Advanced municipal wastewater treatment and simultaneous energy/resource recovery via photo(electro)catalysis
-
* Corresponding author.
E-mail address: zjp_112@126.com (J.-P. Zou).
Citation:
Dengke Wang, Siqi Chen, Shiqin Lai, Weili Dai, Lixia Yang, Lanqing Deng, Mengjuan Suo, Xuyang Wang, Jian-Ping Zou, Sheng-Lian Luo. Advanced municipal wastewater treatment and simultaneous energy/resource recovery via photo(electro)catalysis[J]. Chinese Chemical Letters,
;2023, 34(5): 107861.
doi:
10.1016/j.cclet.2022.107861
N.H. Tran, M. Reinhard, K.Y.H. Gin, Water Res. 133(2018) 182–207.
doi: 10.1016/j.watres.2017.12.029
P. Chowdhary, A. Raj, R.N. Bharagava, Chemosphere 194(2018) 229–246.
doi: 10.1016/j.chemosphere.2017.11.163
Z.N. Wang, M.Y. Liu, F. Xiao, et al., Chin. Chem. Lett. 33(2022) 653–662.
doi: 10.1016/j.cclet.2021.07.044
R. Khiewwijit, H. Temmink, H. Rijnaarts, K.J. Keesman, Environ. Model. Softw. 68(2015) 156–165.
doi: 10.1016/j.envsoft.2015.02.011
F.Q. Fan, R.H. Xu, D.P. Wang, F.G. Meng, Water Res. 181(2020) 115915.
doi: 10.1016/j.watres.2020.115915
Z.W. Zhang, Y.H. Wu, L.W. Luo, et al., Sci. Total Environ. 792(2021) 148291.
doi: 10.1016/j.scitotenv.2021.148291
M.N. Hasan, M.M. Altaf, N.A. Khan, et al., Chemosphere 277(2021) 130328.
doi: 10.1016/j.chemosphere.2021.130328
J.D. Xiao, Y.B. Xie, J. Rabeah, A. Brückner, H.B. Cao, Acc. Chem. Res. 53(2020) 1024–1033.
doi: 10.1021/acs.accounts.9b00624
R.C. Ji, J.B. Chen, T.C. Liu, X.F. Zhou, Y.L. Zhang, Chin. Chem. Lett. 33(2022) 643–652.
doi: 10.1016/j.cclet.2021.07.043
Y. Li, Y.G. Chen, J. Wu, Appl. Energy 240(2019) 120–137.
doi: 10.1016/j.apenergy.2019.01.243
H.Y. Wang, F. Qian, Y. Li, Nano Energy 8(2014) 264–273.
doi: 10.1016/j.nanoen.2014.06.004
T.H. Jeon, M.S. Koo, H. Kim, W. Choi, ACS Catal. 8(2018) 11542–11563.
doi: 10.1021/acscatal.8b03521
J. Highfield, Molecules 20(2015) 6739–6793.
doi: 10.3390/molecules20046739
H.J. Lewerenz, C. Heine, K. Skorupska, et al., Energy Environ. Sci. 3(2010) 748–760.
doi: 10.1039/b915922n
Z.D. Wei, J.Y. Liu, W.F. Shangguan, Chin. J. Catal. 41(2020) 1440–1450.
doi: 10.1016/S1872-2067(19)63448-0
Q. Wang, K. Domen, Chem. Rev. 120(2020) 919–985.
doi: 10.1021/acs.chemrev.9b00201
S. Kampouri, K.C. Stylianou, ACS Catal. 9(2019) 4247–4270.
doi: 10.1021/acscatal.9b00332
T.O. Ajiboye, O.A. Oyewo, D.C. Onwudiwe, Chemosphere 262(2021) 128379.
doi: 10.1016/j.chemosphere.2020.128379
L.M. Yang, W.B. Hu, Z.W. Chang, et al., Environ. Int. 152(2021) 106512.
