Heterogeneous catalytic ozonation by amorphous boron for degradation of atrazine in water
-
* Corresponding authors.
E-mail addresses: zengyaxiong@zju.edu.cn (Y. Zeng), guanbaohong@zju.edu.cn (B. Guan).
Citation:
Zirong Song, Jie Li, Hongxin Xu, Yu Li, Yaxiong Zeng, Baohong Guan. Heterogeneous catalytic ozonation by amorphous boron for degradation of atrazine in water[J]. Chinese Chemical Letters,
;2023, 34(5): 107876.
doi:
10.1016/j.cclet.2022.107876
A.A. Esquerdo, I.S. Gadea, P.J.V. Galvan, D.P. Rico, Sci. Total. Environ. 764 (2021) 144301.
doi: 10.1016/j.scitotenv.2020.144301
J. Gomes, R. Costa, R.M.Q. Ferreira, R.C. Martins, Sci. Total. Environ. 586 (2017) 265–283.
doi: 10.1016/j.scitotenv.2017.01.216
C.B. Breckenridge, P.S. Coder, M.O. Tisdel, et al., Birth. Defects. Res. B 104 (2015) 204–217.
doi: 10.1002/bdrb.21154
S.A. Abdulelah, K.G. Crile, A. Almouseli, et al., Chemosphere 239 (2020) 124786.
doi: 10.1016/j.chemosphere.2019.124786
A.N. Kabra, M.K. Ji, J. Choi, et al., Environ. Sci. Pollut. Res. Int. 21 (2014) 12270–12278.
doi: 10.1007/s11356-014-3157-4
J. Ge, J. Cong, Y. Sun, et al., Bull. Environ. Contam. Toxicol. 84 (2010) 401–405.
doi: 10.1007/s00128-010-9958-3
A.S. Sousa, W.C. Duavi, R.M. Cavalcante, M.A. Milhome, R.F.D. Nascimento, Bull. Environ. Contam. Toxicol. 96 (2016) 90–95.
doi: 10.1007/s00128-015-1686-2
S. Singh, V. Kumar, A. Chauhan, et al., Environ. Chem. Lett. 16 (2017) 211–237.
doi: 10.1504/IJMOR.2017.081926
J. Lharidon, M. Fernandez, V. Ferrier, J. Bellan, Water Res. 27 (1993) 855–862.
doi: 10.1016/0043-1354(93)90150-G
M.J.M. Bueno, A. Aguera, M.J. Gomez, et al., Anal. Chem. 79 (2007) 9372–9384.
doi: 10.1021/ac0715672
Y. Liu, S. Wang, L. Shi, W. Lu, P. Li, Environ. Sci. Water Res. Technol. 6 (2020) 1681–1687.
doi: 10.1039/d0ew00227e
X. Kong, J. Jiang, J. Ma, et al., Water Res. 90 (2016) 15–23.
doi: 10.1504/IJRIS.2016.080059
Y. Ji, C. Dong, D. Kong, J. Lu, J. Hazard. Mater. 285 (2015) 491–500.
doi: 10.1016/j.jhazmat.2014.12.026
H. Li, B. Zhou, J. Environ. Sci. Heal. B 54 (2019) 432–440.
doi: 10.1080/03601234.2019.1574175
J. Li, Y. Li, Z. Xiong, G. Yao, B. Lai, Chin. Chem. Lett. 30 (2019) 2139–2146.
doi: 10.1016/j.cclet.2019.04.057
J. Wang, Z. Bai, Chem. Eng. J. 312 (2017) 79–98.
doi: 10.1504/IJEHV.2017.085336
J.L. Acero, K. Stemmler, U.V. Gunten, Environ. Sci. Technol. 34 (2000) 591–597.
doi: 10.1021/es990724e
R.H. Huang, J. Liu, L.S. Li, et al., Chin. Chem. Lett. 22 (2011) 683–686.
doi: 10.1016/j.cclet.2010.11.037
Z. Xiong, B. Lai, Y. Yuan, et al., Chem. Eng. J. 302 (2016) 137–145.
doi: 10.1016/j.cej.2016.05.052
S.Q. Tian, J.Y. Qi, Y.P. Wang, et al., Water Res. 193 (2021) 116860.
