Bioremediation strategies of palm oil mill effluent and landfill leachate using microalgae cultivation: An approach contributing towards environmental sustainability
-
* Corresponding authors.
E-mail addresses:
Citation:
Imran Ahmad, Natasha Nabila Binti Ibrahim, Norhayati Abdullah, Iwamoto Koji, Shaza Eva Mohamad, Kuan Shiong Khoo, Wai Yan Cheah, Tau Chuan Ling, Pau Loke Show. Bioremediation strategies of palm oil mill effluent and landfill leachate using microalgae cultivation: An approach contributing towards environmental sustainability[J]. Chinese Chemical Letters,
;2023, 34(5): 107854.
doi:
10.1016/j.cclet.2022.107854
A.F.M. Udaiyappan, H.A. Hasan, M.S. Takriff, et al., J. Water Process Eng. 35 (2020) 101203.
doi: 10.1016/j.jwpe.2020.101203
M.K. Lam, K.T. Lee, Biotechnol. Adv. 29 (2011) 124–141.
doi: 10.1016/j.biotechadv.2010.10.001
M.P.O. Board, Overview of the Malaysian Oil Palm Industry 2018, Malaysian Palm Oil Board, 2010.
W.Y. Cheah, P.L. Show, J.C. Juan, J.S. Chang, T.C. Ling, Energy Convers. Manag. 174 (2018) 430–438.
doi: 10.1016/j.enconman.2018.08.057
W.Y. Cheah, P.L. Show, J.C. Juan, J.S. Chang, T.C. Ling, Energy Convers. Manag. 164 (2018) 188–197.
doi: 10.1016/j.enconman.2018.02.094
W.Y. Cheah, P.L. Show, J.C. Juan, J.S. Chang, T.C. Ling, Clean Technol. Environ. Policy. 20 (2018) 2037–2045.
doi: 10.1007/s10098-018-1505-7
M.P.O. Board-MPOB, Overview of the Malaysian oil Palm Industry 2009, Ministry of Plantation Industries and Commodities, Malaysia, 2010.
H.Z. Nahrul, F.J. Nor, M. Ropandi, A. Astimar, J. Oil Palm Res. 29 (2017) 528–540.
K.S. Khoo, X. Tan, P.L. Show, et al., Chem. Biochem. Eng. Q. 34 (2020) 1–24.
doi: 10.15255/cabeq.2019.1703
B. Porto, A.L. Goncalves, A.F. Esteves, et al., Chem. Eng. J. 413 (2021) 127546.
doi: 10.1016/j.cej.2020.127546
I. Ahmad, N. Abdullah, S. Chelliapan, et al., Effectiveness of Anaerobic Technologies in the Treatment of Landfill Leachate, in: strategies of Sustainable Solid Waste Management, IntechOpen (2020), doi:
I. Ahmad, N. Abdullah, S. Chelliapan, et al., Mater. Today: Proc. 46 (2021) 1913–1921.
doi: 10.1002/ccr3.3902
F.A. El-Gohary, G. Kamel, Ecol. Eng. 94 (2016) 268–274.
doi: 10.1016/j.ecoleng.2016.05.074
W.H. Leong, N.A.M. Saman, W. Kiatkittipong, et al., Fuel 313 (2022) 123052.
doi: 10.1016/j.fuel.2021.123052
W.H. Leong, S.N.A. Zaine, Y.C. Ho, et al., J. Environ. Manage. 249 (2019) 109384.
doi: 10.1016/j.jenvman.2019.109384
S.N.H.A. Bakar, H.A. Hasan, A.W. Mohammad, et al., J. Clean. Prod. 171 (2018) 1532–1545.
doi: 10.1016/j.jclepro.2017.10.100
Y.Y. Choong, K.W. Chou, I. Norli, Renew. Sustain. Energy Rev. 82 (2018) 2993–3006.
doi: 10.1016/j.rser.2017.10.036
K.S. Khoo, W.Y. Chia, K.W. Chew, P.L. Show, Indian J. Microbiol. 61 (2021) 262–269.
doi: 10.1007/s12088-021-00924-8
A.T. Nair, J. Senthilnathan, S.S. Nagendra, J. Water Process Eng. 28 (2019) 322–330.
doi: 10.1016/j.jwpe.2019.02.017
I. Dogaris, E. Ammar, G.P. Philippidis, World J. Microbiol. Biotechnol. 36 (2020) 1–25.
doi: 10.1007/s11274-019-2775-x
I. Ahmad, S. Chelliapan, N. Othman, N.S. Nasri, S. Krishnan, Desalin. Water Treat. 183 (2020) 268–275.
doi: 10.5004/dwt.2020.25242
M. Lippi, M.B.R.G. Ley, G.P. Mendez, R.A.F.C. Junior, Ciência e Natura 40 (2018) 78.
doi: 10.5902/2179460x35239
T.A. Kurniawan, W.H. Lo, G.Y. Chan, J. Hazardous Mater. 129 (2006) 80–100.
