Citation: Imran Ahmad, Natasha Nabila Binti Ibrahim, Norhayati Abdullah, Iwamoto Koji, Shaza Eva Mohamad, Kuan Shiong Khoo, Wai Yan Cheah, Tau Chuan Ling, Pau Loke Show. Bioremediation strategies of palm oil mill effluent and landfill leachate using microalgae cultivation: An approach contributing towards environmental sustainability[J]. Chinese Chemical Letters, ;2023, 34(5): 107854. doi: 10.1016/j.cclet.2022.107854 shu

Bioremediation strategies of palm oil mill effluent and landfill leachate using microalgae cultivation: An approach contributing towards environmental sustainability

    * Corresponding authors.
    E-mail addresses: mustafwibinqamar@gmail.com (I. Ahmad), kuanshiong.khoo@hotmail.com (K.S. Khoo), pauloke.show@nottingham.edu.my (P.L. Show).
  • Received Date: 24 May 2022
    Revised Date: 8 September 2022
    Accepted Date: 23 September 2022
    Available Online: 29 September 2022

Figures(8)

  • Palm oil mill effluent (POME) is defined as the wastewater that contains high concentrations of organics, nutrients and oil and grease generated from the production process of palm oil. Therefore, proper discharge and management of POME is important to avoid deleterious impact on the environment. In fact, solid waste generation is a precursor for its disposal issues as most of the solid waste generated in developing nations is dumped into landfills. This has led to the threat posed by the generation of landfill leachate (LL). LL is a complex dark coloured liquid consisting of organic matter, inorganic substances, trace elements and xenobiotics. Hence, it is essential to effectively treat the landfill leachate before discharging it to avoid contamination of soil, surface & groundwater bodies. Conventional treatment methods comprises of physical, biological and chemical treatment, however, microalgal-based treatment could also be incorporated. Furthermore, with the benefits offered by microalgae in valorisation, the application of microalgae in POME and leachate treatment as well as biofuel production, is considerably viable. This paper provides an acumen of the microalgae-based treatment of POME and LL, integrated with biofuel production in a systematic and critical manner. The pollutants assimilation from wastewater and CO2 biosequestration are discussed for environmental protection. Cultivation systems for wastewater treatment with simultaneous biomass production and its valorisation, are summarised. The study aims to provide insight to industrial stakeholders on economically viable and environmentally sustainable treatment of wastewaters using microalgae, and eventually contributing to the circular bioeconomy and environmental sustainability.
  • 加载中
    1. [1]

      A.F.M. Udaiyappan, H.A. Hasan, M.S. Takriff, et al., J. Water Process Eng. 35 (2020) 101203.  doi: 10.1016/j.jwpe.2020.101203

    2. [2]

      M.K. Lam, K.T. Lee, Biotechnol. Adv. 29 (2011) 124–141.  doi: 10.1016/j.biotechadv.2010.10.001

    3. [3]

      M.P.O. Board, Overview of the Malaysian Oil Palm Industry 2018, Malaysian Palm Oil Board, 2010.

    4. [4]

      W.Y. Cheah, P.L. Show, J.C. Juan, J.S. Chang, T.C. Ling, Energy Convers. Manag. 174 (2018) 430–438.  doi: 10.1016/j.enconman.2018.08.057

    5. [5]

      W.Y. Cheah, P.L. Show, J.C. Juan, J.S. Chang, T.C. Ling, Energy Convers. Manag. 164 (2018) 188–197.  doi: 10.1016/j.enconman.2018.02.094

    6. [6]

      W.Y. Cheah, P.L. Show, J.C. Juan, J.S. Chang, T.C. Ling, Clean Technol. Environ. Policy. 20 (2018) 2037–2045.  doi: 10.1007/s10098-018-1505-7

    7. [7]

      M.P.O. Board-MPOB, Overview of the Malaysian oil Palm Industry 2009, Ministry of Plantation Industries and Commodities, Malaysia, 2010.

    8. [8]

      H.Z. Nahrul, F.J. Nor, M. Ropandi, A. Astimar, J. Oil Palm Res. 29 (2017) 528–540.

    9. [9]

      K.S. Khoo, X. Tan, P.L. Show, et al., Chem. Biochem. Eng. Q. 34 (2020) 1–24.  doi: 10.15255/cabeq.2019.1703

    10. [10]

      B. Porto, A.L. Goncalves, A.F. Esteves, et al., Chem. Eng. J. 413 (2021) 127546.  doi: 10.1016/j.cej.2020.127546

    11. [11]

      I. Ahmad, N. Abdullah, S. Chelliapan, et al., Effectiveness of Anaerobic Technologies in the Treatment of Landfill Leachate, in: strategies of Sustainable Solid Waste Management, IntechOpen (2020), doi: 10.5772/intechopen.94741.

