.2019.01.045
M. Li, Y. Mu, H. Shang, et al., Appl. Catal. B: Environ. 263 (2020) 118364.
doi: 10.1016/j.apcatb.2019.118364
G.G. Kresse, J.J. Furthmüller, Phys. Rev. B: Condens. Matter 54 (1996) 11169.
doi: 10.1103/PhysRevB.54.11169
G. Kresse, J. Furthmüller, Comp. Mater. Sci. 6 (1996) 15–50.
doi: 10.1016/0927-0256(96)00008-0
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868.
doi: 10.1103/PhysRevLett.77.3865
P.E. Blochl, Phys. Rev. B: Condens. Matter 50 (1994) 17953–17979.
doi: 10.1103/PhysRevB.50.17953
X. Tian, T. Wang, Y. Yang, et al., J. Phys. Chem. C 118 (2014) 20472–20480.
doi: 10.1021/jp506794w
Y. Gu, L. Gong, J. Qi, et al., Water Res. 159 (2019) 233–241.
doi: 10.1016/j.watres.2019.04.061
J. Xu, A. Avellan, H. Li, et al., Adv. Mater. 32 (2020) 1906910.
doi: 10.1002/adma.201906910
R.F.W. Bader, Atom is molecule: A quantum theory, Oxford Uinversity Press, Oxford 1994.
Y. Ren, J. Zhou, Z. Pan, B. Lai, D. Yuan, Environ. Technol. 40 (2017) 239–249.
doi: 10.1080/21507740.2017.1393028
B. Lai, Y. Zhang, Z. Chen, et al., Appl. Catal. B: Environ. 144 (2014) 816–830.
doi: 10.1016/j.apcatb.2013.08.020
Y. Yuan, D. Yuan, Y. Zhang, B. Lai, Chemosphere 186 (2017) 132–139.
doi: 10.1016/j.chemosphere.2017.07.038
Z. Xiong, J. Cao, D. Yang, B. Lai, P. Yang, Chemosphere 166 (2017) 343–351.
doi: 10.1016/j.chemosphere.2016.09.038
L. Sun, H. Song, Q. Li, A. Li, Chem. Eng. J. 283 (2016) 366–374.
doi: 10.1016/j.cej.2015.06.065
Y. Yuan, Z. An, Q. Zhang, et al., Ind. Eng. Chem. Res. 59 (2020) 7310–7320.
doi: 10.1021/acs.iecr.0c00243
Y. Yuan, H. Li, B. Lai, et al., Ind. Eng. Chem. Res. 53 (2014) 2605–2613.
doi: 10.1021/ie402739s
X. Liu, J. Fan, Y. Hao, L. Ma, Chem. Eng. J. 250 (2014) 354–365.
doi: 10.1016/j.cej.2014.04.028
H. Li, J. Wan, Y. Ma, et al., Chem. Eng. J. 250 (2014) 137–147.
doi: 10.1016/j.cej.2014.03.092
P. Zhang, X. Zhang, X. Zhao, G. Jing, Z. Zhou, J. Hazard. Mater. 424 (2022) 127653.
doi: 10.1016/j.jhazmat.2021.127653
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Jinhui Xu , Yanting Zhang , Kecheng Wen , Xinyu Wang , Zhiwei Yang , Yuan Huang , Guozhong Zheng , Lupeng Huang , Jing Zhang . Enhanced removal of polystyrene nanoplastics by air flotation modified by dodecyltrimethylammonium chloride: Performance and mechanism. Chinese Chemical Letters, 2025, 36(5): 110240-. doi: 10.1016/j.cclet.2024.110240
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
Shaojie Deng , Peihua Ma , Qinghong Bai , Xin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
Ming-Yi Sun , Lu Zhang , Ya Li , Chong-Chen Wang , Peng Wang , Xueying Ren , Xiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl− ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035
Li Li , Xue Ke , Shan Wang , Zhuo Jiang , Yuzheng Guo , Chunguang Kuai . Antioxidative strategies of 2D MXenes in aqueous energy storage system. Chinese Chemical Letters, 2025, 36(5): 110423-. doi: 10.1016/j.cclet.2024.110423
Zhongsen Wang , Lijun Qiu , Yunhua Huang , Meng Zhang , Xi Cai , Fanyu Wang , Yang Lin , Yanbiao Shi , Xiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195
Haitao Yin , Liang Meng , Li Li , Jiamu Xiao , Longrui Liang , Nannan Huang , Yansong Shi , Angang Zhao , Jingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Tong Zhou , Liyi Xie , Chuyu Liu , Xiyan Zheng , Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
Bowen Song , Chenxu Shi , Yinghao Qu , Hongjun Liu , Hui Yang , Xiaoming Wu , Xijun Liu . The electrical properties and charge transport mechanism of MXenes. Chinese Chemical Letters, 2025, 36(6): 110823-. doi: 10.1016/j.cclet.2025.110823
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
Wenzhong Zhang , Zirui Yan , Lingcheng Chen , Yi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582
Hai-Ling Wang , Zhong-Hong Zhu , Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372