doi: 10.1016/j.jhazmat.2005.08.010
A.P. Peter, K.S. Khoo, K.W. Chew, et al., Environ. Chem. Lett. 19 (2021) 2891–2904.
doi: 10.1007/s10311-021-01219-6
S.S. Chan, K.S. Khoo, K.W. Chew, T.C. Ling, P.L. Show, Bioresour. Technol. 344 (2022) 126159.
doi: 10.1016/j.biortech.2021.126159
N.S.M. Aron, K.S. Khoo, K.W. Chew, et al., J. Water Process Eng. 39 (2021) 101701.
doi: 10.1016/j.jwpe.2020.101701
I. Ahmad, N. Abdullah, I. Koji, A. Yuzir, S. Mohamad, Bull. Chem. React. Eng. Catal. 16 (2021) 413–429.
doi: 10.9767/bcrec.16.2.10616.413-429
Y.K. Choi, H.M. Jang, E. Kan, Biotechnol. Bioprocess Eng. 23 (2018) 333–340.
doi: 10.1007/s12257-018-0094-y
Q. Emparan, Y.S. Jye, M.K. Danquah, R. Harun, J. Water Process Eng. 33 (2020) 101043.
doi: 10.1016/j.jwpe.2019.101043
F. Ghazal, E. Mahdy, M. El-Fattah, et al., Nat. Sci. 16 (2018) 98–104.
doi: 10.7537/marsnsj160318.11
S. Henkanatte-Gedera, T. Selvaratnam, M. Karbakhshravari, et al., Algal Res. 24 (2017) 450–456.
doi: 10.1016/j.algal.2016.08.001
D. Tchinda, S. Henkanatte-Gedera, I. Abeysiriwardana-Arachchige, et al., Algal Res. 42 (2019) 101578.
doi: 10.1016/j.algal.2019.101578
H.B. Hariz, M.S. Takriff, N.H.M. Yasin, M.M. Ba-Abbad, N.I.N.M. Hakimi, J. Water Process Eng. 32 (2019) 100907.
doi: 10.1016/j.jwpe.2019.100907
I. Dogaris, B. Loya, J. Cox, G. Philippidis, Bioresour. Technol. 282 (2019) 18–27.
doi: 10.1016/j.biortech.2019.03.003
I. Ahmad, A. Yuzir, S. Mohamad, K. Iwamoto, N. Abdullah, Role of Microalgae in Sustainable Energy and Environment, in: 2021 IOP Conf. Ser. : Mater. Sci. and Eng., IOP Publishing, vol. 1051, 012059.
J.W.R. Chong, K.S. Khoo, G.Y. Yew, et al., Bioresour. Technol. 342 (2021) 125947.
doi: 10.1016/j.biortech.2021.125947
N. Abdullah, A. Yuzir, T.P. Curtis, A. Yahya, Z. Ujang, Bioresour. Technol. 127 (2013) 181–187.
doi: 10.1016/j.biortech.2012.09.047
T.E. Seiple, A.M. Coleman, R.L. Skaggs, J. Environ. Manage. 197 (2017) 673–680.
doi: 10.1016/j.jenvman.2017.04.032
S.F. Mohsenpour, S. Hennige, N. Willoughby, A. Adeloye, T. Gutierrez, Sci. Total Environ. 752 (2021) 142168.
doi: 10.1016/j.scitotenv.2020.142168
B. Porto, A.L. Gonçalves, A.F. Esteves, et al., Chem. Eng. J. 413 (2021) 127546.
doi: 10.1016/j.cej.2020.127546
C. Viegas, C. Nobre, A. Mota, et al., J. Environ. Chem. Eng. 9 (2021) 105187.
doi: 10.1016/j.jece.2021.105187
A.L.P. Paiva, D.G. da Fonseca Silva, E. Couto, J. Environ. Chem. Eng. 9 (2021) 105952.
doi: 10.1016/j.jece.2021.105952
M. Martínez-Ruiz, A. Molina-Vázquez, B. Santiesteban-Romero, et al., Environ. Pollut. 306 (2022) 119422.
doi: 10.1016/j.envpol.2022.119422
D. Hu, J. Zhang, R. Chu, et al., Bioresour. Technol. 342 (2021) 126003.
doi: 10.1016/j.biortech.2021.126003
L. de Souza, A.S. Lima, Â. P. Matos, et al., J. Clean. Prod. 303 (2021) 127094.
doi: 10.1016/j.jclepro.2021.127094
J.S.R. Fernando, M. Premaratne, D.M.S.D. Dinalankara, G.L.N.J. Perera, T.U. Ariyadasa, J. Environ. Chem. Eng. 9 (2021) 105375.