    12. [12]

      I. Ahmad, N. Abdullah, S. Chelliapan, et al., Mater. Today: Proc. 46 (2021) 1913–1921.  doi: 10.1002/ccr3.3902

    13. [13]

      F.A. El-Gohary, G. Kamel, Ecol. Eng. 94 (2016) 268–274.  doi: 10.1016/j.ecoleng.2016.05.074

    14. [14]

      W.H. Leong, N.A.M. Saman, W. Kiatkittipong, et al., Fuel 313 (2022) 123052.  doi: 10.1016/j.fuel.2021.123052

    15. [15]

      W.H. Leong, S.N.A. Zaine, Y.C. Ho, et al., J. Environ. Manage. 249 (2019) 109384.  doi: 10.1016/j.jenvman.2019.109384

    16. [16]

      S.N.H.A. Bakar, H.A. Hasan, A.W. Mohammad, et al., J. Clean. Prod. 171 (2018) 1532–1545.  doi: 10.1016/j.jclepro.2017.10.100

    17. [17]

      Y.Y. Choong, K.W. Chou, I. Norli, Renew. Sustain. Energy Rev. 82 (2018) 2993–3006.  doi: 10.1016/j.rser.2017.10.036

    18. [18]

      K.S. Khoo, W.Y. Chia, K.W. Chew, P.L. Show, Indian J. Microbiol. 61 (2021) 262–269.  doi: 10.1007/s12088-021-00924-8

    19. [19]

      A.T. Nair, J. Senthilnathan, S.S. Nagendra, J. Water Process Eng. 28 (2019) 322–330.  doi: 10.1016/j.jwpe.2019.02.017

    20. [20]

      I. Dogaris, E. Ammar, G.P. Philippidis, World J. Microbiol. Biotechnol. 36 (2020) 1–25.  doi: 10.1007/s11274-019-2775-x

    21. [21]

      I. Ahmad, S. Chelliapan, N. Othman, N.S. Nasri, S. Krishnan, Desalin. Water Treat. 183 (2020) 268–275.  doi: 10.5004/dwt.2020.25242

    22. [22]

      M. Lippi, M.B.R.G. Ley, G.P. Mendez, R.A.F.C. Junior, Ciência e Natura 40 (2018) 78.  doi: 10.5902/2179460x35239

    23. [23]

      T.A. Kurniawan, W.H. Lo, G.Y. Chan, J. Hazardous Mater. 129 (2006) 80–100.  doi: 10.1016/j.jhazmat.2005.08.010

    24. [24]

      A.P. Peter, K.S. Khoo, K.W. Chew, et al., Environ. Chem. Lett. 19 (2021) 2891–2904.  doi: 10.1007/s10311-021-01219-6

    25. [25]

      S.S. Chan, K.S. Khoo, K.W. Chew, T.C. Ling, P.L. Show, Bioresour. Technol. 344 (2022) 126159.  doi: 10.1016/j.biortech.2021.126159

    26. [26]

      N.S.M. Aron, K.S. Khoo, K.W. Chew, et al., J. Water Process Eng. 39 (2021) 101701.  doi: 10.1016/j.jwpe.2020.101701

    27. [27]

      I. Ahmad, N. Abdullah, I. Koji, A. Yuzir, S. Mohamad, Bull. Chem. React. Eng. Catal. 16 (2021) 413–429.  doi: 10.9767/bcrec.16.2.10616.413-429

    28. [28]

      Y.K. Choi, H.M. Jang, E. Kan, Biotechnol. Bioprocess Eng. 23 (2018) 333–340.  doi: 10.1007/s12257-018-0094-y

    29. [29]

      Q. Emparan, Y.S. Jye, M.K. Danquah, R. Harun, J. Water Process Eng. 33 (2020) 101043.  doi: 10.1016/j.jwpe.2019.101043

    30. [30]

      F. Ghazal, E. Mahdy, M. El-Fattah, et al., Nat. Sci. 16 (2018) 98–104.  doi: 10.7537/marsnsj160318.11

    31. [31]

      S. Henkanatte-Gedera, T. Selvaratnam, M. Karbakhshravari, et al., Algal Res. 24 (2017) 450–456.  doi: 10.1016/j.algal.2016.08.001

    32. [32]

      D. Tchinda, S. Henkanatte-Gedera, I. Abeysiriwardana-Arachchige, et al., Algal Res. 42 (2019) 101578.  doi: 10.1016/j.algal.2019.101578

    33. [33]

      H.B. Hariz, M.S. Takriff, N.H.M. Yasin, M.M. Ba-Abbad, N.I.N.M. Hakimi, J. Water Process Eng. 32 (2019) 100907.  doi: 10.1016/j.jwpe.2019.100907

    34. [34]

      I. Dogaris, B. Loya, J. Cox, G. Philippidis, Bioresour. Technol. 282 (2019) 18–27.  doi: 10.1016/j.biortech.2019.03.003

    35. [35]

      I. Ahmad, A. Yuzir, S. Mohamad, K. Iwamoto, N. Abdullah, Role of Microalgae in Sustainable Energy and Environment, in: 2021 IOP Conf. Ser. : Mater. Sci. and Eng., IOP Publishing, vol. 1051, 012059.

    36. [36]

      J.W.R. Chong, K.S. Khoo, G.Y. Yew, et al., Bioresour. Technol. 342 (2021) 125947.  doi: 10.1016/j.biortech.2021.125947

    37. [37]

      N. Abdullah, A. Yuzir, T.P. Curtis, A. Yahya, Z. Ujang, Bioresour. Technol. 127 (2013) 181–187.  doi: 10.1016/j.biortech.2012.09.047

    38. [38]

      T.E. Seiple, A.M. Coleman, R.L. Skaggs, J. Environ. Manage. 197 (2017) 673–680.  doi: 10.1016/j.jenvman.2017.04.032

    39. [39]

      S.F. Mohsenpour, S. Hennige, N. Willoughby, A. Adeloye, T. Gutierrez, Sci. Total Environ. 752 (2021) 142168.  doi: 10.1016/j.scitotenv.2020.142168

    40. [40]

      B. Porto, A.L. Gonçalves, A.F. Esteves, et al., Chem. Eng. J. 413 (2021) 127546.  doi: 10.1016/j.cej.2020.127546

    41. [41]