doi: 10.1016/j.envint.2021.106512
L. Candish, K.D. Collins, G.C. Cook, et al., Chem. Rev. 122(2022) 2907–2980.
doi: 10.1021/acs.chemrev.1c00416
A. Fujishima, K. Honda, Nature 238(1972) 37–38.
doi: 10.1038/238037a0
Q. Guo, Z.B. Ma, C.Y. Zhou, Z.F. Ren, X.M. Yang, Chem. Rev. 119(2019) 11020–11041.
doi: 10.1021/acs.chemrev.9b00226
T.L. Xia, Y.C. Lin, W.Z. Li, M.T. Ju, Chin. Chem. Lett. 32(2021) 2975–2984.
doi: 10.1016/j.cclet.2021.02.058
F.E. Osterloh, ACS Energy Lett. 2(2017) 445–453.
doi: 10.1021/acsenergylett.6b00665
C.A. Martínez-Huitle, S. Ferro, Chem. Soc. Rev. 35(2006) 1324–1340.
doi: 10.1039/B517632H
G.Q. Zhao, Y.Z. Jiang, S.X. Dou, W.P. Sun, H.G. Pan, Sci. Bull. 66(2021) 85–96.
doi: 10.1016/j.scib.2020.09.014
H.X. Zhong, M.C. Wang, G.B. Chen, R.H. Dong, X.L. Feng, ACS Nano 16(2022) 1759–1780.
doi: 10.1021/acsnano.1c10544
J. Linnemann, K. Kanokkanchana, K. Tschulik, ACS Catal. 11(2021) 5318–5346.
doi: 10.1021/acscatal.0c04118
L. Rebollar, S. Intikhab, N.J. Oliveira, et al., ACS Catal. 10(2020) 14747–14762.
doi: 10.1021/acscatal.0c03801
X.V. Medvedeva, J.J. Medvedev, S.W. Tatarchuk, R.M. Choueiri, A. Klinkova, Green Chem. 22(2020) 4456–4462.
doi: 10.1039/D0GC01754J
Y.L. Quan, J.X. Zhu, G.F. Zheng, Small 1(2021) 2100043.
doi: 10.1002/smsc.202100043
D. Shahidi, R. Roy, A. Azzouz, Appl. Catal. B: Environ. 174(2015) 277–292.
S.Z. Xu, E.A. Carter, Chem. Rev. 119(2019) 6631–6669.
doi: 10.1021/acs.chemrev.8b00481
B.M. Tackett, E. Gomez, J.G. Chen, Nat. Catal. 2(2019) 381–386.
doi: 10.1038/s41929-019-0266-y
P. Prabhu, V. Jose, J.M. Lee, Adv. Funct. Mater. 30(2020) 1910768.
doi: 10.1002/adfm.201910768
X.X. Chang, T. Wang, J.L. Gong, Energy Environ. Sci. 9(2016) 2177–2196.
doi: 10.1039/C6EE00383D
D.N. Jiang, P. Xu, H. Wang, et al., Coordin. Chem. Rev. 376(2018) 449–466.
doi: 10.1016/j.ccr.2018.08.005
Z.J. Wang, H. Song, H.M. Liu, J.H. Ye, Angew. Chem. Int. Ed. 59(2020) 8016–8035.
doi: 10.1002/anie.201907443
M. Melchionna, P. Fornasiero, ACS Catal. 10(2020) 5493–5501.
doi: 10.1021/acscatal.0c01204
J.P. Zou, D.D. Wu, J.M. Luo, et al., ACS Catal. 6(2016) 6861–6867.
doi: 10.1021/acscatal.6b01729
G. Rossi, L. Pasquini, D. Catone, et al., Appl. Catal. B: Environ. 237(2018) 603–612.
doi: 10.1016/j.apcatb.2018.06.011
Y.B. Yan, J. Gong, J. Chen, et al., Adv. Mater. 31(2019) 1808283.
doi: 10.1002/adma.201808283
V.C. Hoang, K. Dave, V.G. Gomes, Nano Energy 66(2019) 104093.
