Citation:
Danman Guo, Yuyuan Wang, Jinzheng Chen, Yifeng Cao, Yiling Miao, Huahua Huang, Zhenguo Chi, Zhiyong Yang. Intrinsic persistent room temperature phosphorescence derived from 1H-benzo[f]indole itself as a guest[J]. Chinese Chemical Letters,
;2023, 34(7): 107882.
doi:
10.1016/j.cclet.2022.107882
-
The influence of 1H-benzo[f]indole (Bd) and its derivatives on room temperature phosphorescence (RTP) has raised great concern since they were found to significantly affect RTP of the extensively studied carbazole (Cz) derivatives. However, the role of Bd itself existing in Cz-based or other doping systems was still unclear. In order to clarify its intrinsic phosphorescent property, Bd was introduced as a guest into different organic matrixes including substituted Cz derivatives and polymers. The phosphorescence located in 560–620 nm was confirmed to be derived from Bd itself, which can be detected whatever Bd was doped in the crystal or amorphous state of Cz derivatives. The suitable energy gap between Cz derivatives and Bd is the key to achieve ultralong RTP of Bd. Additionally, when doped in polymers with plenty of hydrogen bonds, RTP of Bd with lifetime over 280 ms was easily obtained. Among them, Bd@PHEMA (poly(hydroxyethyl methacrylate) exhibited superior phosphorescence, with yellow afterglow lasting for over 2.5 s. Therefore, this work demonstrated that a new organic RTP phosphor, Bd, is discovered, and ultralong RTP of Bd can be achieved not only doped in Cz derivatives but also in polymers as the hosts.
-
-
-
[1]
C.A. DeRosa, S.A. Seaman, A.S. Mathew, et al., ACS Sens. 1 (2016) 1366–1373. doi: 10.1021/acssensors.6b00533
-
[2]
S.M.A. Fateminia, Z. Mao, S. Xu, et al., Angew. Chem. Int. Ed. 56 (2017) 12160–12164. doi: 10.1002/anie.201705945
-
[3]
L. Gu, H. Wu, H. Ma, et al., Nat. Commun. 11 (2020) 944. doi: 10.1038/s41467-020-14792-1
-
[4]
F. Lin, H. Wang, Y. Cao, et al., Adv. Mater. 34 (2022) e2108333. doi: 10.1002/adma.202108333
-
[5]
X.F. Wang, H. Xiao, P.Z. Chen, et al., J. Am. Chem. Soc. 141 (2019) 5045–5050. doi: 10.1021/jacs.9b00859
-
[6]
S. Cai, Z. Sun, H. Wang, et al., J. Am. Chem. Soc. 143 (2021) 16256–16263. doi: 10.1021/jacs.1c07674
-
[7]
Q. Liao, Q. Li, Z. Li, et al., ChemPhotoChem 5 (2021) 694–701. doi: 10.1002/cptc.202100016
-
[8]
Y. Zhang, Y. Su, H. Wu, et al., J. Am. Chem. Soc. 143 (2021) 13675–13685. doi: 10.1021/jacs.1c05213
-
[9]
J. Guo, C. Yang, Y. Zhao, et al., Acc. Chem. Res. 55 (2022) 1160–1170. doi: 10.1021/acs.accounts.2c00038
-
[10]
H. Thomas, D.L. Pastoetter, M. Gmelch, et al., Adv. Mater. 32 (2020) e2000880. doi: 10.1002/adma.202000880
-
[11]
X. Zhang, L. Du, W. Zhao, et al., Nat. Commun. 10 (2019) 5161. doi: 10.1038/s41467-019-13048-x
-
[12]
Y. Gong, L. Zhao, Q. Peng, et al., Chem. Sci. 6 (2015) 4438–4444. doi: 10.1039/C5SC00253B
-
[13]
H.E. Hackney, D.F. Perepichka, Aggregate. 3 (2022) e123. doi: 10.1002/agt2.123
-
[14]
K. Narushima, Y. Kiyota, T. Mori, et al., Adv. Mater. 31 (2019) e1807268. doi: 10.1002/adma.201807268