      C. Viegas, C. Nobre, A. Mota, et al., J. Environ. Chem. Eng. 9 (2021) 105187.  doi: 10.1016/j.jece.2021.105187

    42. [42]

      A.L.P. Paiva, D.G. da Fonseca Silva, E. Couto, J. Environ. Chem. Eng. 9 (2021) 105952.  doi: 10.1016/j.jece.2021.105952

    43. [43]

      M. Martínez-Ruiz, A. Molina-Vázquez, B. Santiesteban-Romero, et al., Environ. Pollut. 306 (2022) 119422.  doi: 10.1016/j.envpol.2022.119422

    44. [44]

      D. Hu, J. Zhang, R. Chu, et al., Bioresour. Technol. 342 (2021) 126003.  doi: 10.1016/j.biortech.2021.126003

    45. [45]

      L. de Souza, A.S. Lima, Â. P. Matos, et al., J. Clean. Prod. 303 (2021) 127094.  doi: 10.1016/j.jclepro.2021.127094

    46. [46]

      J.S.R. Fernando, M. Premaratne, D.M.S.D. Dinalankara, G.L.N.J. Perera, T.U. Ariyadasa, J. Environ. Chem. Eng. 9 (2021) 105375.  doi: 10.1016/j.jece.2021.105375

    47. [47]

      A. Karim, M.A. Islam, Z.B. Khalid, et al., Renew. Energ. 176 (2021) 106–114.  doi: 10.1016/j.renene.2021.05.055

    48. [48]

      A.F.M. Udaiyappan, H.A. Hasan, M.S. Takriff, et al., J. Clean. Prod. 294 (2021) 126295.  doi: 10.1016/j.jclepro.2021.126295

    49. [49]

      W.Y. Chia, Y.Y. Chong, K.W. Chew, et al., J. Environ. Chem. Eng. 8 (2020) 104519.  doi: 10.1016/j.jece.2020.104519

    50. [50]

      K.S. Khoo, K.W. Chew, G.Y. Yew, et al., Bioresour. Technol. 304 (2020) 122996.  doi: 10.1016/j.biortech.2020.122996

    51. [51]

      N.S. Mat Aron, K.S. Khoo, K.W. Chew, et al., Int. J. Energy Res. 44 (2020) 9266–9282.  doi: 10.1002/er.5557

    52. [52]

      H.R. Lim, K.S. Khoo, K.W. Chew, et al., Environ. Pollut. 284 (2021) 117492.  doi: 10.1016/j.envpol.2021.117492

    53. [53]

      J.Y. Yong, K.W. Chew, K.S. Khoo, P.L. Show, J.S. Chang, Biotechnol. Adv. 47 (2021) 107684.  doi: 10.1016/j.biotechadv.2020.107684

    54. [54]

      K.W. Chew, K.S. Khoo, H.T. Foo, et al., Chemosphere 268 (2021) 129322.  doi: 10.1016/j.chemosphere.2020.129322

    55. [55]

      J. Xu, X. Fan, X. Zhang, et al., PLoS One 7 (2012) e37438.  doi: 10.1371/journal.pone.0037438

    56. [56]

      R. Whitton, A. Le Mével, M. Pidou, et al., Water Res. 91 (2016) 371–378.  doi: 10.1016/j.watres.2015.12.054

    57. [57]

      R.S. Al-Zuhair Surkatti, Environ. Sci. Pollut. Res. 25 (2018) 33936–33956.  doi: 10.1007/s11356-018-3450-8

    58. [58]

      S. Perumal, A. Thirunavukkarasu, P. Pachiappan, Advances in Marine and Brackishwater Aquaculture, 1st ed., Springer, New Delhi, 2015.

    59. [59]

      S. Shah, A. Ahmad, M. Othman, M. Abdullah, Int. J. Green Energy 13 (2016) 200–207.  doi: 10.1080/15435075.2014.938340

    60. [60]

      H. Kamyab, M.F.M. Din, A. Keyvanfar, et al., Energy Procedia 75 (2015) 2400–2408.  doi: 10.1016/j.egypro.2015.07.190

    61. [61]

      H. Kamyab, M.F. Md Din, C.T. Lee, et al., Desalin. Water Treat. 55 (2015) 3737–3749.  doi: 10.1080/19443994.2014.957943

    62. [62]

      M.A. Nur, G. Garcia, P. Boelen, A.G. Buma, J. Appl. Phycol. 33 (2021) 901–915.  doi: 10.1007/s10811-020-02341-8

    63. [63]

      Y. Li, M. Horsman, B. Wang, N. Wu, C.Q. Lan, Appl. Microbiol. Biotechnol. 81 (2008) 629–636.  doi: 10.1007/s00253-008-1681-1

    64. [64]

      J. Gao, V. Oloibiri, M. Chys, et al., Rev. Environ. Sci. Biotechnol. 14 (2015) 93–122.  doi: 10.1007/s11157-014-9349-z

    65. [65]

      Q. Liao, H.X. Chang, Q. Fu, et al., Bioresour. Technol. 250 (2018) 583–590.  doi: 10.1016/j.biortech.2017.11.086

    66. [66]

      W.Y. Cheah, P.L. Show, J.S. Chang, T.C. Ling, J.C. Juan, Bioresour. Technol. 184 (2015) 190–201.  doi: 10.1016/j.biortech.2014.11.026

    67. [67]

      C. Mukherjee, R. Chowdhury, T. Sutradhar, et al., Algal Res. 19 (2016) 225–236.  doi: 10.1016/j.algal.2016.09.009

    68. [68]

