Phosphine oxide directing-group-enabled atroposelective C–H bond acyloxylation via an eight-membered palladacycle intermediate
-
* Corresponding author.
E-mail address: yangshd@lzu.edu.cn (S.-D. Yang).
Citation: Peng-Bo Bai, Ming-Ying Wu, Xin-Xin Yang, Gang-Wei Wang, Shang-Dong Yang. Phosphine oxide directing-group-enabled atroposelective C–H bond acyloxylation via an eight-membered palladacycle intermediate[J]. Chinese Chemical Letters, ;2023, 34(5): 107894. doi: 10.1016/j.cclet.2022.107894
K.M. Engle, T.S. Mei, M. Wasa, J.Q. Yu, Acc. Chem. Res. 45 (2012) 788–802.
doi: 10.1021/ar200185g
C.J. Li, Acc. Chem. Res. 42 (2009) 335–344.
doi: 10.1021/ar800164n
C.J. Scheuermann, Chem. Asian J. 5 (2010) 436–451.
doi: 10.1002/asia.200900487
L. Ackermann, Chem. Rev. 111 (2011) 1315–1345.
doi: 10.1021/cr100412j
B. Liu, A.M. Romine, C.Z. Rubel, K.M. Engle, B.F. Shi, Chem. Rev. 121 (2021) 14957–15074.
doi: 10.1021/acs.chemrev.1c00519
X.L. Han, P.P. Lin, Q.J. Li, Chin. Chem. Lett. 30 (2019) 1495–1502.
doi: 10.1016/j.cclet.2019.04.027
N. Kuhl, M.N. Hopkinson, J. Wencel-Delord, F. Glorius, Angew. Chem. Int. Ed. 51 (2012) 10236–10254.
doi: 10.1002/anie.201203269
B.J. Li, Z.J. Shi, Chem. Soc. Rev. 41 (2012) 5588–5598.
doi: 10.1039/c2cs35096c
S.A. Girard, T. Knauber, C.J. Li, Angew. Chem. Int. Ed. 53 (2013) 74–100.
J. Wencel-Delord, F. Glorius, Nat. Chem. 5 (2013) 369–375.
doi: 10.1038/nchem.1607
T.W. Lyons, M.S. Sanford, Chem. Rev. 110 (2010) 1147–1169.
doi: 10.1021/cr900184e
L.M. Xu, B.J. Li, Z. Yang, Z.J. Shi, Chem. Soc. Rev. 39 (2010) 712–733.
doi: 10.1039/B809912J
Y. Xu, G.B. Dong, Chem. Sci. 9 (2018) 1424–1432.
doi: 10.1039/c7sc04768a
M. Zhang, S.L. Zhong, Y.Y. Peng, et al., Org. Chem. Front. 8 (2021) 133–168.
doi: 10.1039/d0qo00988a
P.M. Henry, J. Org. Chem. 36 (1971) 1886–1890.
doi: 10.1021/jo00813a009
T. Yoneyama, R.H. Crabtree, J. Mol. Catal. A 108 (1996) 35–40.
doi: 10.1016/1381-1169(95)00289-8
K. Muñiz, Angew. Chem. Int. Ed. 48 (2009) 9412–9423.
doi: 10.1002/anie.200903671
D.H. Wang, X.S. Hao, D.F. Wu, J.Q. Yu, Org. Lett. 8 (2006) 3387–3390.
doi: 10.1021/ol061384m
B.V.S. Reddy, L.R. Reddy, E.J. Corey, Org. Lett. 8 (2006) 3391–3394.
doi: 10.1021/ol061389j
H. Park, P. Verma, K. Hong, J.Q. Yu, Nat. Chem. 10 (2018) 755–762.
doi: 10.1038/s41557-018-0048-1
R.K. Rit, M.R. Yadav, A.K. Sahoo, Org. Lett. 14 (2012) 3724–3727.
