Structure-activity relationship of defective electrocatalysts for nitrogen fixation
-
* Corresponding author.
E-mail address: iamwjliu@njtech.edu.cn (W. Liu).
1 These authors contributed equally to this work.
Citation:
Yusheng Wang, Nan Yang, Xue Xin, Yingjie Yu, Yuao Wei, Baoli Zha, Wenjing Liu. Structure-activity relationship of defective electrocatalysts for nitrogen fixation[J]. Chinese Chemical Letters,
;2023, 34(7): 107841.
doi:
10.1016/j.cclet.2022.107841
B.H.R. Suryanto, K. Matuszek, J. Choi, et al., Science 372 (2021) 1187–1191.
doi: 10.1126/science.abg2371
K. Li, S.Z. Andersen, M.J. Statt, et al., Science 374 (2021) 1593–1597.
doi: 10.1126/science.abl4300
X. Kong, H.Q. Peng, S. Bu, et al., J. Mater. Chem. A 8 (2020) 7457–7473.
doi: 10.1039/D0TA01453B
X. Zhao, G. Hu, G.F. Chen, et al., Adv. Mater. 33 (2021) 2007650.
doi: 10.1002/adma.202007650
M. Wang, M.A. Khan, I. Mohsin, et al., Energy Environ. Sci. 14 (2021) 2535–2548.
doi: 10.1039/D0EE03808C
Y. Wan, H. Zhou, M. Zheng, et al., Adv. Funct. Mater. 31 (2021) 2100300.
doi: 10.1002/adfm.202100300
Y. Tan, L. Yan, C. Huang, et al., Small 17 (2021) 2100372.
doi: 10.1002/smll.202100372
K.A. Brown, D.F. Harris, M.B. Wilker, et al., Science 352 (2016) 448.
doi: 10.1126/science.aaf2091
S. Shang, W. Xiong, C. Yang, et al., ACS Nano 15 (2021) 9670–9678.
doi: 10.1021/acsnano.0c10947
L. Li, C. Tang, X. Cui, et al., Angew. Chem. Int. Ed. 60 (2021) 14131–14137.
doi: 10.1002/anie.202104394
Y. Feng, Z. Zhang, K. Zhao, et al., J. Colloid Interface Sci. 583 (2021) 499–509.
doi: 10.1016/j.jcis.2020.09.089
F. Gorky, J.M. Lucero, J.M. Crawford, et al., ACS Appl. Mater. Interfaces 13 (2021) 21338–21348.
doi: 10.1021/acsami.1c03115
A. Anastasopoulou, R. Keijzer, S. Butala, et al., J. Phys. D: Appl. Phys. 53 (2020) 234001.
doi: 10.1088/1361-6463/ab71a8
K. Han, J. Luo, Y. Feng, et al., Energy Environ. Sci. 13 (2020) 2450–2458.
doi: 10.1039/D0EE01102A
C.J.M. van der Ham, M.T.M. Koper, D.G.H. Hetterscheid, Chem. Soc. Rev. 43 (2014) 5183–5191.
