Heterogeneous catalytic ozonation by amorphous boron for degradation of atrazine in water
-
* Corresponding authors.
E-mail addresses: zengyaxiong@zju.edu.cn (Y. Zeng), guanbaohong@zju.edu.cn (B. Guan).
Citation:
Zirong Song, Jie Li, Hongxin Xu, Yu Li, Yaxiong Zeng, Baohong Guan. Heterogeneous catalytic ozonation by amorphous boron for degradation of atrazine in water[J]. Chinese Chemical Letters,
;2023, 34(5): 107876.
doi:
10.1016/j.cclet.2022.107876
A.A. Esquerdo, I.S. Gadea, P.J.V. Galvan, D.P. Rico, Sci. Total. Environ. 764 (2021) 144301.
doi: 10.1016/j.scitotenv.2020.144301
J. Gomes, R. Costa, R.M.Q. Ferreira, R.C. Martins, Sci. Total. Environ. 586 (2017) 265–283.
doi: 10.1016/j.scitotenv.2017.01.216
C.B. Breckenridge, P.S. Coder, M.O. Tisdel, et al., Birth. Defects. Res. B 104 (2015) 204–217.
doi: 10.1002/bdrb.21154
S.A. Abdulelah, K.G. Crile, A. Almouseli, et al., Chemosphere 239 (2020) 124786.
doi: 10.1016/j.chemosphere.2019.124786
A.N. Kabra, M.K. Ji, J. Choi, et al., Environ. Sci. Pollut. Res. Int. 21 (2014) 12270–12278.
doi: 10.1007/s11356-014-3157-4
J. Ge, J. Cong, Y. Sun, et al., Bull. Environ. Contam. Toxicol. 84 (2010) 401–405.
doi: 10.1007/s00128-010-9958-3
A.S. Sousa, W.C. Duavi, R.M. Cavalcante, M.A. Milhome, R.F.D. Nascimento, Bull. Environ. Contam. Toxicol. 96 (2016) 90–95.
doi: 10.1007/s00128-015-1686-2
S. Singh, V. Kumar, A. Chauhan, et al., Environ. Chem. Lett. 16 (2017) 211–237.
doi: 10.1504/IJMOR.2017.081926
J. Lharidon, M. Fernandez, V. Ferrier, J. Bellan, Water Res. 27 (1993) 855–862.
doi: 10.1016/0043-1354(93)90150-G
M.J.M. Bueno, A. Aguera, M.J. Gomez, et al., Anal. Chem. 79 (2007) 9372–9384.
doi: 10.1021/ac0715672
Y. Liu, S. Wang, L. Shi, W. Lu, P. Li, Environ. Sci. Water Res. Technol. 6 (2020) 1681–1687.
doi: 10.1039/d0ew00227e
X. Kong, J. Jiang, J. Ma, et al., Water Res. 90 (2016) 15–23.
doi: 10.1504/IJRIS.2016.080059
Y. Ji, C. Dong, D. Kong, J. Lu, J. Hazard. Mater. 285 (2015) 491–500.
doi: 10.1016/j.jhazmat.2014.12.026
H. Li, B. Zhou, J. Environ. Sci. Heal. B 54 (2019) 432–440.
doi: 10.1080/03601234.2019.1574175
J. Li, Y. Li, Z. Xiong, G. Yao, B. Lai, Chin. Chem. Lett. 30 (2019) 2139–2146.
doi: 10.1016/j.cclet.2019.04.057
J. Wang, Z. Bai, Chem. Eng. J. 312 (2017) 79–98.
doi: 10.1504/IJEHV.2017.085336
J.L. Acero, K. Stemmler, U.V. Gunten, Environ. Sci. Technol. 34 (2000) 591–597.
doi: 10.1021/es990724e
R.H. Huang, J. Liu, L.S. Li, et al., Chin. Chem. Lett. 22 (2011) 683–686.
doi: 10.1016/j.cclet.2010.11.037
Z. Xiong, B. Lai, Y. Yuan, et al., Chem. Eng. J. 302 (2016) 137–145.
doi: 10.1016/j.cej.2016.05.052
S.Q. Tian, J.Y. Qi, Y.P. Wang, et al., Water Res. 193 (2021) 116860.