      H.J. Choi, S.M. Lee, Environ. Eng. Res. 18 (2013) 235–239.  doi: 10.4491/eer.2013.18.4.235

    69. [69]

      Y. Yang, X. Shi, W. Ballent, B.K. Mayer, Water Environ. Res. 89 (2017) 2122–2135.  doi: 10.2175/106143017X15054988926424

    70. [70]

      N. Powell, A.N. Shilton, S. Pratt, Y. Chisti, Environ. Sci. Technol. 42 (2008) 5958–5962.  doi: 10.1021/es703118s

    71. [71]

      S. Ota, M. Yoshihara, T. Yamazaki, et al., Sci. Rep. 6 (2016) 1–11.  doi: 10.1038/s41598-016-0001-8

    72. [72]

      S.T. Dyhrma, Nutrients and their acquisition: phosphorus physiology in microalgae, in: The physiology of microalgae, Springer, Cham, 2016, pp. 155–183.

    73. [73]

      F.F. Chu, P.N. Chu, P.J. Cai, et al., Bioresour. Technol. 134 (2013) 341–346.  doi: 10.1016/j.biortech.2013.01.131

    74. [74]

      Z.T. Khanzada, Biotechnol. Rep. 25 (2020) e00419.  doi: 10.1016/j.btre.2020.e00419

    75. [75]

      G.M. Tian H.X. Cheng, Preliminary evaluation of a newly isolated microalga Scenedesmus sp. CHX1 for treating landfill leachate, in: Third International Conference on Intelligent System Design and Engineering Applications, 2013, pp. 1057–1060.

    76. [76]

      E.M. Mustafa, S.M. Phang, W.L. Chu, J. Appl. Phycol. 24 (2012) 953–963.  doi: 10.1007/s10811-011-9716-x

    77. [77]

      A. Paskuliakova, S. Tonry, N. Touzet, Water Res. 99 (2016) 180–187.  doi: 10.1016/j.watres.2016.04.029

    78. [78]

      A. Paskuliakova, T. McGowan, S. Tonry, N. Touzet, Ecotoxicol. Environ. Saf. 147 (2018) 622–630.  doi: 10.1016/j.ecoenv.2017.09.010

    79. [79]

      S.F. Pereira, A.L. Gonçalves, F.C. Moreira, et al., Int. J. Mol. Sci. 17 (2016) 1926.  doi: 10.3390/ijms17111926

    80. [80]

      L. Lin, G. Chan, B. Jiang, C. Lan, Waste Manag. 27 (2007) 1376–1382.

    81. [81]

      C.L. Martins, H. Fernandes, R.H. Costa, Bioresour. Technol. 147 (2013) 562–568.  doi: 10.1016/j.biortech.2013.08.085

    82. [82]

      X. Zhao, Y. Zhou, S. Huang, et al., Bioresour. Technol. 156 (2014) 322–328.  doi: 10.1016/j.biortech.2013.12.112

    83. [83]

      M. El Ouaer, A. Kallel, M. Kasmi, A. Hassen, I. Trabelsi, Arab. J. Geosci. 10 (2017) 1–9.  doi: 10.1007/s12517-016-2714-1

    84. [84]

      N. Bordoloi, J. Tiwari, S. Kumar, J. Korstad, K. Bauddh, Efficiency of algae for heavy metal removal, bioenergy production, and carbon sequestration, in: Emerging Eco-friendly Green Technologies for Wastewater Treatment, Springer, Singapore, 2020, pp. 77–101.

    85. [85]

      K.A. Salam, Biofuel Res. J. 6 (2019) 948.  doi: 10.18331/brj2019.6.2.2

    86. [86]

      M. Chugh, L. Kumar, D. Bhardwaj, N. Bharadvaja, Bioaccumulation and detoxification of heavy metals: an insight into the mechanism, in: Development in Wastewater Treatment Research and Processes, Elsevier, 2022, pp. 243–264.

    87. [87]

      R.A. Dar, N. Sharma, K. Kaur, U.G. Phutela, Feasibility of microalgal technologies in pathogen removal from wastewater, in: Application of Microalgae in Wastewater Treatment, Springer, Cham, 2019, pp. 237–268.

    88. [88]

      M. Mezzari, J. Prandini, J.D. Kich, M.B. da Silva, J. Bioremediat. Biodegrad. 8 (2017) 1000379.

    89. [89]

      E. Ardal, Phycoremediation of Pesticides Using Microalgae, Swedish University of Agricultural Sciences, Master's Thesis, 2014, pp. 1–40.

    90. [90]

      L. Brennan, P. Owende, Renew. Sust. Energ. Rev. 14 (2010) 557–577.  doi: 10.1016/j.rser.2009.10.009

    91. [91]

      I. Ahmad, N. Abdullah, I. Koji, A. Yuzir, S.E. Muhammad, Evolution of Photobioreactors: a Review based on Microalgal Perspective, in: 2021 IOP Conf. Ser. : Mater. Sci. and Eng, IOP Publishing, vol. 1142, 012004.