doi: 10.1039/C4CS00085D
X. Cui, C. Tang, Q. Zhang, Adv. Energy Mater. 8 (2018) 1800369.
doi: 10.1002/aenm.201800369
G. Qing, R. Ghazfar, S.T. Jackowski, et al., Chem. Rev. 120 (2020) 5437–5516.
doi: 10.1021/acs.chemrev.9b00659
F. Wang, X. Xu, J. Mao, Diam. Relat. Mater. 109 (2020) 108037.
doi: 10.1016/j.diamond.2020.108037
S. Giddey, S.P.S. Badwal, A. Kulkarni, Int. J. Hydrog. Energy 38 (2013) 14576–14594.
doi: 10.1016/j.ijhydene.2013.09.054
M. Jin, X. Zhang, M. Han, et al., J. Mater. Chem. A 8 (2020) 5936–5942.
doi: 10.1039/C9TA13135C
Q. Wang, Y. Lei, D. Wang, et al., Energy Environ. Sci. 12 (2019) 1730–1750.
doi: 10.1039/C8EE03781G
W. Tong, B. Huang, P. Wang, et al., Natl. Sci. Rev. 8 (2021) nwaa088.
doi: 10.1093/nsr/nwaa088
L. Wang, M. Wu, X. Lang, et al., ChemCatChem 12 (2020) 3937–3945.
doi: 10.1002/cctc.202000185
M. Li, H. Huang, J. Low, et al., Small Methods 3 (2019) 1800388.
doi: 10.1002/smtd.201800388
B. Liu, B. He, H.Q. Peng, et al., Adv. Sci. 5 (2018) 1800406.
doi: 10.1002/advs.201800406
H. Wang, H. Yu, Z. Wang, et al., Small 15 (2019) 1804769.
doi: 10.1002/smll.201804769
A. Liu, Y. Yang, D. Kong, et al., Appl. Surf. Sci. 536 (2021) 147851.
doi: 10.1016/j.apsusc.2020.147851
B. Fan, H. Wang, H. Zhang, et al., Adv. Funct. Mater. 32 (2022) 2110783.
doi: 10.1002/adfm.202110783
C. Xie, D. Yan, W. Chen, et al., Mater. Today 31 (2019) 47–68.
doi: 10.1016/j.mattod.2019.05.021
Y. Wang, M.M. Shi, D. Bao, et al., Angew. Chem. Int. Ed. 58 (2019) 9464–9469.
doi: 10.1002/anie.201903969
V. Sorkin, Y. Cai, Z. Ong, et al., Crit. Rev. Solid State Mater. Sci. 42 (2017) 1–82.
doi: 10.1080/10408436.2016.1182469
S. Qiao, Q. Wang, D. Lei, et al., J. Mater. Chem. A 10 (2022) 11702–11711.
doi: 10.1039/D2TA01107G
Z. Zhang, X. Liu, D. Wang, et al., Chem. Eng. J. 446 (2022) 137037.
doi: 10.1016/j.cej.2022.137037
Y. Zhang, J. Lu, L. Zhang, et al., Appl. Catal. B 309 (2022) 121249.
doi: 10.1016/j.apcatb.2022.121249
X. Zhang, C. Wang, Y. Guo, et al., J. Mater. Chem. A 10 (2022) 6448–6453.
doi: 10.1039/D2TA00661H
M. Li, X. Wu, K. Liu, et al., J. Energy Chem. 69 (2022) 506–515.
doi: 10.1016/j.jechem.2022.01.031
Y. Zhu, Y. Sun, J. Khan, et al., Chem. Eng. J. 443 (2022) 136501.
doi: 10.1016/j.cej.2022.136501
L. Wu, P. Guo, X. Wang, et al., Chem. Eng. J. 446 (2022) 136759.
doi: 10.1016/j.cej.2022.136759
T. Tian, X. Jin, N. Guo, et al., Appl. Catal. B 308 (2022) 121227.
doi: 10.1016/j.apcatb.2022.121227
Y. Fang, Y. Xue, L. Hui, et al., Adv. Sci. 9 (2022) 2102721.
doi: 10.1002/advs.202102721
M. Yarali, H. Brahmi, Z. Yan, et al., ACS Appl. Mater. Interfaces 10 (2018) 4921–4928.
doi: 10.1021/acsami.7b14310
Y. Kou, K. Wang, M. Wumaer, et al., Appl. Surf. Sci. 589 (2022) 153031.
doi: 10.1016/j.apsusc.2022.153031
I.E. Khalil, C. Xue, W. Liu, et al., Adv. Funct. Mater. 31 (2021) 2010052.
doi: 10.1002/adfm.202010052
X. Guo, W. Ye, Z.A. Chen, et al., Appl. Catal. B 310 (2022) 121334.
doi: 10.1016/j.apcatb.2022.121334
Z. Chen, J. Cao, X. Wu, et al., ACS Appl. Mater. Interfaces 14 (2022) 12223–12233.
doi: 10.1021/acsami.1c23718
H.J. Liu, C.Y. Chiang, Y.S. Wu, et al., ACS Catal. 12 (2022) 6132–6142.