doi: 10.1016/j.watres.2021.116860
X. Tan, Y. Wan, Y. Huang, et al., J. Hazard. Mater. 321 (2017) 162–172.
doi: 10.1016/j.jhazmat.2016.09.013
T. Shen, Q. Wang, S. Tong, Ind. Eng. Chem. Res. 56 (2017) 10965–10971.
doi: 10.1021/acs.iecr.7b02469
Y. Xie, Y. Liu, Y. Yao, et al., Chin. Chem. Lett. 33 (2022) 1298–1302.
doi: 10.1016/j.cclet.2021.07.055
J. Restivo, C.A. Orge, A.S.G.G. Santos, O.S.G.P. Soares, M.F.R. Pereira, Catal. Today 384 (2022) 187–196.
J. Wang, S. Chen, X. Quan, H. Yu, Chemosphere 190 (2018) 135–143.
doi: 10.1016/j.chemosphere.2017.09.119
J. Xu, Y. Li, M. Qian, et al., Appl. Catal. B: Environ. 256 (2019) 117797.
doi: 10.1016/j.apcatb.2019.117797
A.S.G.G. Santos, C.A. Orge, O.S.G.P. Soares, M.F.R. Pereira, J. Water Process. Eng. 38 (2020) 101573.
doi: 10.1016/j.jwpe.2020.101573
A.J. Mannix, X.F. Zhou, B. Kiraly, et al., Science 350 (2015) 1513–1516.
doi: 10.1126/science.aad1080
P. Shao, X. Duan, J. Xu, et al., J. Hazard. Mater. 322 (2017) 532–539.
doi: 10.1016/j.jhazmat.2016.10.020
P. Zhou, W. Ren, G. Nie, et al., Angew. Chem. Int. Ed. Engl. 59 (2020) 16517–16526.
doi: 10.1002/anie.202007046
L. Ge, S. Lei, A.H.C. Hart, et al., Nanotechnology 25 (2014) 335701.
doi: 10.1088/0957-4484/25/33/335701
U.V. Gunten, Water Res. 37 (2003) 1443–1467.
doi: 10.1016/S0043-1354(02)00457-8
G. Yu, Y. Wang, H. Cao, H. Zhao, Y. Xie, Environ. Sci. Technol. 54 (2020) 5931–5946.
doi: 10.1021/acs.est.0c00575
X. Luo, T. Su, X. Xie, Z. Qin, H. Ji, Chemistryselect 5 (2020) 15092–15116.
doi: 10.1002/slct.202003805
B. Feng, J. Zhang, Q. Zhong, et al., Nat. Chem. 8 (2016) 564–569.
doi: 10.3390/ma9070564
X.D. Wu, Z.X. Wang, L.Q. Chen, X.J. Huang, Solid State Ionics 170 (2004) 117–121.
doi: 10.1016/j.ssi.2004.02.011
P. Zhou, W. Ren, G. Nie, et al., Angew. Chem. Int. Ed. 59 (2020) 16517–16526.
doi: 10.1002/anie.202007046
P. Wang, S. Orimo, K. Tanabe, H. Fujii, J. Alloys Compd. 350 (2003) 218–221.
doi: 10.1016/S0925-8388(02)00927-1
K.E. Egili, E.F.E. Agammy, M.A. Zaibani, M. Jaremko, A.H. Emwas, Appl. Phys. A 127 (2021) 1–10.
doi: 10.1007/s00339-020-04132-x
G.L. Richmond, Chem. Rev. 102 (2002) 2693–2724.
doi: 10.1021/cr0006876
B. Huang, Z. Xiong, P. Zhou, et al., J. Hazard. Mater. 424 (2022) 127641.
doi: 10.1016/j.jhazmat.2021.127641
Y. Qi, J. Li, Y. Zhang, et al., Appl. Catal. B: Environ. 286 (2021) 119910.
doi: 10.1016/j.apcatb.2021.119910
G. Ye, P. Luo, Y. Zhao, et al., Chemosphere 253 (2020) 126767.
doi: 10.1016/j.chemosphere.2020.126767
G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17 (1988) 513–886.
doi: 10.1063/1.555805
F.E. Scully, J. Hoigne, Chemosphere 16 (1987) 681–694.
doi: 10.1016/0045-6535(87)90004-X
Y.M. Dong, G.L. Wang, P.P. Jiang, et al., Chin. Chem. Lett. 22 (2011) 209–212.