    92. [92]

      P.M. Schenk, S.R. Thomas-Hall, E. Stephens, et al., Bioenergy Res. 1 (2008) 20–43.  doi: 10.1007/s12155-008-9008-8

    93. [93]

      M.K. Lam, K.T. Lee, A.R. Mohamed, Biofuels, Bioprod. Biorefin. 3 (2009) 601–612.  doi: 10.1002/bbb.182

    94. [94]

      S. Vijaya, M. Ngan, C. May, M. Nik, Am. J. Environ. Sci. 4 (2008) 310–315.  doi: 10.3844/ajessp.2008.310.315

    95. [95]

      D.L. Sutherland, C. Howard-Williams, M.H. Turnbull, P.A. Broady, R.J. Craggs, Bioresour. Technol. 184 (2015) 222–229.  doi: 10.1016/j.biortech.2014.10.074

    96. [96]

      A.A. Casazza, M. Rovatti, Desalin. Water Treat. 127 (2018) 71–74.  doi: 10.5004/dwt.2018.22537

    97. [97]

      H. Chang, Q. Fu, N. Zhong, et al., Bioresour. Technol. 277 (2019) 18–26.  doi: 10.1016/j.biortech.2019.01.027

    98. [98]

      W.Y. Cheah, P.L. Show, Y.J. Yap, et al., Bioengineered 11 (2020) 61–69.  doi: 10.1080/21655979.2019.1704536

    99. [99]

      D.Y.Y. Tang, K.S. Khoo, K.W. Chew, et al., Bioresour. Technol. 304 (2020) 122997.  doi: 10.1016/j.biortech.2020.122997

    100. [100]

      Z. Rasouli, B. Valverde-Pérez, M. D'Este, D. De Francisci, I. Angelidaki, Biochem. Eng. J. 134 (2018) 129–135.  doi: 10.1016/j.bej.2018.03.010

    101. [101]

      H. Chang, X. Quan, N. Zhong, et al., Bioresour. Technol. 266 (2018) 374–381.  doi: 10.1016/j.biortech.2018.06.077

    102. [102]

      A. Hernández-García, S.B. Velásquez-Orta, E. Novelo, et al., Ecotoxicol. Environ. Saf. 174 (2019) 435–444.  doi: 10.1016/j.ecoenv.2019.02.052

    103. [103]

      H.O. Tighiri, E.A. Erkurt, Bioresour. Technol. 286 (2019) 121396.  doi: 10.1016/j.biortech.2019.121396

    104. [104]

      T. Mahlia, M. Abdulmuin, T. Alamsyah, D. Mukhlishien, Energy Convers. Manag. 42 (2001) 2109–2118.  doi: 10.1016/S0196-8904(00)00166-7

    105. [105]

      S.A. Khan, M.Z. Hussain, S. Prasad, U. Banerjee, Renew. Sust. Energ. Rev. 139 (2009) 2361–2372.

    106. [106]

      S. Li, X. Li, S.H. Ho, Chemosphere (2021) 132863.

    107. [107]

      G.G. Satpati, R. Pal, Photosynthesis in algae, in: Applied Algal Biotechnology, Recent Trends in Biotechnology, Nova Science Publishers Incorporated, 2020.

    108. [108]

      C. Yoo, S.Y. Jun, J.Y. Lee, C.Y. Ahn, H.M. Oh, Bioresour. Technol. 101 (2010) S71–S74.  doi: 10.1016/j.biortech.2009.03.030

    109. [109]

      M.M.A. Nur, A.G. Buma, Waste Biomass Valori. 10 (2019) 2079–2097.  doi: 10.1007/s12649-018-0256-3

    110. [110]

      S. Sapie, S. Jumali, S. Mustaffha, D. Pebrian, Analysis of POME Discharge Quality from Different Mill in Perak, Malaysia: a case study, in: 2019 IOP Conf. Ser. : Earth and Environ. Sci, IOP Publishing, vol. 327, 012022.

    111. [111]

      K. Rambabu, A. Thanigaivelan, G. Bharath, et al., Chemosphere 268 (2021) 128809.  doi: 10.1016/j.chemosphere.2020.128809

    112. [112]

      K.S. Khoo, S.Y. Lee, C.W. Ooi, et al., Bioresour. Technol. 288 (2019) 121606.  doi: 10.1016/j.biortech.2019.121606

    113. [113]

      M. Giampietro, Ecol. Econ. 162 (2019) 143–156.  doi: 10.1016/j.ecolecon.2019.05.001

    114. [114]

      I. Ahmad, N. Abdullah, K. Iwamoto, A. Yuzir, Chem. Eng. Trans. 89 (2021) 391–396.

    115. [115]

      Y. Torres-Tiji, F.J. Fields, S.P. Mayfield, Biotechnol. Adv. 41 (2020) 107536.  doi: 10.1016/j.biotechadv.2020.107536

    116. [116]

      Z. Gojkovic, R.H. Lindberg, M. Tysklind, C. Funk, Ecotoxicol. Environ. Saf. 170 (2019) 644–656.  doi: 10.1016/j.ecoenv.2018.12.032

    117. [117]

      H. Chowdhury, B. Loganathan, Curr. Opin. Green Sustain. Chem. 20 (2019) 39–44.  doi: 10.1016/j.cogsc.2019.09.003

    118. [118]

      S. Price, U. Kuzhiumparambil, M. Pernice, P.J. Ralph, J. Environ. Chem. Eng. 8 (2020) 104007.  doi: 10.1016/j.jece.2020.104007

    119. [119]

      D. Calahan, D. Blersch, W. Adey, Ecol. Eng. 85 (2015) 275–282.  doi: 10.1016/j.ecoleng.2015.10.014

    120. [120]

      P. Chiaiese, G. Corrado, G. Colla, M.C. Kyriacou, Y. Rouphael, Front. Plant Sci. 9 (2018) 1782.  doi: 10.3389/fpls.2018.01782

    121. [121]

      H. Karan, C. Funk, M. Grabert, M. Oey, B. Hankamer, Trends Plant Sci. 24 (2019) 237–249.  doi: 10.1016/j.tplants.2018.11.010