doi: 10.1021/acscatal.1c05539
C. Yan, W. Luo, H. Yuan, et al., Appl. Catal. B 308 (2022) 121191.
doi: 10.1016/j.apcatb.2022.121191
Y. Zou, J. Hu, B. Li, et al., Appl. Catal. B 312 (2022) 121408.
doi: 10.1016/j.apcatb.2022.121408
K. Li, W. Cai, Z. Zhang, et al., Chem. Eng. J. 435 (2022) 135017.
doi: 10.1016/j.cej.2022.135017
T. Ma, H. Cao, S. Li, et al., Adv. Mater. 33 (2022) 2206368.
X. Wang, L. Yu, B.Y. Guan, et al., Adv. Mater. 30 (2018) 1801211.
doi: 10.1002/adma.201801211
L. Xu, Y. Zou, Z. Xiao, et al., J. Energy Chem. 35 (2019) 24–29.
doi: 10.1016/j.jechem.2018.09.013
R. Grantab, V.B. Shenoy, R.S. Ruoff, Science 330 (2010) 946–948.
doi: 10.1126/science.1196893
H. Liu, X.M. Wang, H. Liang, et al., Int. J. Solids Struct. 191-192 (2020) 464–472.
Y. Kang, H. Du, B. Jiang, et al., J. Mater. Chem. A 10 (2022) 6560–6568.
doi: 10.1039/D1TA10742A
Z. Wu, T. Wang, J.J. Zou, et al., ACS Catal. 12 (2022) 5911–5920.
doi: 10.1021/acscatal.2c01829
R. Shi, Y. Zhao, G.I.N. Waterhouse, et al., ACS Catal. 9 (2019) 9739–9750.
doi: 10.1021/acscatal.9b03246
B. Garlyyev, J. Fichtner, O. Piqué, et al., Chem. Sci. 10 (2019) 8060–8075.
doi: 10.1039/C9SC02654A
H. Huang, L. Chen, C. Liu, et al., J. Mater. Chem. A 4 (2016) 14577–14585.
doi: 10.1039/C6TA06174E
B. Jiang, T. Yang, T. Wang, et al., Chem. Eng. J. 442 (2022) 136119.
doi: 10.1016/j.cej.2022.136119
C. Xue, X. Zhou, X. Li, et al., Adv. Sci. 9 (2022) 2104183.
doi: 10.1002/advs.202104183
G. Chen, P. Liu, Z. Liao, et al., Adv. Mater. 32 (2020) 1907399.
doi: 10.1002/adma.201907399
X. Wang, Y. Zhang, H. Si, et al., J. Am. Chem. Soc. 142 (2020) 4298–4308.
doi: 10.1021/jacs.9b12113
X. She, X. Zhu, J. Yang, et al., Nano Energy 84 (2021) 105869.
doi: 10.1016/j.nanoen.2021.105869
J. Ge, P. Yin, Y. Chen, et al., Adv. Mater. 33 (2021) 2006711.
doi: 10.1002/adma.202006711
G. Li, K. He, F. Zhang, et al., Appl. Catal. B 309 (2022) 121231.
doi: 10.1016/j.apcatb.2022.121231
X. Wan, W. Guo, X. Dong, et al., Green Chem. 24 (2022) 1090–1095.
doi: 10.1039/D1GC04483D
M. Jiang, A. Tao, Y. Hu, et al., ACS Appl. Mater. Interfaces 14 (2022) 17470–17478.
doi: 10.1021/acsami.2c02048
Y. Liu, H. Cheng, M. Lyu, et al., J. Am. Chem. Soc. 136 (2014) 15670–15675.
doi: 10.1021/ja5085157
P. Li, Z. Jin, Z. Fang, et al., Energy Environ. Sci. 14 (2021) 3522–3531.
doi: 10.1039/D1EE00545F
W. Li, D. Wang, Y. Zhang, et al., Adv. Mater. 32 (2020) 1907879.
doi: 10.1002/adma.201907879
D. Wang, Y. Zou, L. Tao, et al., Chin. Chem. Lett. 30 (2019) 826–838.
doi: 10.1016/j.cclet.2019.03.051
L. Ma, C. Wang, B.Y. Xia, et al., Angew. Chem. Int. Ed. 54 (2015) 5666–5671.
doi: 10.1002/anie.201500947
H. Rong, J. Mao, P. Xin, et al., Adv. Mater. 28 (2016) 2540–2546.
doi: 10.1002/adma.201504831
X. Wang, L. Figueroa-Cosme, X. Yang, et al., Nano Lett. 16 (2016) 1467–1471.
doi: 10.1021/acs.nanolett.5b05140
J. Zhu, Y. Huang, W. Mei, et al., Angew. Chem. Int. Ed. 58 (2019) 3859–3864.
doi: 10.1002/anie.201813805
Á. Morales-García, F. Calle-Vallejo, F. Illas, ACS Catal. 10 (2020) 13487–13503.