doi: 10.1016/j.watres.2021.116860
X. Tan, Y. Wan, Y. Huang, et al., J. Hazard. Mater. 321 (2017) 162–172.
doi: 10.1016/j.jhazmat.2016.09.013
T. Shen, Q. Wang, S. Tong, Ind. Eng. Chem. Res. 56 (2017) 10965–10971.
doi: 10.1021/acs.iecr.7b02469
Y. Xie, Y. Liu, Y. Yao, et al., Chin. Chem. Lett. 33 (2022) 1298–1302.
doi: 10.1016/j.cclet.2021.07.055
J. Restivo, C.A. Orge, A.S.G.G. Santos, O.S.G.P. Soares, M.F.R. Pereira, Catal. Today 384 (2022) 187–196.
J. Wang, S. Chen, X. Quan, H. Yu, Chemosphere 190 (2018) 135–143.
doi: 10.1016/j.chemosphere.2017.09.119
J. Xu, Y. Li, M. Qian, et al., Appl. Catal. B: Environ. 256 (2019) 117797.
doi: 10.1016/j.apcatb.2019.117797
A.S.G.G. Santos, C.A. Orge, O.S.G.P. Soares, M.F.R. Pereira, J. Water Process. Eng. 38 (2020) 101573.
doi: 10.1016/j.jwpe.2020.101573
A.J. Mannix, X.F. Zhou, B. Kiraly, et al., Science 350 (2015) 1513–1516.
doi: 10.1126/science.aad1080
P. Shao, X. Duan, J. Xu, et al., J. Hazard. Mater. 322 (2017) 532–539.
doi: 10.1016/j.jhazmat.2016.10.020
P. Zhou, W. Ren, G. Nie, et al., Angew. Chem. Int. Ed. Engl. 59 (2020) 16517–16526.
doi: 10.1002/anie.202007046
L. Ge, S. Lei, A.H.C. Hart, et al., Nanotechnology 25 (2014) 335701.
doi: 10.1088/0957-4484/25/33/335701
U.V. Gunten, Water Res. 37 (2003) 1443–1467.
doi: 10.1016/S0043-1354(02)00457-8
G. Yu, Y. Wang, H. Cao, H. Zhao, Y. Xie, Environ. Sci. Technol. 54 (2020) 5931–5946.
doi: 10.1021/acs.est.0c00575
X. Luo, T. Su, X. Xie, Z. Qin, H. Ji, Chemistryselect 5 (2020) 15092–15116.
doi: 10.1002/slct.202003805
B. Feng, J. Zhang, Q. Zhong, et al., Nat. Chem. 8 (2016) 564–569.
doi: 10.3390/ma9070564
X.D. Wu, Z.X. Wang, L.Q. Chen, X.J. Huang, Solid State Ionics 170 (2004) 117–121.
doi: 10.1016/j.ssi.2004.02.011
P. Zhou, W. Ren, G. Nie, et al., Angew. Chem. Int. Ed. 59 (2020) 16517–16526.
doi: 10.1002/anie.202007046
P. Wang, S. Orimo, K. Tanabe, H. Fujii, J. Alloys Compd. 350 (2003) 218–221.
doi: 10.1016/S0925-8388(02)00927-1
K.E. Egili, E.F.E. Agammy, M.A. Zaibani, M. Jaremko, A.H. Emwas, Appl. Phys. A 127 (2021) 1–10.
doi: 10.1007/s00339-020-04132-x
G.L. Richmond, Chem. Rev. 102 (2002) 2693–2724.
doi: 10.1021/cr0006876
B. Huang, Z. Xiong, P. Zhou, et al., J. Hazard. Mater. 424 (2022) 127641.
doi: 10.1016/j.jhazmat.2021.127641
Y. Qi, J. Li, Y. Zhang, et al., Appl. Catal. B: Environ. 286 (2021) 119910.
doi: 10.1016/j.apcatb.2021.119910
G. Ye, P. Luo, Y. Zhao, et al., Chemosphere 253 (2020) 126767.
doi: 10.1016/j.chemosphere.2020.126767
G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17 (1988) 513–886.
doi: 10.1063/1.555805
F.E. Scully, J. Hoigne, Chemosphere 16 (1987) 681–694.
doi: 10.1016/0045-6535(87)90004-X
Y.M. Dong, G.L. Wang, P.P. Jiang, et al., Chin. Chem. Lett. 22 (2011) 209–212.