doi: 10.1021/ol301579q
K.J. Stowers, A. Kubota, M.S. Sanford, Chem. Sci. 3 (2012) 3192–3195.
doi: 10.1039/c2sc20800h
A.K. Cook, M.H. Emmert, M.S. Sanford, Org. Lett. 15 (2013) 5428–5431.
doi: 10.1021/ol4024248
Z. Ren, F.Y. Mo, G.B. Dong, J. Am. Chem. Soc. 134 (2012) 16991–16994.
doi: 10.1021/ja3082186
Y. Xu, G.B. Yan, Z. Ren, G.B. Dong, Nat. Chem. 7 (2015) 829–834.
doi: 10.1038/nchem.2326
J. Zhang, J. Fan, Y.H. Wu, et al., Org. Lett. 24 (2022) 5143–5148.
doi: 10.1021/acs.orglett.2c01981
J.K. Cheng, S.H. Xiang, S. Li, L. Ye, B. Tan, Chem. Rev. 121 (2021) 4805–4902.
doi: 10.1021/acs.chemrev.0c01306
Y.J. Wu, G. Liao, B.F. Shi, Green. Syn. Catal. 3 (2022) 117–136.
doi: 10.1016/j.gresc.2021.12.005
G. Liao, T. Zhou, Q.J. Yao, B.F. Shi, Chem. Commun. 55 (2019) 8514–8523.
doi: 10.1039/c9cc03967h
G.J. Mei, W.L. Koay, C.Y. Guan, Y. Lu, Chem 8 (2022) 1855–1893.
doi: 10.1016/j.chempr.2022.04.011
X. Zhang, K. Zhao, Z. Gu, Acc. Chem. Res. 55 (2022) 1620–1633.
doi: 10.1021/acs.accounts.2c00175
S. Fang, J.P. Tan, J. Pan, et al., Angew. Chem. Int. Ed. 60 (2021) 14921–14930.
doi: 10.1002/anie.202102352
C. Nájera, F. Foubelo, J.M. Sansano, M. Yus, Org. Biomol. Chem. 18 (2020) 1279–1336.
doi: 10.1039/c9ob02597a
J.J. Petkowski, W. Bains, S. Seager, Molecules 24 (2019) 866–931.
doi: 10.3390/molecules24050866
Y. Dong, R. Liu, W. Wang, Green. Syn. Catal. 1 (2020) 83–85.
doi: 10.1016/j.gresc.2020.09.002
X.D. Qiu, M.Y. Wang, Y. Zhao, Z.Z. Shi, Angew. Chem. Int. Ed. 56 (2017) 7233–7237.
doi: 10.1002/anie.201703354
W.Q. Ji, H.H. Wu, J.L. Zhang, ACS Catal. 10 (2020) 1548–1554.
doi: 10.1021/acscatal.9b04354
X. Zhang, J. Wang, S.D. Yang, ACS Catal. 11 (2021) 14008–14015.
doi: 10.1021/acscatal.1c04128
X.H. Wei, C.Y. Bai, L.B. Zhao, et al., Chin. J. Chem. 39 (2021) 1855–1860.
doi: 10.1002/cjoc.202100083
Q. Feng, X.X. Ma, W. Bao, et al., CCS Chem. 3 (2021) 377–387.
doi: 10.31635/ccschem.021.202000725
Q. Zhang, L.S. Wu, B.F. Shi, Chem 8 (2022) 384–413.
doi: 10.1016/j.chempr.2021.11.015
W.P. Liu, L. Ackermann, ACS Catal. 6 (2016) 3743–3752.