doi: 10.1021/acscatal.0c03106
X. Wu, S. Xiao, Y. Long, et al., Small 18 (2022) 2105831.
doi: 10.1002/smll.202105831
R. Meshkian, M. Dahlqvist, J. Lu, et al., Adv. Mater. 30 (2018) 1706409.
doi: 10.1002/adma.201706409
M. Ma, X. Han, H. Li, et al., Appl. Catal. B 265 (2020) 118568.
doi: 10.1016/j.apcatb.2019.118568
S. Dou, L. Tao, J. Huo, et al., Energy Environ. Sci. 9 (2016) 1320–1326.
doi: 10.1039/C6EE00054A
B. Ma, S. Ren, P. Wang, et al., Nano Res. 12 (2019) 137–142.
doi: 10.1007/s12274-018-2192-8
Y. Tian, Z. Wei, X. Wang, et al., Int. J. Hydrog. Energy 42 (2017) 4184–4192.
doi: 10.1016/j.ijhydene.2016.09.142
L. Zhang, X.Y. Xie, H. Wang, et al., Chem. Commun. 55 (2019) 4627–4630.
doi: 10.1039/C9CC00936A
F. Guo, P. Yang, Z. Pan, et al., Angew. Chem. Int. Ed. 56 (2017) 8231–8235.
doi: 10.1002/anie.201703789
B. Zhang, Y. Zheng, T. Ma, et al., Adv. Mater. 33 (2021) 2006042.
doi: 10.1002/adma.202006042
Y.N. Gong, L. Jiao, Y. Qian, et al., Angew. Chem. Int. Ed. 59 (2020) 2705–2709.