doi: 10.1016/j.cclet.2010.10.010
Y. Ren, Q. Dong, J. Feng, et al., J. Colloid Interface Sci. 382 (2012) 90–96.
doi: 10.1016/j.jcis.2012.05.053
W. Li, Z. Qiang, T. Zhang, F. Cao, Appl. Catal. B: Environ. 113 (2012) 290–295.
S.M. Zhu, B.Z. Dong, Y.H. Yu, et al., Chem. Eng. J. 328 (2017) 527–535.
doi: 10.1016/j.cej.2017.07.083
A. Ranithri, Z. Sitian, W.Z. Yang, L.Y. Chen, LWT-Food. Sci. Technol. 158 (2022) 113162.
doi: 10.1016/j.lwt.2022.113162
M.C. DeRosa, R.J. Crutchley, Coord. Chem. Rev. 233 (2002) 351–371.
J. Brame, M. Long, Q. Li, P. Alvarez, Water Res. 60 (2014) 259–266.
doi: 10.1016/j.watres.2014.05.005
L. Bu, N. Zhu, C. Li, et al., J. Hazard. Mater. 388 (2020) 121760.
doi: 10.1016/j.jhazmat.2019.121760
T. Zhang, C. Li, J. Ma, H. Tian, Z. Qiang, Appl. Catal. B: Environ. 82 (2008) 131–137.
doi: 10.1016/j.apcatb.2008.01.008
F. Qi, Z. Chen, B. Xu, et al., Appl. Catal. B: Environ. 84 (2008) 684–690.
doi: 10.1016/j.apcatb.2008.05.027
Guidelines for drinking-water quality: Fourth edition incorporating the first and second addenda,
João Restivo , Raquel P. Rocha , Adrián M. T. Silva , José J. M. Órfão , Manuel F. R. Pereira , José L. Figueiredo . Catalytic performance of heteroatom-modified carbon nanotubes in advanced oxidation processes. Chinese Journal of Catalysis, 2014, 35(6): 896-905. doi: 10.1016/S1872-2067(14)60103-0
Qing Xiang Zhou , Guo Hong Xie , Long Pang . Rapid determination of atrazine in environmental water samples by a novel liquid phase microextraction. Chinese Chemical Letters, 2008, 19(1): 89-91. doi: 10.1016/j.cclet.2007.10.036
Xue Ming Chen , Djalma Ribeiro da Silva , Carlos A. Martínez-Huitle . Application of advanced oxidation processes for removing salicylic acid from synthetic wastewaters. Chinese Chemical Letters, 2010, 21(1): 101-104. doi: 10.1016/j.cclet.2009.08.001
Rui Huan Huang , Jie Liu , Lai Sheng Li , Qiu Yun Zhang , Li Xuan Zeng , Ping Lu . Fe/MCM-41 as a promising heterogeneous catalyst for ozonation of p-chlorobenzoic acid in aqueous solution. Chinese Chemical Letters, 2011, 22(6): 683-686. doi: 10.1016/j.cclet.2010.11.037
Lei Zhu , Sun-Bok Jo , Shu Ye , Kefayat Ullah , Won-Chun Oh . Rhodamine B degradation and reactive oxygen species generation by a ZnSe-graphene/TiO2 sonocatalyst. Chinese Journal of Catalysis, 2014, 35(11): 1825-1832. doi: 10.1016/S1872-2067(14)60158-3
Yongbing Xie , Ya Liu , Yujie Yao , Yanchun Shi , Binran Zhao , Yuxian Wang . In-situ synthesis of N, S co-doped hollow carbon microspheres for efficient catalytic oxidation of organic contaminants. Chinese Chemical Letters, 2022, 33(3): 1298-1302. doi: 10.1016/j.cclet.2021.07.055
Heshan Zheng , Yunying Hou , Shuo Li , Jun Ma , Jun Nan , Nannan Wang . Study on catalytic mechanisms of Fe3O4-rGOx in three typical advanced oxidation processes for tetracycline hydrochloride degradation. Chinese Chemical Letters, 2023, 34(1): 107253-1-107253-6. doi: 10.1016/j.cclet.2022.02.058
Minxian Zhang , Wanqian Guo , Yingyin Chen , Dechun He , Abdulgalim B. Isaev , Mingshan Zhu . Dissolved oxygen in aeration-driven piezo-catalytic for antibiotics pollutants removal in water. Chinese Chemical Letters, 2023, 34(9): 108229-1-108229-5. doi: 10.1016/j.cclet.2023.108229