doi: 10.1016/j.jece.2021.105375
A. Karim, M.A. Islam, Z.B. Khalid, et al., Renew. Energ. 176 (2021) 106–114.
doi: 10.1016/j.renene.2021.05.055
A.F.M. Udaiyappan, H.A. Hasan, M.S. Takriff, et al., J. Clean. Prod. 294 (2021) 126295.
doi: 10.1016/j.jclepro.2021.126295
W.Y. Chia, Y.Y. Chong, K.W. Chew, et al., J. Environ. Chem. Eng. 8 (2020) 104519.
doi: 10.1016/j.jece.2020.104519
K.S. Khoo, K.W. Chew, G.Y. Yew, et al., Bioresour. Technol. 304 (2020) 122996.
doi: 10.1016/j.biortech.2020.122996
N.S. Mat Aron, K.S. Khoo, K.W. Chew, et al., Int. J. Energy Res. 44 (2020) 9266–9282.
doi: 10.1002/er.5557
H.R. Lim, K.S. Khoo, K.W. Chew, et al., Environ. Pollut. 284 (2021) 117492.
doi: 10.1016/j.envpol.2021.117492
J.Y. Yong, K.W. Chew, K.S. Khoo, P.L. Show, J.S. Chang, Biotechnol. Adv. 47 (2021) 107684.
doi: 10.1016/j.biotechadv.2020.107684
K.W. Chew, K.S. Khoo, H.T. Foo, et al., Chemosphere 268 (2021) 129322.
doi: 10.1016/j.chemosphere.2020.129322
J. Xu, X. Fan, X. Zhang, et al., PLoS One 7 (2012) e37438.
doi: 10.1371/journal.pone.0037438
R. Whitton, A. Le Mével, M. Pidou, et al., Water Res. 91 (2016) 371–378.
doi: 10.1016/j.watres.2015.12.054
R.S. Al-Zuhair Surkatti, Environ. Sci. Pollut. Res. 25 (2018) 33936–33956.
doi: 10.1007/s11356-018-3450-8
S. Perumal, A. Thirunavukkarasu, P. Pachiappan, Advances in Marine and Brackishwater Aquaculture, 1st ed., Springer, New Delhi, 2015.
S. Shah, A. Ahmad, M. Othman, M. Abdullah, Int. J. Green Energy 13 (2016) 200–207.
doi: 10.1080/15435075.2014.938340
H. Kamyab, M.F.M. Din, A. Keyvanfar, et al., Energy Procedia 75 (2015) 2400–2408.
doi: 10.1016/j.egypro.2015.07.190
H. Kamyab, M.F. Md Din, C.T. Lee, et al., Desalin. Water Treat. 55 (2015) 3737–3749.
doi: 10.1080/19443994.2014.957943
M.A. Nur, G. Garcia, P. Boelen, A.G. Buma, J. Appl. Phycol. 33 (2021) 901–915.
doi: 10.1007/s10811-020-02341-8
Y. Li, M. Horsman, B. Wang, N. Wu, C.Q. Lan, Appl. Microbiol. Biotechnol. 81 (2008) 629–636.
doi: 10.1007/s00253-008-1681-1
J. Gao, V. Oloibiri, M. Chys, et al., Rev. Environ. Sci. Biotechnol. 14 (2015) 93–122.
doi: 10.1007/s11157-014-9349-z
Q. Liao, H.X. Chang, Q. Fu, et al., Bioresour. Technol. 250 (2018) 583–590.
doi: 10.1016/j.biortech.2017.11.086
W.Y. Cheah, P.L. Show, J.S. Chang, T.C. Ling, J.C. Juan, Bioresour. Technol. 184 (2015) 190–201.
doi: 10.1016/j.biortech.2014.11.026
C. Mukherjee, R. Chowdhury, T. Sutradhar, et al., Algal Res. 19 (2016) 225–236.
doi: 10.1016/j.algal.2016.09.009
H.J. Choi, S.M. Lee, Environ. Eng. Res. 18 (2013) 235–239.
doi: 10.4491/eer.2013.18.4.235
Y. Yang, X. Shi, W. Ballent, B.K. Mayer, Water Environ. Res. 89 (2017) 2122–2135.
doi: 10.2175/106143017X15054988926424
N. Powell, A.N. Shilton, S. Pratt, Y. Chisti, Environ. Sci. Technol. 42 (2008) 5958–5962.
doi: 10.1021/es703118s
S. Ota, M. Yoshihara, T. Yamazaki, et al., Sci. Rep. 6 (2016) 1–11.
doi: 10.1038/s41598-016-0001-8
S.T. Dyhrma, Nutrients and their acquisition: phosphorus physiology in microalgae, in: The physiology of microalgae, Springer, Cham, 2016, pp. 155–183.
F.F. Chu, P.N. Chu, P.J. Cai, et al., Bioresour. Technol. 134 (2013) 341–346.
doi: 10.1016/j.biortech.2013.01.131
Z.T. Khanzada, Biotechnol. Rep. 25 (2020) e00419.
doi: 10.1016/j.btre.2020.e00419
G.M. Tian H.X. Cheng, Preliminary evaluation of a newly isolated microalga Scenedesmus sp. CHX1 for treating landfill leachate, in: Third International Conference on Intelligent System Design and Engineering Applications, 2013, pp. 1057–1060.