-
[15]
J.A. Li, J. Zhou, Z. Mao, et al., Angew. Chem. Int. Ed. 57 (2018) 6449–6453. doi: 10.1002/anie.201800762
-
[16]
W. Zhao, T.S. Cheung, N. Jiang, et al., Nat. Commun. 10 (2019) 1595. doi: 10.1038/s41467-019-09561-8
-
[17]
Z. Yang, Z. Mao, X. Zhang, et al., Angew. Chem. Int. Ed. 55 (2016) 2181–2185. doi: 10.1002/anie.201509224
-
[18]
Z. An, C. Zheng, Y. Tao, et al., Nat. Mater. 14 (2015) 685–690. doi: 10.1038/nmat4259
-
[19]
S. Chanmungkalakul, C. Wang, R. Miao, et al., Angew. Chem. Int. Ed. 61 (2022) e202200546. doi: 10.1002/anie.202200546
-
[20]
B. Chen, W. Huang, X. Nie, et al., Angew. Chem. Int. Ed. 60 (2021) 16970–16973. doi: 10.1002/anie.202106204
-
[21]
Y. Lei, W. Dai, J. Guan, et al., Angew. Chem. Int. Ed. 59 (2020) 16054–16060. doi: 10.1002/anie.202003585
-
[22]
S. Sun, L. Ma, J. Wang, et al., Natl. Sci. Rev. 9 (2022) nwab085. doi: 10.1093/nsr/nwab085
-
[23]
R. Tian, S. Xu, Q. Xu, et al., Sci. Adv. 6 (2020) eaaz6107. doi: 10.1126/sciadv.aaz6107
-
[24]
Y. Gong, G. Chen, Q. Peng, et al., Adv. Mater. 27 (2015) 6195–6201. doi: 10.1002/adma.201502442
-
[25]
Y. Tao, R. Chen, H. Li, et al., Adv. Mater. 30 (2018) e1803856. doi: 10.1002/adma.201803856
-
[26]
W. Zhao, Z. He, Jacky W.Y. Lam, et al., Chem. 1 (2016) 592–602. doi: 10.1016/j.chempr.2016.08.010
-
[27]
Z. He, W. Zhao, J.W.Y. Lam, et al., Nat. Commun. 8 (2017) 416. doi: 10.1038/s41467-017-00362-5
-
[28]
Kenry, C. Chen, B. Liu, Nat. Commun. 10 (2019) 2111. doi: 10.1038/s41467-019-10033-2
-
[29]
B. Xu, H. Wu, J. Chen, et al., Chem. Sci. 8 (2017) 1909–1914. doi: 10.1039/C6SC03038F
-
[30]
Z. Mao, Z. Yang, Z. Fan, et al., Chem. Sci. 10 (2019) 179–184. doi: 10.1039/c8sc03019g
-
[31]
Y. Xiong, Z. Zhao, W. Zhao, et al., Angew. Chem. Int. Ed. 57 (2018) 7997–8001. doi: 10.1002/anie.201800834
-
[32]
C. Chen, Z. Chi, K.C. Chong, et al., Nat. Mater. 20 (2021) 175–180. doi: 10.1038/s41563-020-0797-2
-
[33]
C. Qian, Z. Ma, B. Yang, et al., J. Mater. Chem. C 9 (2021) 14294–14302. doi: 10.1039/d1tc03020e
-
[34]
C. Qian, Z. Ma, X. Fu, et al., Adv. Mater. 34 (2022) e2200544. doi: 10.1002/adma.202200544
-
[35]
L. Tu, W. Che, S. Li, et al., J. Mater. Chem. C. 9 (2021) 12124–12132. doi: 10.1039/d1tc02742e
-
[36]
X.F. Wang, W.J. Guo, H. Xiao, et al., Adv. Funct. Mater. 30 (2020) 1907282. doi: 10.1002/adfm.201907282
-
[37]
Y. Su, Y. Zhang, Z. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 9967–9971. doi: 10.1002/anie.201912102
-
[38]
H. Wang, H. Shi, W. Ye, et al., Angew. Chem. Int. Ed. 58 (2019) 18776–18782. doi: 10.1002/anie.201911331
-
[39]
S. Xu, W. Wang, H. Li, et al., Nat. Commun. 11 (2020) 4802. doi: 10.1038/s41467-020-18572-9
-
[40]
M.S. Kwon, D. Lee, S. Seo, J. Jung, et al., Angew. Chem. Int. Ed. 53 (2014) 11177–11181. doi: 10.1002/anie.201404490
-
[41]
C. Maes, W. Luyten, G. Herremans, et al., Polym. Rev. 58 (2018) 209–246. doi: 10.1080/15583724.2017.1394323
-
[1]
-
-
-
[1]
Meng Shan , Yongmei Yu , Mengli Sun , Shuping Yang , Mengqi Wang , Bo Zhu , Junbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781