Liao Jiazhen , Li Kanglu , Ma Hao , Dong Fan , Zeng Xiaolan , Sun Yanjuan . Oxygen vacancies on the BiOCl surface promoted photocatalytic complete NO oxidation via superoxide radicals. Chinese Chemical Letters, 2020, 31(10): 2737-2741. doi: 10.1016/j.cclet.2020.03.081
Xinchao Li , Rui Luo , Xiuqi Liang , Qinjie Wu , Changyang Gong . Recent advances in enhancing reactive oxygen species based chemodynamic therapy. Chinese Chemical Letters, 2022, 33(5): 2213-2230. doi: 10.1016/j.cclet.2021.11.048
Du Junqun , Zhang Baogang , Li Jiaxin , Lai Bo . Decontamination of heavy metal complexes by advanced oxidation processes: A review. Chinese Chemical Letters, 2020, 31(10): 2575-2582. doi: 10.1016/j.cclet.2020.07.050
Hao Hu , Bei Yan , Wei Zhang , Wenbo Yan , Liquan Liu , Xiaofeng Tang , Kejun Dong , Longjie Li , Xianjin Xiao , Chengliang Xiong . A new method for evaluating the quality of single sperm by detecting reactive oxygen species. Chinese Chemical Letters, 2023, 34(2): 107418-1-107418-5. doi: 10.1016/j.cclet.2022.04.016
Yue-Xia Zhang , Zhen-Hua Yang , Quan-Xi Zhang , Rui-Jin Li , Hong Geng , Chuan Dong . Chemical compositions and effects on chemiluminescence of AMs in vitro of chalk dusts. Chinese Chemical Letters, 2015, 26(1): 157-159. doi: 10.1016/j.cclet.2014.08.004
Zhen Hu , Hai Ping Xing , Zhou Zhu , Wei Wang , Wen Chao Guan . Synthesis of cystine C60 derivative and its protective effects on hydrogen peroxide-induced apoptosis in PC12 cells. Chinese Chemical Letters, 2007, 18(2): 145-148. doi: 10.1016/j.cclet.2006.12.023
Ruicheng Ji , Jiabin Chen , Tongcai Liu , Xuefei Zhou , Yalei Zhang . Critical review of perovskites-based advanced oxidation processes for wastewater treatment: Operational parameters, reaction mechanisms, and prospects. Chinese Chemical Letters, 2022, 33(2): 643-652. doi: 10.1016/j.cclet.2021.07.043
Ke Tian , Limin Hu , Letian Li , Qingzhu Zheng , Yanjun Xin , Guangshan Zhang . Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment. Chinese Chemical Letters, 2022, 33(10): 4461-4477. doi: 10.1016/j.cclet.2021.12.042
Mengdie Cai , Weimin Gan , Zhiqin Ding , Hongping Cai , Lijun Wei , Xianglei Cheng . Studies on reaction mechanisms and distinct chemiluminescence from cyanoimino neonicotinoids triggered by peroxymonosulfate in advanced oxidation processes. Chinese Chemical Letters, 2023, 34(3): 107554-1-107554-3. doi: 10.1016/j.cclet.2022.05.068
Xuechun Wang , Jiana Jing , Minghua Zhou , Raf Dewil . Recent advances in H2O2-based advanced oxidation processes for removal of antibiotics from wastewater. Chinese Chemical Letters, 2023, 34(3): 107621-1-107621-10. doi: 10.1016/j.cclet.2022.06.044
Wang Yueqi , Li Changjian , Du Libo , Liu Yang . A reactive oxygen species-responsive dendrimer with low cytotoxicity for efficient and targeted gene delivery. Chinese Chemical Letters, 2020, 31(1): 275-280. doi: 10.1016/j.cclet.2019.03.040
Zhu Meng , Zhang Longshuai , Liu Shanshan , Wang Dengke , Qin Yuancheng , Chen Ying , Dai Weili , Wang Yuehua , Xing Qiuju , Zou Jianping . Degradation of 4-nitrophenol by electrocatalysis and advanced oxidation processes using Co3O4@C anode coupled with simultaneous CO2 reduction via SnO2/CC cathode. Chinese Chemical Letters, 2020, 31(7): 1961-1965. doi: 10.1016/j.cclet.2020.01.017