doi: 10.1002/anie.201914977
S. Chen, H. Jang, J. Wang, et al., J. Mater. Chem. A 8 (2020) 2099–2104.
doi: 10.1039/C9TA10524G
R. Anwar, N. Iqbal, S. Hanif, et al., Catalysts 10 (2020) 799.
doi: 10.3390/catal10070799
C. Young, J. Wang, J. Kim, et al., Chem. Mater. 30 (2018) 3379–3386.
doi: 10.1021/acs.chemmater.8b00836
N. Bhuvanendran, S. Ravichandran, S. Kandasamy, et al., Int. J. Hydrog. Energy 46 (2021) 2128–2142.
doi: 10.1016/j.ijhydene.2020.10.115
J. Wang, X. Xiao, Y. Liu, et al., J. Mater. Chem. A 7 (2019) 17675–17702.
doi: 10.1039/C9TA04804A
C. Chen, D. Yan, Y. Wang, et al., Small 15 (2019) 1805029.
doi: 10.1002/smll.201805029
Y. Wang, Y. Tian, J. Zhang, et al., ACS Appl. Energy Mater. 3 (2020) 9516–9522.
doi: 10.1021/acsaem.0c01834
J. Mao, Y. Chen, J. Pei, et al., Chem. Commun. 52 (2016) 5985–5988.
doi: 10.1039/C6CC02264B
X. Yang, Y. Ma, Y. Liu, et al., ACS Appl. Mater. Interfaces 13 (2021) 19864–19872.
doi: 10.1021/acsami.0c22623
X. Wang, Z. Feng, B. Xiao, et al., Green Chem. 22 (2020) 6157–6169.
doi: 10.1039/D0GC01149E
H. Liao, X. Guo, Y. Hou, et al., Small 16 (2020) 1905223.
doi: 10.1002/smll.201905223
J. Han, Z. Liu, Y. Ma, et al., Nano Energy 52 (2018) 264–270.
doi: 10.1016/j.nanoen.2018.07.045
Y. Liu, C. Xiao, Z. Li, et al., Adv. Energy Mater. 6 (2016) 1600436.
doi: 10.1002/aenm.201600436
X. Wang, X. Gan, T. Hu, et al., Adv. Mater. 29 (2017) 1603617.
doi: 10.1002/adma.201603617
Z. Cai, Y. Bi, E. Hu, et al., Adv. Energy Mater. 8 (2018) 1701694.
doi: 10.1002/aenm.201701694
Y. Zhao, Y. Zhao, R. Shi, et al., Adv. Mater. 31 (2019) 1806482.
doi: 10.1002/adma.201806482
Y. Zhang, C. Zhang, Y. Guo, et al., J. Mater. Chem. A 7 (2019) 2536–2540.
doi: 10.1039/C8TA11407B
S. Dou, X. Wang, S. Wang, Small Methods 3 (2019) 1800211.
doi: 10.1002/smtd.201800211
B.K. Sharma, A. Stoesser, S.K. Mondal, et al., ACS Appl. Mater. Interfaces 10 (2018) 22408–22418.
doi: 10.1021/acsami.8b04892
S. Gao, Z. Sun, W. Liu, et al., Nat. Commun. 8 (2017) 14503.
doi: 10.1038/ncomms14503
X. Yao, J. Liu, W. Wang, et al., J. Chem. Phys. 146 (2017) 224703.
doi: 10.1063/1.4985157
J. Kim, X. Yin, K.C. Tsao, et al., J. Am. Chem. Soc. 136 (2014) 14646–14649.
doi: 10.1021/ja506254g
S. Choi, Y. Park, H. Yang, et al., CrystEngComm 22 (2020) 1500–1513.
doi: 10.1039/C9CE01883B
T. Ling, D.Y. Yan, Y. Jiao, et al., Nat. Commun. 7 (2016) 12876.
doi: 10.1038/ncomms12876
C. Lv, C. Yan, G. Chen, et al., Angew. Chem. Int. Ed. 57 (2018) 6073–6076.
doi: 10.1002/anie.201801538
W. Fu, P. Zhuang, M.O.L. Chee, et al., ACS Sustain. Chem. Eng. 7 (2019) 9622–9628.
doi: 10.1021/acssuschemeng.9b01178
Y. Fang, Z. Liu, J. Han, et al., Adv. Energy Mater. 9 (2019) 1803406.
doi: 10.1002/aenm.201803406
J. Zhang, Y. Ji, P. Wang, et al., Adv. Funct. Mater. 30 (2020) 1906579.
doi: 10.1002/adfm.201906579
Y. Liu, X. Kong, X. Guo, et al., ACS Catal. 10 (2020) 1077–1085.
doi: 10.1021/acscatal.9b03864
C. Fang, T. Bi, X. Xu, et al., Adv. Mater. Interfaces 6 (2019) 1901034.
doi: 10.1002/admi.201901034
C. Zhang, S. Liu, T. Chen, et al., Chem. Commun. 55 (2019) 7370–7373.
doi: 10.1039/C9CC03221E
S. Cheng, Y.J. Gao, Y.L. Yan, et al., J. Energy Chem. 39 (2019) 144–151.
doi: 10.1016/j.jechem.2019.01.020
Z. Han, C. Choi, S. Hong, et al., Appl. Catal. B 257 (2019) 117896.
doi: 10.1016/j.apcatb.2019.117896
Y. Abghoui, A.L. Garden, V.F. Hlynsson, et al., Phys. Chem. Chem. Phys. 17 (2015) 4909–4918.
doi: 10.1039/C4CP04838E
Y. Abghoui, A.L. Garden, J.G. Howalt, et al., ACS Catal. 6 (2016) 635–646.
doi: 10.1021/acscatal.5b01918
Q. Li, L. He, C. Sun, et al., J. Phys. Chem. C 121 (2017) 27563–27568.
doi: 10.1021/acs.jpcc.7b10522
C. Lv, Y. Qian, C. Yan, et al., Angew. Chem. Int. Ed. 57 (2018) 10246–10250.
doi: 10.1002/anie.201806386
H. Jin, L. Li, X. Liu, et al., Adv. Mater. 31 (2019) 1902709.
doi: 10.1002/adma.201902709
X. Li, T. Li, Y. Ma, et al., Adv. Energy Mater. 8 (2018) 1801357.
doi: 10.1002/aenm.201801357
L. Zhang, X. Ji, X. Ren, et al., Adv. Mater. 30 (2018) 1800191.
doi: 10.1002/adma.201800191
J. Zhang, X. Tian, M. Liu, et al., J. Am. Chem. Soc. 141 (2019) 19269–19275.
doi: 10.1021/jacs.9b02501
B.H.R. Suryanto, D. Wang, L.M. Azofra, et al., ACS Energy Lett. 4 (2019) 430–435.