E.M. Mustafa, S.M. Phang, W.L. Chu, J. Appl. Phycol. 24 (2012) 953–963.
doi: 10.1007/s10811-011-9716-x
A. Paskuliakova, S. Tonry, N. Touzet, Water Res. 99 (2016) 180–187.
doi: 10.1016/j.watres.2016.04.029
A. Paskuliakova, T. McGowan, S. Tonry, N. Touzet, Ecotoxicol. Environ. Saf. 147 (2018) 622–630.
doi: 10.1016/j.ecoenv.2017.09.010
S.F. Pereira, A.L. Gonçalves, F.C. Moreira, et al., Int. J. Mol. Sci. 17 (2016) 1926.
doi: 10.3390/ijms17111926
L. Lin, G. Chan, B. Jiang, C. Lan, Waste Manag. 27 (2007) 1376–1382.
C.L. Martins, H. Fernandes, R.H. Costa, Bioresour. Technol. 147 (2013) 562–568.
doi: 10.1016/j.biortech.2013.08.085
X. Zhao, Y. Zhou, S. Huang, et al., Bioresour. Technol. 156 (2014) 322–328.
doi: 10.1016/j.biortech.2013.12.112
M. El Ouaer, A. Kallel, M. Kasmi, A. Hassen, I. Trabelsi, Arab. J. Geosci. 10 (2017) 1–9.
doi: 10.1007/s12517-016-2714-1
N. Bordoloi, J. Tiwari, S. Kumar, J. Korstad, K. Bauddh, Efficiency of algae for heavy metal removal, bioenergy production, and carbon sequestration, in: Emerging Eco-friendly Green Technologies for Wastewater Treatment, Springer, Singapore, 2020, pp. 77–101.
K.A. Salam, Biofuel Res. J. 6 (2019) 948.
doi: 10.18331/brj2019.6.2.2
M. Chugh, L. Kumar, D. Bhardwaj, N. Bharadvaja, Bioaccumulation and detoxification of heavy metals: an insight into the mechanism, in: Development in Wastewater Treatment Research and Processes, Elsevier, 2022, pp. 243–264.
R.A. Dar, N. Sharma, K. Kaur, U.G. Phutela, Feasibility of microalgal technologies in pathogen removal from wastewater, in: Application of Microalgae in Wastewater Treatment, Springer, Cham, 2019, pp. 237–268.
M. Mezzari, J. Prandini, J.D. Kich, M.B. da Silva, J. Bioremediat. Biodegrad. 8 (2017) 1000379.
E. Ardal, Phycoremediation of Pesticides Using Microalgae, Swedish University of Agricultural Sciences, Master's Thesis, 2014, pp. 1–40.
L. Brennan, P. Owende, Renew. Sust. Energ. Rev. 14 (2010) 557–577.
doi: 10.1016/j.rser.2009.10.009
I. Ahmad, N. Abdullah, I. Koji, A. Yuzir, S.E. Muhammad, Evolution of Photobioreactors: a Review based on Microalgal Perspective, in: 2021 IOP Conf. Ser. : Mater. Sci. and Eng, IOP Publishing, vol. 1142, 012004.
P.M. Schenk, S.R. Thomas-Hall, E. Stephens, et al., Bioenergy Res. 1 (2008) 20–43.
doi: 10.1007/s12155-008-9008-8
M.K. Lam, K.T. Lee, A.R. Mohamed, Biofuels, Bioprod. Biorefin. 3 (2009) 601–612.
doi: 10.1002/bbb.182
S. Vijaya, M. Ngan, C. May, M. Nik, Am. J. Environ. Sci. 4 (2008) 310–315.
doi: 10.3844/ajessp.2008.310.315
D.L. Sutherland, C. Howard-Williams, M.H. Turnbull, P.A. Broady, R.J. Craggs, Bioresour. Technol. 184 (2015) 222–229.
doi: 10.1016/j.biortech.2014.10.074
A.A. Casazza, M. Rovatti, Desalin. Water Treat. 127 (2018) 71–74.
doi: 10.5004/dwt.2018.22537
H. Chang, Q. Fu, N. Zhong, et al., Bioresour. Technol. 277 (2019) 18–26.
doi: 10.1016/j.biortech.2019.01.027
W.Y. Cheah, P.L. Show, Y.J. Yap, et al., Bioengineered 11 (2020) 61–69.
doi: 10.1080/21655979.2019.1704536
D.Y.Y. Tang, K.S. Khoo, K.W. Chew, et al., Bioresour. Technol. 304 (2020) 122997.