doi: 10.1016/j.cclet.2010.10.010
Y. Ren, Q. Dong, J. Feng, et al., J. Colloid Interface Sci. 382 (2012) 90–96.
doi: 10.1016/j.jcis.2012.05.053
W. Li, Z. Qiang, T. Zhang, F. Cao, Appl. Catal. B: Environ. 113 (2012) 290–295.
S.M. Zhu, B.Z. Dong, Y.H. Yu, et al., Chem. Eng. J. 328 (2017) 527–535.
doi: 10.1016/j.cej.2017.07.083
A. Ranithri, Z. Sitian, W.Z. Yang, L.Y. Chen, LWT-Food. Sci. Technol. 158 (2022) 113162.
doi: 10.1016/j.lwt.2022.113162
M.C. DeRosa, R.J. Crutchley, Coord. Chem. Rev. 233 (2002) 351–371.
J. Brame, M. Long, Q. Li, P. Alvarez, Water Res. 60 (2014) 259–266.
doi: 10.1016/j.watres.2014.05.005
L. Bu, N. Zhu, C. Li, et al., J. Hazard. Mater. 388 (2020) 121760.
doi: 10.1016/j.jhazmat.2019.121760
T. Zhang, C. Li, J. Ma, H. Tian, Z. Qiang, Appl. Catal. B: Environ. 82 (2008) 131–137.
doi: 10.1016/j.apcatb.2008.01.008
F. Qi, Z. Chen, B. Xu, et al., Appl. Catal. B: Environ. 84 (2008) 684–690.
doi: 10.1016/j.apcatb.2008.05.027
Guidelines for drinking-water quality: Fourth edition incorporating the first and second addenda,
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Yulong Liu , Haoran Lu , Tong Yang , Peng Cheng , Xu Han , Wenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492
Shili Wang , Mamitiana Roger Razanajatovo , Xuedong Du , Shunli Wan , Xin He , Qiuming Peng , Qingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140
Zhongyu Wang , Lijun Wang , Huaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637
Kun-Heng Li , Hong-Yang Zhao , Dan-Dan Wang , Ming-Hui Qi , Zi-Jian Xu , Jia-Mi Li , Zhi-Li Zhang , Shi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882
Feifei Wang , Hang Yao , Xinyue Wu , Yijian Tang , Yang Bai , Hui Chong , Huan Pang . Metal–organic framework and its composites modulate macrophage polarization in the treatment of inflammatory diseases. Chinese Chemical Letters, 2024, 35(5): 108821-. doi: 10.1016/j.cclet.2023.108821
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
Jiaqi Huang , Renjiang Kong , Yanmei Li , Ni Yan , Yeyang Wu , Ziwen Qiu , Zhenming Lu , Xiaona Rao , Shiying Li , Hong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254
Haijing Cui , Weihao Zhu , Chuning Yue , Ming Yang , Wenzhi Ren , Aiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727
Qinyu Zhao , Yunchao Zhao , Songjing Zhong , Zhaoyang Yue , Zhuoheng Jiang , Shaobo Wang , Quanhong Hu , Shuncheng Yao , Kaikai Wen , Linlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644
Xiangdong Lai , Tengfei Liu , Zengchao Guo , Yihan Wang , Jiang Xiao , Qingxiu Xia , Xiaohui Liu , Hui Jiang , Xuemei Wang . In situ formed fluorescent gold nanoclusters inhibit hair follicle regeneration in oxidative stress microenvironment via suppressing NFκB signal pathway. Chinese Chemical Letters, 2025, 36(2): 109762-. doi: 10.1016/j.cclet.2024.109762
Yuanyi Zhou , Ke Ma , Jinfeng Liu , Zirun Zheng , Bo Hu , Yu Meng , Zhizhong Li , Mingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056
Chi Zhang , Ning Ding , Yuwei Pan , Lichun Fu , Ying Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579
Lijuan Wang , Yuping Ning , Jian Li , Sha Luo , Xiongfei Luo , Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Juhong Zhou , Hui Zhao , Ping Han , Ziyue Wang , Yan Zhang , Xiaoxia Mao , Konglin Wu , Shengjue Deng , Wenxiang He , Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Zeyu Jiang , Yadi Wang , Changwei Chen , Chi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400
Qiuyun Li , Yannan Zhu , Yining Wang , Gang Qi , Wen-Juan Hao , Kelu Yan , Bo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494