Turning the V site in V@2D-BC3N2 complex to high curvature state for efficient CO2 electroreduction to hydrocarbons
-
* Corresponding author.
E-mail address: zhaochenxu@xatu.edu.cn (C. Zhao).
Citation:
Chaozheng He, Yue Yu, Chenxu Zhao, Jinrong Huo. Turning the V site in V@2D-BC3N2 complex to high curvature state for efficient CO2 electroreduction to hydrocarbons[J]. Chinese Chemical Letters,
;2023, 34(8): 107897.
doi:
10.1016/j.cclet.2022.107897
B. Yang, L. Li, L. Guo, et al., Chin. Chem. Lett. 31 (2020) 2627–2633.
doi: 10.1016/j.cclet.2020.05.031
S. Gong, G. Zhu, M. Hojamberdiev, et al., Appl. Catal. B: Environ. 297 (2021) 120413.
doi: 10.1016/j.apcatb.2021.120413
L. Wang, G. Huang, Q. Wang, et al., J. Energy Chem. 64 (2022) 85–92.
doi: 10.1016/j.jechem.2021.04.053
M. Aresta, A. Dibenedetto, A. Angelini, et al., Chem. Rev. 114 (2014) 1709–1742.
doi: 10.1021/cr4002758
D.T. Whipple, P.J.A. Kenis, J. Phys. Chem. Lett. 1 (2010) 3451–3458.
doi: 10.1021/jz1012627
K.P. Kuhl, T. Hatsukade, T.F. Jaramillo, J. Am. Chem. Soc. 136 (2014) 14107–14113.
doi: 10.1021/ja505791r
K.P. Kuhl, E.R. Cave, T.F. Jaramillo, et al., Energy Environ. Sci. 5 (2012) 7050–7059.
doi: 10.1039/c2ee21234j
X. Fu, H. Yang, L. Li, et al., Chin. Chem. Lett. 32 (2021) 1089–1094.
doi: 10.1016/j.cclet.2020.08.031
R. Kortlever, J. Shen, M.T.M. Koper, et al., J. Phys. Chem. Lett. 6 (2015) 4073–4082.
doi: 10.1021/acs.jpclett.5b01559
H. Shin, Y. Ha, H. Kim, J. Phys. Chem. Lett. 7 (2016) 4124–4129.
doi: 10.1021/acs.jpclett.6b01876
A.A. Peterson, J.K. Norskov, J. Phys. Chem. Lett. 3 (2012) 251–258.
doi: 10.1021/jz201461p
F. Abild-Pedersen, J. Greeley, J.K. Norskov, et al., Phys. Rev. Lett. 99 (2007) 016105.
doi: 10.1103/PhysRevLett.99.016105
B.T. Qiao, A.Q. Wang, T. Zhang, et al., Nat. Chem. 3 (2011) 634–641.
doi: 10.1038/nchem.1095
Z.W. Huang, X. Gu, X.F. Tang, et al., Angew. Chem. Int. Ed. 51 (2012) 4198–4203.
doi: 10.1002/anie.201109065
C. Kirk, L.D.C. Section, J.K. Norskov, ACS Central Sci. 3 (2017) 1286–1293.
doi: 10.1021/acscentsci.7b00442
S. Backs, Y.S. Jung, ACS Energy Lett. 2 (2017) 969–975.
doi: 10.1021/acsenergylett.7b00152
C.X. Zhao, G.X. Zhang, W. Gao, Q. Jiang, J. Mater. Chem. A 7 (2019) 8210–8217.
doi: 10.1039/C9TA00627C
C. Zhao, M. Xi, J. Huo, C. He, Phys. Chem. Chem. Phys. 23 (2021) 23219–23224.
doi: 10.1039/D1CP03943A
S. Back, J. Lim, N.Y. Kim, Y.H. Kim, Y. Jung, Chem. Sci. 8 (2017) 1090–1096.
doi: 10.1039/C6SC03911A
B. Hammer, J.K. Norskov, Surf. Sci. 343 (1995) 211–220.
doi: 10.1016/0039-6028(96)80007-0
B. Hammer, J.K. Norskov, Nature 376 (1995) 238–240.
doi: 10.1038/376238a0
X. Wang, H. Niu, Y. Guo, et al., Catal. Sci. Technol. 10 (2020) 8465–8472.
doi: 10.1039/D0CY01870H
G.Z. Zhu, Y.W. Li, Q. Sun, et al., ACS Catal 6 (2016) 6294–6301.
doi: 10.1021/acscatal.6b02020
Y. Zhang, L. Fang, Z. Cao, RSC Adv 10 (2020) 43075–43084.
doi: 10.1039/D0RA08857A
Y.C. Wang, Q.C. Wang, Y.P. Lei, et al., Nano Energy 103 (2022) 107815.
doi: 10.1016/j.nanoen.2022.107815
Q.C. Wang, Y.C. Wang, Y.P. Lei, et al., Nat. Commun. 13 (2022) 3689.
doi: 10.1038/s41467-022-31383-4
J. Yu, C. He, L. Yu, et al., Chin. Chem. Lett. 32 (2021) 3149–3154.
doi: 10.1016/j.cclet.2021.02.046
M.D. Segall, P.J.D. Lindan, M.C. Payne, et al., J. Phys. Condens. Matter. 14 (2002) 2717–2744.
doi: 10.1088/0953-8984/14/11/301
A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 102 (2009) 073005.