doi: 10.1016/j.biortech.2020.122997
Z. Rasouli, B. Valverde-Pérez, M. D'Este, D. De Francisci, I. Angelidaki, Biochem. Eng. J. 134 (2018) 129–135.
doi: 10.1016/j.bej.2018.03.010
H. Chang, X. Quan, N. Zhong, et al., Bioresour. Technol. 266 (2018) 374–381.
doi: 10.1016/j.biortech.2018.06.077
A. Hernández-García, S.B. Velásquez-Orta, E. Novelo, et al., Ecotoxicol. Environ. Saf. 174 (2019) 435–444.
doi: 10.1016/j.ecoenv.2019.02.052
H.O. Tighiri, E.A. Erkurt, Bioresour. Technol. 286 (2019) 121396.
doi: 10.1016/j.biortech.2019.121396
T. Mahlia, M. Abdulmuin, T. Alamsyah, D. Mukhlishien, Energy Convers. Manag. 42 (2001) 2109–2118.
doi: 10.1016/S0196-8904(00)00166-7
S.A. Khan, M.Z. Hussain, S. Prasad, U. Banerjee, Renew. Sust. Energ. Rev. 139 (2009) 2361–2372.
S. Li, X. Li, S.H. Ho, Chemosphere (2021) 132863.
G.G. Satpati, R. Pal, Photosynthesis in algae, in: Applied Algal Biotechnology, Recent Trends in Biotechnology, Nova Science Publishers Incorporated, 2020.
C. Yoo, S.Y. Jun, J.Y. Lee, C.Y. Ahn, H.M. Oh, Bioresour. Technol. 101 (2010) S71–S74.
doi: 10.1016/j.biortech.2009.03.030
M.M.A. Nur, A.G. Buma, Waste Biomass Valori. 10 (2019) 2079–2097.
doi: 10.1007/s12649-018-0256-3
S. Sapie, S. Jumali, S. Mustaffha, D. Pebrian, Analysis of POME Discharge Quality from Different Mill in Perak, Malaysia: a case study, in: 2019 IOP Conf. Ser. : Earth and Environ. Sci, IOP Publishing, vol. 327, 012022.
K. Rambabu, A. Thanigaivelan, G. Bharath, et al., Chemosphere 268 (2021) 128809.
doi: 10.1016/j.chemosphere.2020.128809
K.S. Khoo, S.Y. Lee, C.W. Ooi, et al., Bioresour. Technol. 288 (2019) 121606.
doi: 10.1016/j.biortech.2019.121606
M. Giampietro, Ecol. Econ. 162 (2019) 143–156.
doi: 10.1016/j.ecolecon.2019.05.001
I. Ahmad, N. Abdullah, K. Iwamoto, A. Yuzir, Chem. Eng. Trans. 89 (2021) 391–396.
Y. Torres-Tiji, F.J. Fields, S.P. Mayfield, Biotechnol. Adv. 41 (2020) 107536.
doi: 10.1016/j.biotechadv.2020.107536
Z. Gojkovic, R.H. Lindberg, M. Tysklind, C. Funk, Ecotoxicol. Environ. Saf. 170 (2019) 644–656.
doi: 10.1016/j.ecoenv.2018.12.032
H. Chowdhury, B. Loganathan, Curr. Opin. Green Sustain. Chem. 20 (2019) 39–44.
doi: 10.1016/j.cogsc.2019.09.003
S. Price, U. Kuzhiumparambil, M. Pernice, P.J. Ralph, J. Environ. Chem. Eng. 8 (2020) 104007.
doi: 10.1016/j.jece.2020.104007
D. Calahan, D. Blersch, W. Adey, Ecol. Eng. 85 (2015) 275–282.
doi: 10.1016/j.ecoleng.2015.10.014
P. Chiaiese, G. Corrado, G. Colla, M.C. Kyriacou, Y. Rouphael, Front. Plant Sci. 9 (2018) 1782.
doi: 10.3389/fpls.2018.01782
H. Karan, C. Funk, M. Grabert, M. Oey, B. Hankamer, Trends Plant Sci. 24 (2019) 237–249.
doi: 10.1016/j.tplants.2018.11.010
J. Yarnold, H. Karan, M. Oey, B. Hankamer, Trends Plant Sci. 24 (2019) 959–970.
doi: 10.1016/j.tplants.2019.06.005
W.Y. Chia, D.Y.Y. Tang, K.S. Khoo, A.N.K. Lup, K.W. Chew, Environ. Sci. Ecotechnol. 4 (2020) 100065.
doi: 10.1016/j.ese.2020.100065
W.Y. Cheah, T.C. Ling, P.L. Show, et al., Appl. Energy 179 (2016) 609–625.
doi: 10.1016/j.apenergy.2016.07.015
N.A. Idris, S.K. Loh, H.L.N. Lau, et al., J. Oil Palm Res. 29 (2017) 291–299.
doi: 10.21894/jopr.2017.2902.13
N.A. Osman, F.A. Ujang, A.M. Roslan, M.F. Ibrahim, M.A. Hassan, Sci. Rep. 10 (2020) 1–10.
doi: 10.1038/s41598-019-56847-4
R. Serena, B. Filippo, S. Marinello, Life cycle assessment of a biofuel production system from algal biomass cultivated in photobioreactors, in: 28th European Biomass Conference and Exhibition, ETA-Florence Renewable Energies, 2020, pp. 837–844.