doi: 10.1016/j.nanoen.2019.104093
Y. Yamaguchi, A. Kudo, Front. Energy 15(2021) 568–576.
doi: 10.1007/s11708-021-0774-8
R. Acharya, K. Parida, J. Environ. Chem. Eng. 8(2020) 103896.
doi: 10.1016/j.jece.2020.103896
W.H. Dong, D.D. Wu, J.M. Luo, et al., J. Catal. 349(2017) 218–225.
doi: 10.1016/j.jcat.2017.02.004
X. Lu, C.Q. Zhu, Z.S. Wu, et al., J. Am. Chem. Soc. 142(2020) 15438–15444.
doi: 10.1021/jacs.0c06779
D.A. Henckel, M.J. Counihan, H.E. Holmes, et al., ACS Catal. 11(2021) 255–263.
doi: 10.1021/acscatal.0c04297
Q. Xie, W.M. He, S.W. Liu, Chin. J. Catal. 41(2020) 140–153.
doi: 10.1016/S1872-2067(19)63481-9
M.F.R. Samsudin, H. Ullah, R. Bashiri, et al., ACS Sustain. Chem. Eng. 8(2020) 9393–9403.
doi: 10.1021/acssuschemeng.0c02063
Y. Wang, G.Q. Tan, T. Liu, et al., Appl. Catal. B: Environ. 234(2018) 37–49.
doi: 10.1016/j.apcatb.2018.04.026
R.Z. Zhang, B.Y. Wu, Q. Li, et al., Coordin. Chem. Rev. 422(2020) 213436.
doi: 10.1016/j.ccr.2020.213436
L. Zhang, Z.J. Zhao, T. Wang, J.L. Gong, Chem. Soc. Rev. 47(2018) 5423–5443.
doi: 10.1039/C8CS00016F
Z.W. Seh, J. Kibsgaard, C.F. Dickens, et al., Science 355(2017) eaad4998.
doi: 10.1126/science.aad4998
F. Franco, C. Rettenmaier, H.S. Jeon, B.R. Cuenya, Chem. Soc. Rev. 49(2020) 6884–6946.
doi: 10.1039/D0CS00835D
Q. Lu, J. Rosen, Y. Zhou, et al., Nat. Commun. 5(2014) 3242.
doi: 10.1038/ncomms4242
J. Rosen, G.S. Hutchings, Q. Lu, et al., ACS Catal. 5(2015) 4586–4591.
doi: 10.1021/acscatal.5b00922
D.S. Ripatti, T.R. Veltman, M.W. Kanan, Joule 3(2019) 240–256.
doi: 10.1016/j.joule.2018.10.007
S. Verma, X. Lu, S.C. Ma, R.I. Masel, P.J. Kenis, Phys. Chem. Chem. Phys. 18(2016) 7075–7084.
doi: 10.1039/C5CP05665A
D.M. Weekes, D.A. Salvatore, A. Reyes, A. Huang, C. Berlinguette, Acc. Chem. Res. 51(2018) 910–918.
doi: 10.1021/acs.accounts.8b00010
G. Bharath, K. Rambabu, C. Aubry, et al., ACS Appl. Energy Mater. 4(2021) 11408–11418.
doi: 10.1021/acsaem.1c02196
Y.K. Long, J. Dai, S.Y. Zhao, et al., Environ. Sci. Technol. 55(2021) 5357–5370.
doi: 10.1021/acs.est.0c07794
Y.L. Chen, X. Bai, Y.T. Ji, T. Shen, Chem. Eng. J. 430(2022) 132951.
doi: 10.1016/j.cej.2021.132951
L. Wang, J.W. Wan, Y.S. Zhao, N.L. Yang, D. Wang, J. Am. Chem. Soc. 141(2019) 2238–2241.
doi: 10.1021/jacs.8b13528
W.C. Lai, Z.S. Ma, J.W. Zhang, et al., Adv. Func. Mater. 32(2022) 2111193.
doi: 10.1002/adfm.202111193
Q.N. Wang, X.Q. Wang, C. Wu, Y.Y. Cheng, Q.Y. Sun, H.B. Yu, J. CO2 Util. 26(2018) 425–433.
doi: 10.1016/j.jcou.2018.05.027
T.N. Nguyen, C.T. Dinh, Chem. Soc. Rev. 49(2020) 7488–7504.