doi: 10.1021/acsenergylett.8b02257
L.M. Azofra, C. Sun, L. Cavallo, et al., Chem. Eur. J. 23 (2017) 8275–8279.
doi: 10.1002/chem.201701113
H. Zhang, C. Cui, Z. Luo, J. Phys. Chem. C 124 (2020) 6260–6266.
doi: 10.1021/acs.jpcc.0c00486
W. Zhang, B.W. Zhang, Nanomicro Lett. 13 (2021) 106.
X. Yan, Y. Jia, X. Yao, Chem. Soc. Rev. 47 (2018) 7628–7658.
doi: 10.1039/C7CS00690J
C. Zhu, S. Fu, Q. Shi, et al., Angew. Chem. Int. Ed. 56 (2017) 13944–13960.
doi: 10.1002/anie.201703864
Z. Wei, Y. Zhang, S. Wang, et al., J. Mater. Chem. A 6 (2018) 13790–13796.
doi: 10.1039/C8TA03989E
C. Choi, S. Back, N.Y. Kim, et al., ACS Catal. 8 (2018) 7517–7525.
doi: 10.1021/acscatal.8b00905
X. Chen, X. Zhao, Z. Kong, et al., J. Mater. Chem. A 6 (2018) 21941–21948.
doi: 10.1039/C8TA06497K
W. Yang, H. Huang, X. Ding, et al., Electrochim. Acta 335 (2020) 135667.
doi: 10.1016/j.electacta.2020.135667
C. Guo, X. Liu, L. Gao, et al., Appl. Catal. B 263 (2020) 118296.
doi: 10.1016/j.apcatb.2019.118296
F. Lai, N. Chen, X. Ye, et al., Adv. Funct. Mater. 30 (2020) 1907376.
doi: 10.1002/adfm.201907376
Y. Shi, Y. Zhou, D.R. Yang, et al., J. Am. Chem. Soc. 139 (2017) 15479–15485.
doi: 10.1021/jacs.7b08881
J. Su, R. Ge, Y. Dong, et al., J. Mater. Chem. A 6 (2018) 14025–14042.
doi: 10.1039/C8TA04064H
Y. Zhang, L. Guo, L. Tao, et al., Small Methods 3 (2019) 1800406.
doi: 10.1002/smtd.201800406
X. Yang, K. Li, D. Cheng, et al., J. Mater. Chem. A 6 (2018) 7762–7769.
doi: 10.1039/C8TA01078A
H. Wang, L. Wang, Q. Wang, et al., Angew. Chem. Int. Ed. 57 (2018) 12360–12364.
doi: 10.1002/anie.201805514
X. Yu, P. Han, Z. Wei, et al., Joule 2 (2018) 1610–1622.
doi: 10.1016/j.joule.2018.06.007
X. Mao, S. Zhou, C. Yan, et al., Phys. Chem. Chem. Phys. 21 (2019) 1110–1116.
doi: 10.1039/C8CP07064D
Y. Tian, D. Xu, K. Chu, et al., J. Mater. Sci. 54 (2019) 9088–9097.
doi: 10.1007/s10853-019-03538-0
J.S. Kim, B. Kim, H. Kim, et al., Adv. Energy Mater. 8 (2018) 1702774.
doi: 10.1002/aenm.201702774
J. Zhang, R. Yin, Q. Shao, et al., Angew. Chem. Int. Ed. 58 (2019) 5609–5613.
doi: 10.1002/anie.201900167
W. Xu, S. Zhu, Y. Liang, et al., J. Mater. Chem. A 5 (2017) 18793–18800.
doi: 10.1039/C7TA05314B
P. Cai, J. Huang, J. Chen, et al., Angew. Chem. Int. Ed. 56 (2017) 4858–4861.
doi: 10.1002/anie.201701280
S.J. Li, D. Bao, M.M. Shi, et al., Adv. Mater. 29 (2017) 1700001.