M.A. Nur, World Appl. Sci. J. 31 (2014) 959–967.
M.A. Nur, H. Hadiyanto, J. Eng. Technol. Sci. 4 (2015) 487–497.
doi: 10.5614/j.eng.technol.sci.2015.47.5.2
E.V. Putri, M.F.M. Din, Z. Ahmed, H. Jamaluddin, S. Chelliapan, Investigation of microalgae for high lipid content using palm oil mill effluent (Pome) as carbon source, in: International conference on environment and industrial innovation, 12, IPCBEE, 2011, pp. 85–89.
N. Selmani, M.E. Mirghani, M.Z. Alam, Study the growth of microalgae in palm oil mill effluent waste water, in: 2013 IOP Conf. Ser. : Earth and Environ. Sci, IOP Publishing, vol. 16, 012006.
S. Dawood, M. Ahmad, M. Zafar, et al., Chemosphere 291 (2022) 132780.
doi: 10.1016/j.chemosphere.2021.132780
M.K. Lam, K.T. Lee, A.R. Mohamed, Biotechnol. Adv. 28 (2010) 500–518.
doi: 10.1016/j.biotechadv.2010.03.002
S. Nawaz, M. Ahmad, S. Asif, et al., Bioresour. Technol. 343 (2022) 126068.
doi: 10.1016/j.biortech.2021.126068
R. Harun, M. Singh, G.M. Forde, M.K. Danquah, Renew. Sust. Energ. Rev. 14 (2010) 1037–1047.
doi: 10.1016/j.rser.2009.11.004
K.W. Chew, J.Y. Yap, P.L. Show, et al., Bioresour. Technol. 229 (2017) 53–62.
doi: 10.4103/0974-2700.201587
A. Ahmad, F. Banat, H. Alsafar, S.W. Hasan, Sci. Total Environ. 806 (2022) 150585.
doi: 10.1016/j.scitotenv.2021.150585
W.S. Chai, W.G. Tan, H.S.H. Munawaroh, et al., Environ. Pollut. 269 (2021) 116236.
doi: 10.1016/j.envpol.2020.116236
W.L. Chu, S.M. Phang, Biosorption of heavy metals and dyes from industrial effluents by microalgae, in: Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment, Springer, Singapore, 2019, pp. 599–634.
S.D. Kumar, P. Santhanam, R. Nandakumar, et al., Afr. J. Biotechnol. 13 (2014).
H.E.S. Touliabah, M.M. El-Sheekh, M.M. Ismail, H. El-Kassas, Molecules 27 (2022) 1141.
doi: 10.3390/molecules27031141
R. Kalra, S. Gaur, M. Goel, J. Water Process Eng. 40 (2021) 101794.
doi: 10.1016/j.jwpe.2020.101794
A. Fallahi, F. Rezvani, H. Asgharnejad, et al., Chemosphere 272 (2021) 129878.
doi: 10.1016/j.chemosphere.2021.129878
C. Zhang, S.H. Ho, A. Li, L. Fu, D. Zhou, J. Water Process Eng. 39 (2021) 101739.
doi: 10.1016/j.jwpe.2020.101739
W. Qu, C. Zhang, X. Chen, S.H. Ho, J. Hazard. Mater. 418 (2021) 126264.
doi: 10.1016/j.jhazmat.2021.126264
K. Okurowska, E. Karunakaran, A. Al-Farttoosy, N. Couto, J. Pandhal, Bioresour. Technol. 319 (2021) 124246.
doi: 10.1016/j.biortech.2020.124246
A.T. Nair, S. Nagendra, Chlorella Pyrenoidosa mediated phycoremediation of landfill leachate, in: International Conference Impact of Global Atmospheric Changes on Natural Resources, 2018, pp. 65–68.