doi: 10.1103/PhysRevLett.102.073005
N. Marom, A. Tkatchenko, L. Kronik, et al., J. Chem. Theory Compt. 7 (2011) 3944–3951.
doi: 10.1021/ct2005616
J.K. Norskov, J. Rossmeisl, H. Jonsson, et al., J. Phys. Chem. B 108 (2004) 17886–17892.
doi: 10.1021/jp047349j
J.A. Gauthier, S. Ringer, J.K. Norskov, et al., ACS Catal 9 (2019) 920–931.
doi: 10.1021/acscatal.8b02793
Hongzhiwei Technology, Device Studio, Version 2021A, China, Available online 2021,
C. Li, D. Lu, C. Wu, J. Indust. Engin. Chem. 98 (2021) 161–167.
doi: 10.1016/j.jiec.2021.04.006
Y. Linghu, D. Lu, C. Wu, J. Phys. Condens. Matter. 33 (2021) 165002.
doi: 10.1088/1361-648X/abeff9
Y. Liu, Q. Feng, Y. Lei, et al., Nano Energy 81 (2021) 105641.
doi: 10.1016/j.nanoen.2020.105641
H. Peng, J. Ren, Y. Lei, et al., Nano Energy 88 (2021) 106307.
doi: 10.1016/j.nanoen.2021.106307
F. Rao, G. Zhu, M. Hojamberdiev, et al., Appl. Catal. B: Environ. 281 (2021) 119481.
doi: 10.1016/j.apcatb.2020.119481
F. Rao, G. Zhu, M. Hojamberdiev, et al., ACS Catal 11 (2021) 7735–7749.
doi: 10.1021/acscatal.1c01251
L. Wang, X. Shi, Q. Wang, et al., Chin. Chem. Lett. 32 (2021) 1869–1878.
doi: 10.1016/j.cclet.2020.11.065
S. Zhang, D. Chen, Z. Liu, et al., Appl. Catal. B: Environ. 284 (2021) 119686.
doi: 10.1016/j.apcatb.2020.119686
S. Zhang, B. Zhang, Z. Liu, et al., Nano Energy 79 (2021) 105485.
doi: 10.1016/j.nanoen.2020.105485
S. Zhou, K. Chen, Q. Wang, et al., Appl. Catal. B: Environ. 266 (2020) 118513.
doi: 10.1016/j.apcatb.2019.118513
J. Chen, H. Lei, X. Dong, et al., J. Colloid Interface Sci. 601 (2021) 704–713.
doi: 10.1016/j.jcis.2021.05.151
R. Guo, K. Zhang, M. Jin, et al., J. Mater. Chem. A 9 (2021) 6196–6204.
doi: 10.1039/D0TA11054J
X. He, M. Wu, S. Wang, et al., J. Hazard Mater. 403 (2021) 124048.
doi: 10.1016/j.jhazmat.2020.124048
H. Lei, M. Wu, X. Dong, et al., Chin. Chem. Lett. 32 (2021) 2317–2321.
doi: 10.1016/j.cclet.2020.12.019
H. Lei, M. Wu, Z. Wu, et al., Environ. Sci. Nano 8 (2021) 1398–1407.
doi: 10.1039/D0EN01028F
S.E. Weber, B.K. Rao, P.H. Dederichs, et al., J. Phys. 9 (1997) 10739–10748.
X.Y. Wu, A.K. Ray, J. Chem. Phy. 110 (1999) 2437–2445.
doi: 10.1063/1.477949
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555
Longsheng Zhan , Yuchao Wang , Mengjie Liu , Xin Zhao , Danni Deng , Xinran Zheng , Jiabi Jiang , Xiang Xiong , Yongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695
Qian-Qian Tang , Li-Fang Feng , Zhi-Peng Li , Shi-Hao Wu , Long-Shuai Zhang , Qing Sun , Mei-Feng Wu , Jian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454
Mohamed Saber Lassoued , Faizan Ahmad , Yanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477
Yuan Teng , Zichun Zhou , Jinghua Chen , Siying Huang , Hongyan Chen , Daibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
Jaeyong Ahn , Zhenping Li , Zhiwei Wang , Ke Gao , Huagui Zhuo , Wanuk Choi , Gang Chang , Xiaobo Shang , Joon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Bin Chen , Chaoyang Zheng , Dehuan Shi , Yi Huang , Renxia Deng , Yang Wei , Zheyuan Liu , Yan Yu , Shenghong Zhong . p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100468-100468. doi: 10.1016/j.cjsc.2024.100468
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Xiujuan Wang , Yijie Wang , Luyun Cui , Wenqiang Gao , Xiao Li , Hong Liu , Weijia Zhou , Jingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
Weihong Ding , Kaiyue Song , Xianglong Li , Xiaoxia Sun . High-temperature-stable RRAMs with well-defined thermal effect mechanisms enable by engineering of robust 2D <100>-oriented organic-inorganic hybrid perovskites. Chinese Chemical Letters, 2025, 36(4): 110495-. doi: 10.1016/j.cclet.2024.110495
Xingyan Liu , Chaogang Jia , Guangmei Jiang , Chenghua Zhang , Mingzuo Chen , Xiaofei Zhao , Xiaocheng Zhang , Min Fu , Siqi Li , Jie Wu , Yiming Jia , Youzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
Dong-Ling Kuang , Song Chen , Shaoru Chen , Yong-Jie Liao , Ning Li , Lai-Hon Chung , Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Lili Wang , Ya Yan , Rulin Li , Xujie Han , Jiahui Li , Ting Ran , Jialu Li , Baichuan Xiong , Xiaorong Song , Zhaohui Yin , Hong Wang , Qingjun Zhu , Bowen Cheng , Zhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011