-
[2]
Ke Zhang , Yajing Wei , Linhua Xie , Sha Kang , Fei Li , Chuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086
-
[3]
Jianmei Guo , Yupeng Zhao , Lei Ma , Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335
-
[4]
Dian-Xue Ma , Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391
-
[5]
Jie Yang , Xin-Yue Lou , Dihua Dai , Jingwei Shi , Ying-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818
-
[6]
Cheng He , Renlan Huang , Lingling Wei , Qiuhui He , Jinbo Liu , Jiao Chen , Ge Gao , Cheng Yang , Wanhua Wu . Uncovering the mask of sensitizers to switch on the TTA-UC emission by supramolecular host-guest complexation. Chinese Chemical Letters, 2025, 36(4): 110103-. doi: 10.1016/j.cclet.2024.110103
-
[7]
Hongling Yuan , Jialin Xie , Jiawei Wang , Jixiang Zhao , Jiayan Liu , Qing Feng , Wei Qi , Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041
-
[8]
Kun Zhang , Ni Dan , Dan-Dan Ren , Ruo-Yu Zhang , Xiaoyan Lu , Ya-Pan Wu , Li-Lei Zhang , Hong-Ru Fu , Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244
-
[9]
Jiayin Zhou , Depeng Liu , Longqiang Li , Min Qi , Guangqiang Yin , Tao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929
-
[10]
Songtao Cai , Liuying Wu , Yuan Li , Soham Samanta , Jinying Wang , Bing Liu , Feihu Wu , Kaitao Lai , Yingchao Liu , Junle Qu , Zhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599
-
[11]
Bingbing Shi , Yuchun Wang , Yi Zhou , Xing-Xing Zhao , Yizhou Li , Nuoqian Yan , Wen-Juan Qu , Qi Lin , Tai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540
-
[12]
Xueru Zhao , Aopu Wang , Shimin Wang , Zhijie Song , Li Ma , Li Shao . Adsorption and visual detection of nitro explosives by pillar[n]arenes-based host–guest interactions. Chinese Chemical Letters, 2025, 36(4): 110205-. doi: 10.1016/j.cclet.2024.110205
-
[13]
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
-
[14]
Yulong Liu , Haoran Lu , Tong Yang , Peng Cheng , Xu Han , Wenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492
-
[15]
Ning DING , Siyu WANG , Shihua YU , Pengcheng XU , Dandan HAN , Dexin SHI , Chao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146
-
[16]
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
-
[17]
Shuai Zhu , Mingjie Chen , Haichao Shen , Hanming Ding , Wenbo Li , Junliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879
-
[18]
Xianchen Hu , Junli Yang , Fang Gao , Zhiyong Zhao , Simin Liu . Highly selective [4+4] cross-photodimerization of (4a-azonia)anthracenes driven by confinement of D-A hetero-guest pair in cucurbit[10]uril host. Chinese Chemical Letters, 2025, 36(3): 109967-. doi: 10.1016/j.cclet.2024.109967
-
[19]
Qian Wang , Ting Gao , Xiwen Lu , Hangchao Wang , Minggui Xu , Longtao Ren , Zheng Chang , Wen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887
-
[20]
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
-
[1]
Metrics
- PDF Downloads(10)
- Abstract views(1133)
- HTML views(52)