Y. Gou, J. Yang, F. Fang, J. Guo, H. Ma, Environ. Technol. 41 (2020) 400–410.
doi: 10.1080/09593330.2018.1499812
T. Biswas, S. Bhushan, S.K. Prajapati, S.R. Chaudhuri, J. Environ. Manage. 286 (2021) 112196.
doi: 10.1016/j.jenvman.2021.112196
A. Brar, M. Kumar, V. Vivekanand, N. Pareek, Int. J. Environ. Sci. Technol. 16 (2019) 7757–7768.
doi: 10.1007/s13762-018-2133-9
W. Zhou, Z. Wang, J. Xu, L. Ma, J. Biosci. Bioeng. 126 (2018) 644–648.
doi: 10.1016/j.jbiosc.2018.05.006
A. Pandey, S. Srivastava, S. Kumar, Biomass Bioenerg. 128 (2019) 105319.
doi: 10.1016/j.biombioe.2019.105319
A. Pandey, S. Srivastava, S. Kumar, Bioresour. Technol. 293 (2019) 121998.
doi: 10.1016/j.biortech.2019.121998
S. Hena, H. Znad, K. Heong, S. Judd, Water Res. 128 (2018) 267–277.
doi: 10.1016/j.watres.2017.10.057
Q. Emparan, R. Harun, M. Danquah, Appl. Ecol. Environ. Res. 17 (2019) 889–915.
doi: 10.15666/aeer/1701_889915
H.J. Choi, Environ. Eng. Res. 21 (2016) 393–400.
doi: 10.4491/eer.2015.151
S. Huo, J. Liu, F. Zhu, et al., Bioresour. Technol. 314 (2020) 123718.
doi: 10.1016/j.biortech.2020.123718
B. Molinuevo-Salces, A. Mahdy, M. Ballesteros, C. González-Fernández, Renew. Energ. 96 (2016) 1103–1110.
doi: 10.1016/j.renene.2016.01.090
H.Y. Ren, J.N. Zhu, F. Kong, et al., Energy Convers. Manag. 180 (2019) 680–688.
doi: 10.1016/j.enconman.2018.11.028
M. Tossavainen, K. Lahti, M. Edelmann, et al., J. Appl. Phycol. 31 (2019) 1753–1763.
doi: 10.1007/s10811-018-1689-6
K.L. Yu, P.L. Show, H.C. Ong, et al., Energy Convers. Manag. 150 (2017) 1–13.
doi: 10.1016/j.enconman.2017.07.060
M. Montingelli, S. Tedesco, A. Olabi, Renew. Sust. Energ. Rev. 43 (2015) 961–972.
doi: 10.1016/j.rser.2014.11.052
F. Wollmann, S. Dietze, J.U. Ackermann, et al., Eng. Life Sci. 19 (2019) 860–871.
doi: 10.1002/elsc.201900071
Y. Nurdogan, W.J. Oswald, Water Sci. Technol. 31 (1995) 33–43.
doi: 10.2166/wst.1995.0453
F. Green, T. Lundquist, N. Quinn, et al., Water Sci. Technol. 48 (2003) 299–305.
doi: 10.2166/wst.2003.0134
L. Moreno-Garcia, K. Adjallé, S. Barnabé, G. Raghavan, Renew. Sust. Energ. Rev. 76 (2017) 493–506.
doi: 10.1016/j.rser.2017.03.024
S. Jayakumar, M.M. Yusoff, M.H.A. Rahim, G.P. Maniam, N. Govindan, Renew. Sust. Energ. Rev. 72 (2017) 33–47.
doi: 10.1016/j.rser.2017.01.002
J. Van Wagenen, M.L. Pape, I. Angelidaki, Water Res. 75 (2015) 301–311.
doi: 10.1016/j.watres.2015.02.022
A. Beuckels, E. Smolders, K. Muylaert, Water Res. 77 (2015) 98–106.
doi: 10.1016/j.watres.2015.03.018
Y. Su, K. Song, P. Zhang, et al., Renew. Sust. Energ. Rev. 74 (2017) 402–411.
doi: 10.1016/j.rser.2016.12.078
N.A. Sasongko, R. Noguchi, T. Ahamed, Energy 159 (2018) 1148–1160.