doi: 10.1039/D0CS00230E
H. Rabiee, L. Ge, X.Q. Zhang, et al., Energy Environ. Sci. 14(2021) 1959–2008.
doi: 10.1039/D0EE03756G
H. Dong, M. Lu, Y. Wang, et al., Appl. Catal. B: Environ. 303(2022) 120897.
doi: 10.1016/j.apcatb.2021.120897
M.L. Zhang, Z.D. Zhang, Z.H. Zhao, et al., ACS Catal. 11(2021) 11103–11108.
doi: 10.1021/acscatal.1c02556
W.F. Xie, H. Li, G.Q. Cui, et al., Angew. Chem. Int. Ed. 60(2021) 7382–7388.
doi: 10.1002/anie.202014655
Q.N. Wang, C.Q. Zhu, C. Wu, H.B. Yu, Electrochim. Acta 319(2019) 138–147.
doi: 10.1016/j.electacta.2019.06.167
J. Wu, K. Zhu, H. Xu, W. Yan, Chin. J. Catal. 40(2019) 917–927.
doi: 10.1016/S1872-2067(19)63342-5
N. Nandal, S.L. Jain, Coordin. Chem. Rev. 451(2022) 214271.
doi: 10.1016/j.ccr.2021.214271
E. Kusmierek, Catalysts 10(2020) 439.
doi: 10.3390/catal10040439
S.S. Liu, Q.J. Xing, Y. Chen, et al., ACS Sustain. Chem. Eng. 7(2019) 1250–1259.
doi: 10.1021/acssuschemeng.8b04917
J. Zhang, S. Lv, J.L. Zheng, et al., ACS Sustain. Chem. Eng. 8(2020) 11133–11140.
doi: 10.1021/acssuschemeng.0c01906
J.F. de Brito, J.A.L. Perini, S. Perathoner, M.V.B. Zanoni, Electrochim. Acta 306(2019) 277–284.
doi: 10.1016/j.electacta.2019.03.134
D. Wang, Y.N. He, N. Zhong, et al., J. Hazard. Mater. 410(2021) 124563.
doi: 10.1016/j.jhazmat.2020.124563
D.B. Miklos, C. Remy, M. Jekel, et al., Water Res. 139(2018) 118–131.
doi: 10.1016/j.watres.2018.03.042
X.G. Duan, H.Q. Sun, S.B. Wang, Acc. Chem. Res. 51(2018) 678–687.
doi: 10.1021/acs.accounts.7b00535
J. Lee, U. von Gunten, J.H. Kim, Environ. Sci. Technol. 54(2020) 3064–3081.
doi: 10.1021/acs.est.9b07082
J.P. Zou, Y. Chen, S.S. Liu, et al., Water Res. 150(2019) 330–339.
doi: 10.1016/j.watres.2018.11.077
W.D. Oh, Z.L. Dong, T.T. Lim, Appl. Catal. B: Environ. 194(2016) 169–201.
doi: 10.1016/j.apcatb.2016.04.003
R. Cheula, M. Maestri, G. Mpourmpakis, ACS Catal. 10(2020) 6149–6158.
doi: 10.1021/acscatal.0c01005
H.Y. Tan, J. Wang, S.Z. Yu, K.B. Zhou, Environ. Sci. Technol. 49(2015) 8675–8682.
doi: 10.1021/acs.est.5b01264
M. Zhu, L.S. Zhang, S.S. Liu, et al., Chin. Chem. Lett. 31(2020) 1961–1965.
doi: 10.1016/j.cclet.2020.01.017
J. Wang, W. Liu, D.M. Li, Y.P. Wang, J. Alloy. Compd. 588(2014) 378–383.
doi: 10.1016/j.jallcom.2013.11.040
Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 48(2019) 2109–2125.
doi: 10.1039/C8CS00542G
L. Wang, X.L. Geng, L. Zhang, et al., Chemosphere 286(2022) 131558.
doi: 10.1016/j.chemosphere.2021.131558
C.G. Liu, Z.F. Lei, Y.N. Yang, Z.Y. Zhang, Water Res. 47(2013) 49586–49592.