doi: 10.1021/acscatal.6b00993
J. He, M. Wasa, K.S.L. Chan, et al., Chem. Rev. 117 (2017) 8754–8786.
doi: 10.1021/acs.chemrev.6b00622
A. Hosseinian, S. Farshbaf, L.Z. Fekri, M. Nikpassand, E. Vessally, Top. Curr. Chem. 376 (2018) 23–41.
doi: 10.1007/s41061-018-0200-9
S. Demkowicz, J. Rachon, M. Daśko, W. Kozak, RSC Adv. 6 (2016) 7101–7112.
doi: 10.1039/C5RA25446A
N. Sbei, G.M. Martins, B. Shirinfar, N. Ahmed, Chem. Rec. 20 (2020) 1530–1552.
doi: 10.1002/tcr.202000096
R. Morodo, P. Bianchi, J.C.M. Monbaliu, Eur. J. Org. Chem. 33 (2020) 5236–5277.
doi: 10.1002/ejoc.202000430
V.B. Silva, Y.H. Santos, R. Hellinger, et al., Green Chem. 24 (2022) 585–613.
doi: 10.1039/d1gc02705k
M.A. Shameem, A. Orthaber, Chem. Eur. J. 22 (2016) 10718–10735.
doi: 10.1002/chem.201600005
Y.N. Ma, S.X. Li, S.D. Yang, Acc. Chem. Res. 50 (2017) 1480–1492.
doi: 10.1021/acs.accounts.7b00167
H.L. Wang, R.B. Hu, H. Zhang, et al., Org. Lett. 15 (2013) 5302–5305.
doi: 10.1021/ol402577p
H.Y. Zhang, H.M. Yi, G.W. Wang, et al., Org. Lett. 15 (2013) 6186–6189.
doi: 10.1021/ol403028a
H. Zhang, R.B. Hu, X.Y. Zhang, S.X. Li, S.D. Yang, Chem. Commun. 50 (2014) 4686–4689.
doi: 10.1039/C4CC01238K
Z.C. Qi, Q.X. Lou, Y. Niu, S.D. Yang, Chem. Commun. 57 (2021) 2021–2024.
doi: 10.1039/d0cc07596e
R.B. Hu, H. Zhang, X.Y. Zhang, S.D. Yang, Chem. Commun. 50 (2014) 2193–2195.
doi: 10.1039/C3CC49050E
Y.N. Ma, Q.P. Tian, H.Y. Zhang, A.X. Zhou, S.D. Yang, Org. Chem. Front. 1 (2014) 284–288.
doi: 10.1039/C4QO00005F
S.X. Li, Y.N. Ma, S.D. Yang, Org. Lett. 19 (2017) 1842–1845.
doi: 10.1021/acs.orglett.7b00608
J. Wang, P.B. Bai, S.D. Yang, Chin. Chem. Lett. 33 (2022) 2397–2401.
doi: 10.1016/j.cclet.2021.10.019
Y. Niu, C.X. Yan, X.X. Yang, et al., Org. Chem. Front. 9 (2022) 1023–1032.
doi: 10.1039/d1qo01454d
S. Takebayashi, T. Shibata, Organometallics 31 (2012) 4114–4117.
doi: 10.1021/om300348e
M. Itoh, Y. Hashimoto, K. Hirano, et al., J. Org. Chem. 78 (2013) 8098–8104.
doi: 10.1021/jo401393b
C.S. Wang, P.H. Dixneuf, J.F. Soulé, ChemCatChem 9 (2017) 3117–3120.
doi: 10.1002/cctc.201700557
Z. Liu, J.Q. Wu, S.D. Yang, Org. Lett. 19 (2017) 5434–5437.
doi: 10.1021/acs.orglett.7b02710
Q.X. Lou, Y. Niu, Z.C. Qi, et al., J. Org. Chem. 85 (2020) 14527–14536.
doi: 10.1021/acs.joc.0c00999
G. Illuminati, L. Mandolini, Acc. Chem. Res. 14 (1981) 95–102.
doi: 10.1021/ar00064a001
N.L. Allinger, M.T. Tribble, M.A. Miller, D.H. Wertz, J. Am. Chem. Soc. 93 (1971) 1637–1648.
doi: 10.1021/ja00736a012
W.F. Maier, P.V.R. Schleye, J. Am. Chem. Soc. 103 (1981) 1891–1900.