    122. [122]

      J. Yarnold, H. Karan, M. Oey, B. Hankamer, Trends Plant Sci. 24 (2019) 959–970.  doi: 10.1016/j.tplants.2019.06.005

    123. [123]

      W.Y. Chia, D.Y.Y. Tang, K.S. Khoo, A.N.K. Lup, K.W. Chew, Environ. Sci. Ecotechnol. 4 (2020) 100065.  doi: 10.1016/j.ese.2020.100065

    124. [124]

      W.Y. Cheah, T.C. Ling, P.L. Show, et al., Appl. Energy 179 (2016) 609–625.  doi: 10.1016/j.apenergy.2016.07.015

    125. [125]

      N.A. Idris, S.K. Loh, H.L.N. Lau, et al., J. Oil Palm Res. 29 (2017) 291–299.  doi: 10.21894/jopr.2017.2902.13

    126. [126]

      N.A. Osman, F.A. Ujang, A.M. Roslan, M.F. Ibrahim, M.A. Hassan, Sci. Rep. 10 (2020) 1–10.  doi: 10.1038/s41598-019-56847-4

    127. [127]

      R. Serena, B. Filippo, S. Marinello, Life cycle assessment of a biofuel production system from algal biomass cultivated in photobioreactors, in: 28th European Biomass Conference and Exhibition, ETA-Florence Renewable Energies, 2020, pp. 837–844.

    128. [128]

      M.A. Nur, World Appl. Sci. J. 31 (2014) 959–967.

    129. [129]

      M.A. Nur, H. Hadiyanto, J. Eng. Technol. Sci. 4 (2015) 487–497.  doi: 10.5614/j.eng.technol.sci.2015.47.5.2

    130. [130]

      E.V. Putri, M.F.M. Din, Z. Ahmed, H. Jamaluddin, S. Chelliapan, Investigation of microalgae for high lipid content using palm oil mill effluent (Pome) as carbon source, in: International conference on environment and industrial innovation, 12, IPCBEE, 2011, pp. 85–89.

    131. [131]

      N. Selmani, M.E. Mirghani, M.Z. Alam, Study the growth of microalgae in palm oil mill effluent waste water, in: 2013 IOP Conf. Ser. : Earth and Environ. Sci, IOP Publishing, vol. 16, 012006.

    132. [132]

      S. Dawood, M. Ahmad, M. Zafar, et al., Chemosphere 291 (2022) 132780.  doi: 10.1016/j.chemosphere.2021.132780

    133. [133]

      M.K. Lam, K.T. Lee, A.R. Mohamed, Biotechnol. Adv. 28 (2010) 500–518.  doi: 10.1016/j.biotechadv.2010.03.002

    134. [134]

      S. Nawaz, M. Ahmad, S. Asif, et al., Bioresour. Technol. 343 (2022) 126068.  doi: 10.1016/j.biortech.2021.126068

    135. [135]

      R. Harun, M. Singh, G.M. Forde, M.K. Danquah, Renew. Sust. Energ. Rev. 14 (2010) 1037–1047.  doi: 10.1016/j.rser.2009.11.004

    136. [136]

      K.W. Chew, J.Y. Yap, P.L. Show, et al., Bioresour. Technol. 229 (2017) 53–62.  doi: 10.4103/0974-2700.201587

    137. [137]

      A. Ahmad, F. Banat, H. Alsafar, S.W. Hasan, Sci. Total Environ. 806 (2022) 150585.  doi: 10.1016/j.scitotenv.2021.150585

    138. [138]

      W.S. Chai, W.G. Tan, H.S.H. Munawaroh, et al., Environ. Pollut. 269 (2021) 116236.  doi: 10.1016/j.envpol.2020.116236

    139. [139]

      W.L. Chu, S.M. Phang, Biosorption of heavy metals and dyes from industrial effluents by microalgae, in: Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment, Springer, Singapore, 2019, pp. 599–634.

    140. [140]

      S.D. Kumar, P. Santhanam, R. Nandakumar, et al., Afr. J. Biotechnol. 13 (2014).

    141. [141]

      H.E.S. Touliabah, M.M. El-Sheekh, M.M. Ismail, H. El-Kassas, Molecules 27 (2022) 1141.  doi: 10.3390/molecules27031141

    142. [142]

      R. Kalra, S. Gaur, M. Goel, J. Water Process Eng. 40 (2021) 101794.  doi: 10.1016/j.jwpe.2020.101794

    143. [143]

      A. Fallahi, F. Rezvani, H. Asgharnejad, et al., Chemosphere 272 (2021) 129878.  doi: 10.1016/j.chemosphere.2021.129878

    144. [144]

      C. Zhang, S.H. Ho, A. Li, L. Fu, D. Zhou, J. Water Process Eng. 39 (2021) 101739.  doi: 10.1016/j.jwpe.2020.101739

    145. [145]

      W. Qu, C. Zhang, X. Chen, S.H. Ho, J. Hazard. Mater. 418 (2021) 126264.  doi: 10.1016/j.jhazmat.2021.126264

    146. [146]

      K. Okurowska, E. Karunakaran, A. Al-Farttoosy, N. Couto, J. Pandhal, Bioresour. Technol. 319 (2021) 124246.  doi: 10.1016/j.biortech.2020.124246

    147. [147]

      A.T. Nair, S. Nagendra, Chlorella Pyrenoidosa mediated phycoremediation of landfill leachate, in: International Conference Impact of Global Atmospheric Changes on Natural Resources, 2018, pp. 65–68.