X.J. Zheng, C.L. Li, M. Zhao, et al., Int. J. Hydrog. Energy 42(2017) 7917–7929.
doi: 10.1016/j.ijhydene.2016.12.131
Y. Rong, L. Tang, Y.H. Song, et al., RSC Adv. 6(2016) 80595–80603.
doi: 10.1039/C6RA15320H
K.H. Chu, L.Q. Ye, W. Wang, et al., Chemosphere 183(2016) 219–228.
L. He, L. Li, T.T. Wang, et al., Dalton Trans. 43(2014) 16981–16985.
doi: 10.1039/C4DT02557A
R. Shwetharani, M. Sakar, H.R. Chandan, R.G. Balakrishna, Mater. Lett. 218(2018) 262–265.
doi: 10.1016/j.matlet.2018.02.031
Y.P. Peng, H.L. Chen, C.P. Huang, Appl. Catal. B: Environ. 209(2017) 437–446.
doi: 10.1016/j.apcatb.2017.02.084
J. Han, Y.R. Bian, X.Z. Zheng, X.M. Sun, L.W. Zhang, Chin. Chem. Lett. 28(2017) 2239–2243.
doi: 10.1016/j.cclet.2017.08.031
A. Patsoura, D.I. Kondarides, X.E. Verykios, Appl. Catal. B: Environ. 64(2006) 171–179.
doi: 10.1016/j.apcatb.2005.11.015
J.G. Wang, P. Zhang, X. Li, J. Zhu, H.X. Li, Appl. Catal. B: Environ. 134-135(2013) 198–204.
doi: 10.1016/j.apcatb.2013.01.006
M.Q. Hu, Z.P. Xing, Y. Cao, et al., Appl. Catal. B: Environ. 226(2018) 499–508.
doi: 10.1016/j.apcatb.2017.12.069
K.X. Li, Z.X. Zeng, L.S. Yan, et al., Appl. Catal. B: Environ. 187(2016) 269–280.
doi: 10.1016/j.apcatb.2016.01.046
H. Park, A. Bak, Y.Y. Ahn, J. Choi, M.R. Hoffmannn, J. Hazard. Mater. 211-212(2012) 47–54.
doi: 10.1016/j.jhazmat.2011.05.009
Y.C. Nie, F. Yu, L.C. Wang, et al., Appl. Catal. B: Environ. 227(2018) 312–321.
doi: 10.1016/j.apcatb.2018.01.033
X.H. Jiang, L.C. Wang, F. Yu, et al., ACS Sustain. Chem. Eng. 6(2018) 12695–12705.
doi: 10.1021/acssuschemeng.8b01695
J.P. Zou, D.D. Wu, S.K. Bao, et al., ACS Appl. Mater. Interfaces 7(2015) 28429–28437.
doi: 10.1021/acsami.5b09255
D.K. Wang, H. Zeng, X. Xiong, et al., Sci. Bull. 65(2020) 113–122.
doi: 10.1016/j.scib.2019.10.015
F. Lu, D. Astruc, Coordin. Chem. Rev. 356(2018) 147–164.
doi: 10.1016/j.ccr.2017.11.003
K. Vikrant, K.H. Kim, Chem. Eng. J. 358(2019) 264–282.
doi: 10.1016/j.cej.2018.10.022
J.J. Rueda-Marquez, I. Levchuk, P.F. Ibanez, M. Sillanpaa, J. Clean. Prod. 258(2020) 120694.
doi: 10.1016/j.jclepro.2020.120694
S. Al-Amshawee, M.Y.B.M. Yunus, A.A.M. Azoddein, et al., Chem. Eng. J. 380(2020) 122231.
doi: 10.1016/j.cej.2019.122231
G.R. Xu, Z.H. An, K. Xu, et al., Coordin. Chem. Rev. 427(2021) 213554.