doi: 10.1002/adma.201700001
Z. Wang, Y. Li, H. Yu, et al., ChemSusChem 11 (2018) 3480–3485.
doi: 10.1002/cssc.201801444
M.M. Shi, D. Bao, B.R. Wulan, et al., Adv. Mater. 29 (2017) 1606550.
doi: 10.1002/adma.201606550
H. Yu, Z. Wang, W. Tian, et al., Mater. Today Energy 20 (2021) 100681.
doi: 10.1016/j.mtener.2021.100681
R. Lan, J.T.S. Irvine, S. Tao, Sci. Rep. 3 (2013) 1145.
doi: 10.1038/srep01145
M. Kitano, S. Kanbara, Y. Inoue, et al., Nat. Commun. 6 (2015) 6731.
doi: 10.1038/ncomms7731
M.M. Shi, D. Bao, S.J. Li, et al., Adv. Energy Mater. 8 (2018) 1800124.
doi: 10.1002/aenm.201800124
C. Guo, J. Ran, A. Vasileff, et al., Energy Environ. Sci. 11 (2018) 45–56.
doi: 10.1039/C7EE02220D
P. Li, W. Fu, P. Zhuang, et al., Small 15 (2019) 1902535.
doi: 10.1002/smll.201902535
P. De Luna, W. Liang, A. Mallick, et al., ACS Appl. Mater. Interfaces 10 (2018) 31225–31232.
doi: 10.1021/acsami.8b04848
Y. Song, D. Johnson, R. Peng, et al., Sci. Adv. 4 (2018) e1700336.
W.Y. Gao, Y.C. Hao, X. Su, et al., Chem. Commun. 55 (2019) 10705–10708.
doi: 10.1039/C9CC04691G
H. Ying, T. Chen, C. Zhang, et al., J. Colloid Interface Sci. 602 (2021) 64–72.
doi: 10.1016/j.jcis.2021.05.185
H. Wang, H. Yu, Y. Li, et al., Nanotechnology 29 (2018) 175403.
doi: 10.1088/1361-6528/aaaf3f
H. Yu, Z. Wang, D. Yang, et al., J. Mater. Chem. A 7 (2019) 12526–12531.
doi: 10.1039/C9TA03297E
F. Pang, Z. Wang, K. Zhang, et al., Nano Energy 58 (2019) 834–841.
doi: 10.1016/j.nanoen.2019.02.019
F. Lai, W. Zong, G. He, et al., Angew. Chem. Int. Ed. 59 (2020) 13320–13327.
doi: 10.1002/anie.202003129
B. Xu, L. Xia, F. Zhou, et al., ACS Sustain. Chem. Eng. 7 (2019) 2889–2893.
doi: 10.1021/acssuschemeng.8b05007
C. Ma, N. Zhai, B. Liu, et al., Electrochim. Acta 370 (2021) 137695.
doi: 10.1016/j.electacta.2020.137695
L. Wen, X. Li, R. Zhang, et al., ACS Appl. Mater. Interfaces 13 (2021) 14181–14188.
doi: 10.1021/acsami.0c22767
G. Zhang, Q. Ji, K. Zhang, et al., Nano Energy 59 (2019) 10–16.
doi: 10.1016/j.nanoen.2019.02.028
L. Yang, T. Wu, R. Zhang, et al., Nanoscale 11 (2019) 1555–1562.
doi: 10.1039/C8NR09564G
K. Chu, F. Liu, J. Zhu, et al., Adv. Energy Mater. 11 (2021) 2003799.
doi: 10.1002/aenm.202003799
Z. Sun, R. Huo, C. Choi, et al., Nano Energy 62 (2019) 869–875.
doi: 10.1016/j.nanoen.2019.06.019
J. Xia, H. Guo, M. Cheng, et al., J. Mater. Chem. A 9 (2021) 2145–2151.
doi: 10.1039/D0TA08089F
X. Yang, F. Ling, J. Su, et al., Appl. Catal. B 264 (2020) 118477.
doi: 10.1016/j.apcatb.2019.118477
W. Zang, T. Yang, H. Zou, et al., ACS Catal. 9 (2019) 10166–10173.
doi: 10.1021/acscatal.9b02944
X.W. Lv, X.L. Liu, L.J. Gao, et al., J. Mater. Chem. A 9 (2021) 4026–4035.