doi: 10.1016/j.energy.2018.03.144
Feng-Ming Lin , E. Neil G. Marsh , Xiaoxia Nina Lin . Recent progress in hydrocarbon biofuel synthesis: Pathways and enzymes. Chinese Chemical Letters, 2015, 26(4): 431-434. doi: 10.1016/j.cclet.2015.03.018
Jie Fu , George Z. Kyzas . Wet air oxidation for the decolorization of dye wastewater: An overview of the last two decades. Chinese Journal of Catalysis, 2014, 35(1): 1-7. doi: 10.1016/S1872-2067(12)60724-4
Yuhao Chu , Chaofan Zhang , Xi Chen , Xue Li , Nanqi Ren , Shih-Hsin Ho . Multistage defense response of microalgae exposed to pharmaceuticals in wastewater. Chinese Chemical Letters, 2023, 34(4): 107727-1-107727-6. doi: 10.1016/j.cclet.2022.08.007
Hui Wang , Junlei Yang , Penghui Cao , Ning Guo , Yuhao Li , Yuefeng Zhao , Shuang Zhou , Ruizhuo Ouyang , Yuqing Miao . Functionalization of bismuth sulfide nanomaterials for their application in cancer theranostics. Chinese Chemical Letters, 2020, 31(12): 3015-3026. doi: 10.1016/j.cclet.2020.05.003
Wu Yinhu , Yu Yin , Hu Hongying . The “Fingerprint” of a freshwater microalga Scenedesmus sp. LX1: Visualizing the composition of its soluble algal products. Chinese Chemical Letters, 2019, 30(5): 1126-1128. doi: 10.1016/j.cclet.2019.02.034
Qiuying Xia , Yu Cai , Wei Liu , Jinshi Wang , Chuanzhi Wu , Feng Zan , Jing Xu , Hui Xia . Direct Recycling of All-Solid-State Thin Film Lithium Batteries with Lithium Anode Failure. Acta Physico-Chimica Sinica, 2023, 39(8): 2212051-0. doi: 10.3866/PKU.WHXB202212051
Xiaobo Guo , Ao Xia , Wuyuan Zhang , Feng Li , Yun Huang , Xianqing Zhu , Xun Zhu , Qiang Liao . Anaerobic environment as an efficient approach to improve the photostability of fatty acid photodecarboxylase. Chinese Chemical Letters, 2023, 34(4): 107875-1-107875-4. doi: 10.1016/j.cclet.2022.107875
Anders B. Laursen , Jens Sehested , Ib Chorkendorff , Peter C. K. Vesborg . Availability of elements for heterogeneous catalysis: Predicting the industrial viability of novel catalysts. Chinese Journal of Catalysis, 2018, 39(1): 16-26. doi: 10.1016/S1872-2067(17)62979-6
Changzhi Li , Haile Cai , Bo Zhang , Weizhen Li , Guangxian Pei , Tao Dai , Aiqin Wang , Tao Zhang . Tailored one-pot production of furan-based fuels from fructose in an ionic liquid biphasic solvent system. Chinese Journal of Catalysis, 2015, 36(9): 1638-1646. doi: 10.1016/S1872-2067(15)60927-5
JIA Chen-Zhong , WANG Yan-Xing , ZHANG Cai-Xiang . Variation Characteristics of 3D-Excition Emission Matrix Fluorescence Spectra of Dissolved Organic Matter from Landfill Leachate during Photocatalytic Degradation. Chinese Journal of Analytical Chemistry, 2012, 40(11): 1740-1746. doi: 10.3724/SP.J.1096.2012.20409
Senhai Zeng , Fangjun Chen , Zihan Chen , Kin Shing Chan . 工作细菌——胃中的酸碱攻防战. University Chemistry, 2021, 36(10): 2105024-0. doi: 10.3866/PKU.DXHX202105024
Xinglong Dong , Song Xue , Jinling Zhang , Wei Huang , Jiannan Zhou , Zhaoan Chen , Danhua Yuan , Yunpeng Xu , Zhongmin Liu . The production of light olefins by catalytic cracking of the microalga Isochrysis zhanjiangensis over a modified ZSM-5 catalyst. Chinese Journal of Catalysis, 2014, 35(5): 655-662. doi: 10.1016/S1872-2067(14)60026-7
MA Hao , LONG Jin-Xing , WANG Fu-Rong , WANG Le-Fu , LI Xue-Hui . Conversion of Cellulose to Butyl Levulinate in Bio-Butanol Medium Catalyzed by Acidic Ionic Liquids. Acta Physico-Chimica Sinica, 2015, 31(5): 973-979. doi: 10.3866/PKU.WHXB201503171
Angela Paul Peter , Kit Wayne Chew , Apurav Krishna Koyande , Heli Siti Halimatul Munawaroh , Amit Bhatnagar , Yang Tao , Chihe Sun , Fubao Sun , Zengling Ma , Pau Loke Show . Integrated microalgae culture with food processing waste for wastewater remediation and enhanced biomass productivity. Chinese Chemical Letters, 2023, 34(2): 107721-1-107721-8. doi: 10.1016/j.cclet.2022.08.001
Yunhua Wang , Zhengqi Jiao , Wenlong Li , Sen Zeng , Jiliang Deng , Miao Wang , Lei Ren . Superhydrophilic membrane with photo-Fenton self-cleaning property for effective microalgae anti-fouling. Chinese Chemical Letters, 2023, 34(8): 108020-1-108020-5. doi: 10.1016/j.cclet.2022.108020
Jun Bo WANG , Chun Hao YANG , Xue Ming YAN , Xi Han WU , Yu Yuan XIE . Novel Bone-targeted Agents for Treatment of Osteoporosis. Chinese Chemical Letters, 2005, 16(7): 859-862.
Kui ZHANG , Huai Bin ZHANG , Shou He XIANG , Shang Yuan LIU , He Xuan LI , Fei HE . Selective Dealumination of ZSM-5 by Hydrothermal Treatment. Chinese Chemical Letters, 1998, 9(4): 397-400.
Zhengwen Fang , Xinyu Zhang , Hai Huang , Jun Wu . Exosome based miRNA delivery strategy for disease treatment. Chinese Chemical Letters, 2022, 33(4): 1693-1704. doi: 10.1016/j.cclet.2021.11.050