doi: 10.1016/j.ccr.2020.213554
Y. Zhu, W.H. Fan, T.T. Zhou, X.M. Li, Sci. Total Environ. 678(2019) 253–266.
doi: 10.1016/j.scitotenv.2019.04.416
Z. Xu, Q.R. Zhang, X.C. Li, X.F. Huang, Chem. Eng. J. 429(2022) 131688.
doi: 10.1016/j.cej.2021.131688
X. Zhao, L.B. Guo, B.F. Zhang, H.J. Liu, J.H. Qu, Environ. Sci. Technol. 47(2013) 4480–4488.
doi: 10.1021/es3046982
F. Zhang, W.L. Wang, C.Z. Zhou, Y.L. Sun, J.F. Niu, Chemosphere 278(2021) 130465.
doi: 10.1016/j.chemosphere.2021.130465
H.B. Zeng, S.S. Liu, B.Y. Chai, et al., Environ. Sci. Technol. 50(2016) 6459–6466.
doi: 10.1021/acs.est.6b00632
Z H, W.Q. Guo Wang, B.H. Liu, et al., Water Res. 160(2019) 405–414.
doi: 10.1016/j.watres.2019.05.059
D.K. Wang, H. Zeng, S.Q. Chen, J. Catal. 406(2022) 1–8.
doi: 10.1016/j.jcat.2021.12.027
L. Tian, P. Chen, X.H. Jiang, et al., Water Res. 209(2022) 117890.
doi: 10.1016/j.watres.2021.117890
S.C. Tian, C.Z. Dang, R. Mao, X. Zhao, ACS Sustain. Chem. Eng. 6(2018) 10273–10281.
doi: 10.1021/acssuschemeng.8b01634
K. Xiao, B. Zhou, S.Y. Chen, et al., Electrochem. Commun. 100(2019) 34–38.
doi: 10.1016/j.elecom.2019.01.018
X. Zhao, J.J. Zhang, M. Qiao, H.J. Liu, J.H. Qu, Environ. Sci. Technol. 49(2015) 4567–4574.
doi: 10.1021/es5062374
K.H. Xue, J. Wang, R. He, et al., Sci. Total Environ. 732(2020) 138963.
doi: 10.1016/j.scitotenv.2020.138963
X.H. Jiang, Q.J. Xing, X.B. Luo, et al., Appl. Catal. B: Environ. 228(2018) 29–38.
doi: 10.1016/j.apcatb.2018.01.062
J.M. Luo, S.Q. Zhang, M. Sun, et al., ACS Nano 13(2019) 9811–9840.
doi: 10.1021/acsnano.9b03649
Y.Y. Wu, Y.Q. Li, H.J. Hu, G.S. Zeng, C.H. Li, ACS ES & T Eng. 1(2021) 603–611.
X.X. Ma, X.K. Liu, J.H. Tang, et al., Appl. Surf. Sci. 602(2022) 154276.
doi: 10.1016/j.apsusc.2022.154276
M.S. Koo, X.F. Chen, K. Cho, T.C. An, W. Choi, Environ. Sci. Technol. 53(2019) 9926–9936.
doi: 10.1021/acs.est.9b02401
X.H. Jiang, L.S. Zhang, H.Y. Liu, et al., Angew. Chem. Int. Ed. 59(2020) 23112–23116.
doi: 10.1002/anie.202011495
L.S. Zhang, X.H. Jiang, Z.A. Zhong, et al., Angew. Chem. Int. Ed. 60(2021) 21751–21755.