    148. [148]

      Y. Gou, J. Yang, F. Fang, J. Guo, H. Ma, Environ. Technol. 41 (2020) 400–410.  doi: 10.1080/09593330.2018.1499812

    149. [149]

      T. Biswas, S. Bhushan, S.K. Prajapati, S.R. Chaudhuri, J. Environ. Manage. 286 (2021) 112196.  doi: 10.1016/j.jenvman.2021.112196

    150. [150]

      A. Brar, M. Kumar, V. Vivekanand, N. Pareek, Int. J. Environ. Sci. Technol. 16 (2019) 7757–7768.  doi: 10.1007/s13762-018-2133-9

    151. [151]

      W. Zhou, Z. Wang, J. Xu, L. Ma, J. Biosci. Bioeng. 126 (2018) 644–648.  doi: 10.1016/j.jbiosc.2018.05.006

    152. [152]

      A. Pandey, S. Srivastava, S. Kumar, Biomass Bioenerg. 128 (2019) 105319.  doi: 10.1016/j.biombioe.2019.105319

    153. [153]

      A. Pandey, S. Srivastava, S. Kumar, Bioresour. Technol. 293 (2019) 121998.  doi: 10.1016/j.biortech.2019.121998

    154. [154]

      S. Hena, H. Znad, K. Heong, S. Judd, Water Res. 128 (2018) 267–277.  doi: 10.1016/j.watres.2017.10.057

    155. [155]

      Q. Emparan, R. Harun, M. Danquah, Appl. Ecol. Environ. Res. 17 (2019) 889–915.  doi: 10.15666/aeer/1701_889915

    156. [156]

      H.J. Choi, Environ. Eng. Res. 21 (2016) 393–400.  doi: 10.4491/eer.2015.151

    157. [157]

      S. Huo, J. Liu, F. Zhu, et al., Bioresour. Technol. 314 (2020) 123718.  doi: 10.1016/j.biortech.2020.123718

    158. [158]

      B. Molinuevo-Salces, A. Mahdy, M. Ballesteros, C. González-Fernández, Renew. Energ. 96 (2016) 1103–1110.  doi: 10.1016/j.renene.2016.01.090

    159. [159]

      H.Y. Ren, J.N. Zhu, F. Kong, et al., Energy Convers. Manag. 180 (2019) 680–688.  doi: 10.1016/j.enconman.2018.11.028

    160. [160]

      M. Tossavainen, K. Lahti, M. Edelmann, et al., J. Appl. Phycol. 31 (2019) 1753–1763.  doi: 10.1007/s10811-018-1689-6

    161. [161]

      K.L. Yu, P.L. Show, H.C. Ong, et al., Energy Convers. Manag. 150 (2017) 1–13.  doi: 10.1016/j.enconman.2017.07.060

    162. [162]

      M. Montingelli, S. Tedesco, A. Olabi, Renew. Sust. Energ. Rev. 43 (2015) 961–972.  doi: 10.1016/j.rser.2014.11.052

    163. [163]

      F. Wollmann, S. Dietze, J.U. Ackermann, et al., Eng. Life Sci. 19 (2019) 860–871.  doi: 10.1002/elsc.201900071

    164. [164]

      Y. Nurdogan, W.J. Oswald, Water Sci. Technol. 31 (1995) 33–43.  doi: 10.2166/wst.1995.0453

    165. [165]

      F. Green, T. Lundquist, N. Quinn, et al., Water Sci. Technol. 48 (2003) 299–305.  doi: 10.2166/wst.2003.0134

    166. [166]

      L. Moreno-Garcia, K. Adjallé, S. Barnabé, G. Raghavan, Renew. Sust. Energ. Rev. 76 (2017) 493–506.  doi: 10.1016/j.rser.2017.03.024

    167. [167]

      S. Jayakumar, M.M. Yusoff, M.H.A. Rahim, G.P. Maniam, N. Govindan, Renew. Sust. Energ. Rev. 72 (2017) 33–47.  doi: 10.1016/j.rser.2017.01.002

    168. [168]

      J. Van Wagenen, M.L. Pape, I. Angelidaki, Water Res. 75 (2015) 301–311.  doi: 10.1016/j.watres.2015.02.022

    169. [169]

      A. Beuckels, E. Smolders, K. Muylaert, Water Res. 77 (2015) 98–106.  doi: 10.1016/j.watres.2015.03.018

    170. [170]

      Y. Su, K. Song, P. Zhang, et al., Renew. Sust. Energ. Rev. 74 (2017) 402–411.  doi: 10.1016/j.rser.2016.12.078

    171. [171]

      N.A. Sasongko, R. Noguchi, T. Ahamed, Energy 159 (2018) 1148–1160.  doi: 10.1016/j.energy.2018.03.144

  • 加载中
    1. [1]

      Feng-Ming LinE. Neil G. MarshXiaoxia Nina Lin . Recent progress in hydrocarbon biofuel synthesis: Pathways and enzymes. Chinese Chemical Letters, 2015, 26(4): 431-434. doi: 10.1016/j.cclet.2015.03.018

    2. [2]

      Jie FuGeorge Z. Kyzas . Wet air oxidation for the decolorization of dye wastewater: An overview of the last two decades. Chinese Journal of Catalysis, 2014, 35(1): 1-7. doi: 10.1016/S1872-2067(12)60724-4

    3. [3]