doi: 10.1039/D0TA11244E
S. Xiao, F. Luo, H. Hu, et al., Chem. Commun. 56 (2020) 446–449.
doi: 10.1039/C9CC07708A
T. Wu, H. Zhao, X. Zhu, et al., Adv. Mater. 32 (2020) 2000299.
doi: 10.1002/adma.202000299
T. Wu, X. Li, X. Zhu, et al., Chem. Commun. 56 (2020) 1831–1834.
doi: 10.1039/C9CC09179C
W. Peng, M. Luo, X. Xu, et al., Adv. Energy Mater. 10 (2020) 2001364.
doi: 10.1002/aenm.202001364
K. Chu, Y.P. Liu, Y.B. Li, et al., Appl. Catal. B 264 (2020) 118525.
doi: 10.1016/j.apcatb.2019.118525
H. Chen, Y. Xiao, C. Chen, et al., ACS Appl. Mater. Interfaces 11 (2019) 11459–11465.
doi: 10.1021/acsami.8b22564
S. Zhao, H.X. Liu, Y. Qiu, et al., J. Mater. Chem. A 8 (2020) 6586–6596.
doi: 10.1039/D0TA00658K
X. Wang, W. Wang, M. Qiao, et al., Sci. Bull. 63 (2018) 1246–1253.
doi: 10.1016/j.scib.2018.07.005
K. Chu, H. Nan, Q. Li, et al., J. Energy Chem. 53 (2021) 132–138.
doi: 10.1016/j.jechem.2020.04.074
T. Pan, L. Wang, Y. Shen, et al., ACS Appl. Mater. Interfaces 14 (2022) 14474–14481.
doi: 10.1021/acsami.2c00018
Y. Liu, W. Wang, S. Zhang, et al., ACS Sustain. Chem. Eng. 8 (2020) 2320–2326.
doi: 10.1021/acssuschemeng.9b07679
Y. Liu, M. Han, Q. Xiong, et al., Adv. Energy Mater. 9 (2019) 1803935.
doi: 10.1002/aenm.201803935
H. Cheng, L.X. Ding, G.F. Chen, et al., Adv. Mater. 30 (2018) 1803694.
doi: 10.1002/adma.201803694
H. Sun, H.Q. Yin, W. Shi, et al., Nano Res. 15 (2022) 3026–3033.
doi: 10.1007/s12274-021-3937-3
Z. Wang, J. Niu, Y. Xu, et al., ACS Sustain. Chem. Eng. 8 (2020) 12588–12594.
doi: 10.1021/acssuschemeng.0c03970
Xue Xin , Qiming Qu , Islam E. Khalil , Yuting Huang , Mo Wei , Jie Chen , Weina Zhang , Fengwei Huo , Wenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654
Yingfen Li , Zhiqi Wang , Yunhai Zhao , Dajun Luo , Xueliang Zhang , Jun Zhao , Zhenghua Su , Shuo Chen , Guangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468
Bingke Zhang , Dongbo Wang , Jiamu Cao , Wen He , Gang Liu , Donghao Liu , Chenchen Zhao , Jingwen Pan , Sihang Liu , Weifeng Zhang , Xuan Fang , Liancheng Zhao , Jinzhong Wang . Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution. Chinese Chemical Letters, 2024, 35(11): 110254-. doi: 10.1016/j.cclet.2024.110254
Qiang Cao , Xue-Feng Cheng , Jia Wang , Chang Zhou , Liu-Jun Yang , Guan Wang , Dong-Yun Chen , Jing-Hui He , Jian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
Yuemin Chen , Yunqi Wu , Guoao Wang , Feihu Cui , Haitao Tang , Yingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445
Li Li , Zhi-Xin Yan , Chuan-Kun Ran , Yi Liu , Shuo Zhang , Tian-Yu Gao , Long-Fei Dai , Li-Li Liao , Jian-Heng Ye , Da-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104
Yan-Jiang Li , Shu-Lei Chou , Yao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
Yifei Cheng , Jiahui Yang , Wei Shao , Wanqun Zhang , Wanqun Hu , Weiwei Li , Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199