doi: 10.1002/anie.202109488
M. Govindan, K.C. Pillai, B. Subramanian, I.S. Moon, ACS Omega 2(2017) 3562–3571.
doi: 10.1021/acsomega.7b00352
J. Kim, W. Choi, Energy Environ. Sci. 6(2010) 1042–1045.
J. Kim, D. Monllor-Satoca, W. Choi, Energy Environ. Sci. 5(2012) 7647–7656.
doi: 10.1039/c2ee21310a
G. Iervolino, V. Vaiano, J.J. Murcia, et al., J. Catal. 339(2016) 47–56.
doi: 10.1016/j.jcat.2016.03.032
D. Monllor-Satoca, R. Gómez, J. Phys. Chem. C 112(2008) 139–147.
doi: 10.1021/jp075672r
A. Heuer-Jungemann, N. Feliu, I. Bakaimi, et al., Chem. Rev. 119(2019) 4819–4880.
doi: 10.1021/acs.chemrev.8b00733
G. Hippargi, S. Anjankar, R.J. Krupadam, S.S. Rayalu, Fuel 291(2021) 120113.
doi: 10.1016/j.fuel.2020.120113
N. Sun, Y. Qu, C.H. Yang, et al., Appl. Catal. B: Environ. 263(2020) 118313.
doi: 10.1016/j.apcatb.2019.118313
Z.Y. Wu, Z.Y. Zhou, Y.J. Zhang, et al., Electrochim. Acta 254(2017) 140–147.
doi: 10.1016/j.electacta.2017.09.130
S.Q. Zhang, L.L. Wang, C.B. Liu, et al., Water Res. 121(2017) 11–19.
doi: 10.1016/j.watres.2017.05.013
Dongxue Yang , Dan Qu , Li An , Xupeng Zong , Zaicheng Sun . A metal-free carbon dots for wastewater treatment by visible light active photo-Fenton-like reaction in the broad pH range. Chinese Chemical Letters, 2021, 32(7): 2292-2296. doi: 10.1016/j.cclet.2021.02.005
Afşin Y. Çetinkaya , Emre Oğuz Köroğlu , Neslihan Manav Demir , Derya Yılmaz Baysoy , Bestamin Özkaya , Mehmet Çakmakçı . Electricity production by a microbial fuel cell fueled by brewery wastewater and the factors in its membrane deterioration. Chinese Journal of Catalysis, 2015, 36(7): 1068-1076. doi: 10.1016/S1872-2067(15)60833-6
Jahan-Bakhsh Raoof , Sayed Reza Hosseini , Seyedeh Zeinab Mousavi-Sani . Improved hydrogen evolution on glassy carbon electrode modified with novel Pt/cetyltrimethylammonium bromide nanoscale aggregates. Chinese Journal of Catalysis, 2015, 36(2): 216-220. doi: 10.1016/S1872-2067(14)60207-2
Dong Jin Qian , Ai Rong Liu , Chikashi Nakamura , Stephan Olav Wenk , Jun Miyake . Photoinduced hydrogen evolution in an artificial system containing photosystem I,hydrogenase,methyl viologen and mercaptoacetic acid. Chinese Chemical Letters, 2008, 19(5): 607-610. doi: 10.1016/j.cclet.2008.03.015
Xuechun Wang , Jiana Jing , Minghua Zhou , Raf Dewil . Recent advances in H2O2-based advanced oxidation processes for removal of antibiotics from wastewater. Chinese Chemical Letters, 2023, 34(3): 107621-1-107621-10. doi: 10.1016/j.cclet.2022.06.044
Dan Shao , Zekang Wang , Cuiping Zhang , Weijia Li , Hao Xu , Guoqiang Tan , Wei Yan . Embedding wasted hairs in Ti/PbO2 anode for efficient and sustainable electrochemical oxidation of organic wastewater. Chinese Chemical Letters, 2022, 33(3): 1288-1292. doi: 10.1016/j.cclet.2021.07.061
Guilan Xu , Qin-Long Hong , Yayong Sun , Meng Liu , Hai-Xia Zhang , Jian Zhang . Anchoring metal ions in amine-functionalized boron imidazolate framework for photocatalytic reduction of CO2. Chinese Chemical Letters, 2022, 33(6): 2915-2918. doi: 10.1016/j.cclet.2021.10.061
Lei Wang , A-Ni Wang , Zhen-Zhen Xue , Yan-Ru Wang , Song-De Han , Guo-Ming Wang . In situ growth of polyoxometalate-based metal-organic framework nanoflower arrays for efficient hydrogen evolution. Chinese Chemical Letters, 2023, 34(4): 107414-1-107414-4. doi: 10.1016/j.cclet.2022.04.012