doi: 10.1021/ja00398a003
Y.J. Hu, L.X. Li, J.C. Han, et al., Chem. Rev. 120 (2020) 5910–5953.
doi: 10.1021/acs.chemrev.0c00045
R.L. Reyes, T. Iwai, M. Sawamura, Chem. Rev. 121 (2021) 8926–8947.
doi: 10.1021/acs.chemrev.0c00793
E.J. Corey, K.C. Nicolaou, J. Am. Chem. Soc. 96 (1974) 5614–5616.
doi: 10.1021/ja00824a073
B. Biletskyi, P. Colonna, K. Masson, et al., Chem. Soc. Rev. 50 (2021) 7513–7538.
doi: 10.1039/d0cs01396j
S.J. Miller, S.H. Kim, S.J. Miller, et al., J. Am. Chem. Soc. 117 (1995) 2108–2109.
doi: 10.1021/ja00112a031
B. Zhou, Y.Q. Zhang, K. Zhang, et al., Nat. Commun. 10 (2019) 3234–3244.
doi: 10.1038/s41467-019-11245-2
A.K. Clarke, W.P. Unsworth, Chem. Sci. 11 (2020) 2876–2881.
doi: 10.1039/d0sc00568a
L. Huang, L.X. Dai, S.L. You, J. Am. Chem. Soc. 138 (2016) 5793–5796.
doi: 10.1021/jacs.6b02678
M.J. Ralph, D.C. Harrowven, S. Gaulier, S. Ng, K.I. Booker-Milburn, Angew. Chem. Int. Ed. 54 (2015) 1527–1531.
doi: 10.1002/anie.201410115
Q.J. Yao, P.P. Xie, Y.J. Wu, et al., J. Am. Chem. Soc. 142 (2020) 18266–18276.
doi: 10.1021/jacs.0c09400
L. Jin, Q.J. Yao, P.P. Xie, et al., Chem 6 (2020) 497–511.
doi: 10.1016/j.chempr.2019.12.011
Y.J. Wu, P.P. Xie, G. Zhou, et al., Chem. Sci. 12 (2021) 9391–9397.
doi: 10.1039/d1sc01130h
Zhiwen Li , Jingjing Zhang , Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300
Long Jin , Jian Han , Dongmei Fang , Min Wang , Jian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
Yan-Bo Li , Yi Li , Liang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294
Changhui Yu , Peng Shang , Huihui Hu , Yuening Zhang , Xujin Qin , Linyu Han , Caihe Liu , Xiaohan Liu , Minghua Liu , Yuan Guo , Zhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Dong Cheng , Youyou Feng , Bingxi Feng , Ke Wang , Guoxin Song , Gen Wang , Xiaoli Cheng , Yonghui Deng , Jing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Yongjing Deng , Feiyang Li , Zijian Zhou , Mengzhu Wang , Yongkang Zhu , Jianwei Zhao , Shujuan Liu , Qiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Long Li , Kang Yang , Chenpeng Xi , Mengchao Li , Borong Li , Gui Xu , Yuanbin Xiao , Xiancai Cui , Zhiliang Liu , Lingyun Li , Yan Yu , Chengkai Yang . Highly-chlorinated inert and robust interphase without mineralization of oxide enhancing high-rate Li metal batteries. Chinese Chemical Letters, 2024, 35(6): 108814-. doi: 10.1016/j.cclet.2023.108814
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256
Hao Cai , Xiaoyan Wu , Lei Jiang , Feng Yu , Yuxiang Yang , Yan Li , Xian Zhang , Jian Liu , Zijian Li , Hong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
Xue-Zhi Wang , Yi-Tong Liu , Chuang-Wei Zhou , Bei Wang , Dong Luo , Mo Xie , Meng-Ying Sun , Yong-Liang Huang , Jie Luo , Yan Wu , Shuixing Zhang , Xiao-Ping Zhou , Dan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380