      Yuhao ChuChaofan ZhangXi ChenXue LiNanqi RenShih-Hsin Ho . Multistage defense response of microalgae exposed to pharmaceuticals in wastewater. Chinese Chemical Letters, 2023, 34(4): 107727-1-107727-6. doi: 10.1016/j.cclet.2022.08.007

    4. [4]

      Hui WangJunlei YangPenghui CaoNing GuoYuhao LiYuefeng ZhaoShuang ZhouRuizhuo OuyangYuqing Miao . Functionalization of bismuth sulfide nanomaterials for their application in cancer theranostics. Chinese Chemical Letters, 2020, 31(12): 3015-3026. doi: 10.1016/j.cclet.2020.05.003

    5. [5]

      Wu YinhuYu YinHu Hongying . The “Fingerprint” of a freshwater microalga Scenedesmus sp. LX1: Visualizing the composition of its soluble algal products. Chinese Chemical Letters, 2019, 30(5): 1126-1128. doi: 10.1016/j.cclet.2019.02.034

    6. [6]

      Qiuying XiaYu CaiWei LiuJinshi WangChuanzhi WuFeng ZanJing XuHui Xia . Direct Recycling of All-Solid-State Thin Film Lithium Batteries with Lithium Anode Failure. Acta Physico-Chimica Sinica, 2023, 39(8): 2212051-0. doi: 10.3866/PKU.WHXB202212051

    7. [7]

      Xiaobo GuoAo XiaWuyuan ZhangFeng LiYun HuangXianqing ZhuXun ZhuQiang Liao . Anaerobic environment as an efficient approach to improve the photostability of fatty acid photodecarboxylase. Chinese Chemical Letters, 2023, 34(4): 107875-1-107875-4. doi: 10.1016/j.cclet.2022.107875

    8. [8]

      Anders B. Laursen Jens Sehested Ib Chorkendorff Peter C. K. Vesborg . Availability of elements for heterogeneous catalysis: Predicting the industrial viability of novel catalysts. Chinese Journal of Catalysis, 2018, 39(1): 16-26. doi: 10.1016/S1872-2067(17)62979-6

    9. [9]

      Changzhi LiHaile CaiBo ZhangWeizhen LiGuangxian PeiTao DaiAiqin WangTao Zhang . Tailored one-pot production of furan-based fuels from fructose in an ionic liquid biphasic solvent system. Chinese Journal of Catalysis, 2015, 36(9): 1638-1646. doi: 10.1016/S1872-2067(15)60927-5

    10. [10]

      JIA Chen-ZhongWANG Yan-XingZHANG Cai-Xiang . Variation Characteristics of 3D-Excition Emission Matrix Fluorescence Spectra of Dissolved Organic Matter from Landfill Leachate during Photocatalytic Degradation. Chinese Journal of Analytical Chemistry, 2012, 40(11): 1740-1746. doi: 10.3724/SP.J.1096.2012.20409

    11. [11]

      Senhai Zeng Fangjun Chen Zihan Chen Kin Shing Chan . 工作细菌——胃中的酸碱攻防战. University Chemistry, 2021, 36(10): 2105024-0. doi: 10.3866/PKU.DXHX202105024

    12. [12]

      Xinglong DongSong XueJinling ZhangWei HuangJiannan ZhouZhaoan ChenDanhua YuanYunpeng XuZhongmin Liu . The production of light olefins by catalytic cracking of the microalga Isochrysis zhanjiangensis over a modified ZSM-5 catalyst. Chinese Journal of Catalysis, 2014, 35(5): 655-662. doi: 10.1016/S1872-2067(14)60026-7

    13. [13]

      MA HaoLONG Jin-XingWANG Fu-RongWANG Le-FuLI Xue-Hui . Conversion of Cellulose to Butyl Levulinate in Bio-Butanol Medium Catalyzed by Acidic Ionic Liquids. Acta Physico-Chimica Sinica, 2015, 31(5): 973-979. doi: 10.3866/PKU.WHXB201503171

    14. [14]

      Angela Paul PeterKit Wayne ChewApurav Krishna KoyandeHeli Siti Halimatul MunawarohAmit BhatnagarYang TaoChihe SunFubao SunZengling MaPau Loke Show . Integrated microalgae culture with food processing waste for wastewater remediation and enhanced biomass productivity. Chinese Chemical Letters, 2023, 34(2): 107721-1-107721-8. doi: 10.1016/j.cclet.2022.08.001

    15. [15]

      Yunhua WangZhengqi JiaoWenlong LiSen ZengJiliang DengMiao WangLei Ren . Superhydrophilic membrane with photo-Fenton self-cleaning property for effective microalgae anti-fouling. Chinese Chemical Letters, 2023, 34(8): 108020-1-108020-5. doi: 10.1016/j.cclet.2022.108020

    16. [16]

      Jun Bo WANG Chun Hao YANG Xue Ming YAN Xi Han WU Yu Yuan XIE . Novel Bone-targeted Agents for Treatment of Osteoporosis. Chinese Chemical Letters, 2005, 16(7): 859-862.

    17. [17]

      Kui ZHANG Huai Bin ZHANG Shou He XIANG Shang Yuan LIU He Xuan LI Fei HE . Selective Dealumination of ZSM-5 by Hydrothermal Treatment. Chinese Chemical Letters, 1998, 9(4): 397-400.

    18. [18]

      Zhengwen FangXinyu ZhangHai HuangJun Wu . Exosome based miRNA delivery strategy for disease treatment. Chinese Chemical Letters, 2022, 33(4): 1693-1704. doi: 10.1016/j.cclet.2021.11.050

Metrics
  • PDF Downloads(5)
  • Abstract views(169)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return