Zhiliang Jin , Yanbing Li , Xuqiang Hao . Ni, Co-Based Selenide Anchored g-C3N4 for Boosting Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2021, 37(10): 1912033-0. doi: 10.3866/PKU.WHXB201912033
Xia Liu , Yunhui Hou , Meng Tang , Longlu Wang . Atom elimination strategy for MoS2 nanosheets to enhance photocatalytic hydrogen evolution. Chinese Chemical Letters, 2023, 34(3): 107489-1-107489-4. doi: 10.1016/j.cclet.2022.05.003
Hongli Wang , Jianan Liu , Xudong Xiao , Huiyuan Meng , Jie Wu , Chuanyu Guo , Mang Zheng , Xiaolei Wang , Shien Guo , Baojiang Jiang . Engineering of SnO2/TiO2 heterojunction compact interface with efficient charge transfer pathway for photocatalytic hydrogen evolution. Chinese Chemical Letters, 2023, 34(1): 107125-1-107125-4. doi: 10.1016/j.cclet.2022.01.018
Mingjun Ma , Haiqing Wang , Hong Liu . Steering spatially separated dual sites on nano-TiO2 through SMSI and lattice matching for robust photocatalytic hydrogen evolution. Chinese Chemical Letters, 2021, 32(11): 3613-3618. doi: 10.1016/j.cclet.2021.04.012
Yutong Wan , Fan Fang , Ruixue Sun , Jie Zhang , Kun Chang . Metal Oxide Semiconductors for Photothermal Catalytic CO2 Hydrogenation Reactions: Recent Progress and Perspectives. Acta Physico-Chimica Sinica, 2023, 39(11): 2212042-0. doi: 10.3866/PKU.WHXB202212042
Yuying Zhao , Qixin Yuan , Mengmeng Fan , Ao Wang , Kang Sun , Zeming Wang , Jianchun Jiang . Fabricating pyridinic N-B sites in porous carbon as efficient metal-free electrocatalyst in conversion CO2 into CH4. Chinese Chemical Letters, 2023, 34(8): 108120-1-108120-5. doi: 10.1016/j.cclet.2022.108120
Men Yana , Su Jun , Wang Xiangli , Cai Ping , Cheng Gongzhen , Luo Wei . NiPt nanoparticles supported on CeO2 nanospheres for efficient catalytic hydrogen generation from alkaline solution of hydrazine. Chinese Chemical Letters, 2019, 30(3): 634-637. doi: 10.1016/j.cclet.2018.11.010
Zhen Li , Wen Liu , Chunxu Chen , Tingting Ma , Jinfeng Zhang , Zhenghua Wang . Transforming the Charge Transfer Mechanism in the In2O3/CdSe-DETA Nanocomposite from Type-I to S-Scheme to Improve Photocatalytic Activity and Stability During Hydrogen Production. Acta Physico-Chimica Sinica, 2023, 39(6): 2208030-. doi: 10.3866/PKU.WHXB202208030
Luo Daibing , Liu Shanhu , Nakata Kazuya , Fujishima Akira . Electrochemical reduction of CO2 and degradation of KHP on boron-doped diamond electrodes in a simultaneous and enhanced process. Chinese Chemical Letters, 2019, 30(2): 509-512. doi: 10.1016/j.cclet.2018.06.010
Lu Chen , Lanlan Wei , Yifan Ru , Mili Weng , Lin Wang , Qizhou Dai . A mini-review of the electro-peroxone technology for wastewaters: Characteristics, mechanism and prospect. Chinese Chemical Letters, 2023, 34(9): 108162-1-108162-8. doi: 10.1016/j.cclet.2023.108162
Qianqian Yang , Zhiyuan Feng , Mingyue Liu , Jinxing Zhang , Hongying Zhao , Guohua Zhao . A general strategy via photoelectrocatalytic oxygen reduction for generating singlet oxygen with carbon bridged carbon-nitride electrode. Chinese Chemical Letters, 2021, 32(11): 3393-3397. doi: 10.1016/j.cclet.2021.05.066
Xiaoxiong Huang , Yingjie Ma , Linjie Zhi . Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction. Acta Physico-Chimica Sinica, 2022, 38(2): 2011050-0. doi: 10.3866/PKU.WHXB202011050