Modification and application of Fe3O4 nanozymes in analytical chemistry: A review
-
* Corresponding authors.
E-mail addresses: kdz1011@just.edu.cn (D. Kong), tangsheng.nju@gmail.com (S. Tang).
Citation:
Jiahe Ju, Yitong Chen, Zhiqiang Liu, Cheng Huang, Yaqi Li, Dezhao Kong, Wei Shen, Sheng Tang. Modification and application of Fe3O4 nanozymes in analytical chemistry: A review[J]. Chinese Chemical Letters,
;2023, 34(5): 107820.
doi:
10.1016/j.cclet.2022.107820
C. Yuan, X. Wang, X. Yang, et al., Chin. Chem. Lett. 32 (2021) 2079–2085.
doi: 10.1016/j.cclet.2020.11.027
X. Chen, J. Mao, C. Liu, et al., Chin. Chem. Lett. 31 (2020) 3205–3208.
doi: 10.1016/j.cclet.2020.07.031
Z. Zhou, L. Yang, J. Gao, X. Chen, Adv. Mater. 31 (2019) e1804567.
doi: 10.1002/adma.201804567
Z. Qi, T.P. Joshi, R. Liu, H. Liu, J. Qu, J. Hazard. Mater. 329 (2017) 193–204.
doi: 10.1016/j.jhazmat.2017.01.007
L. Gao, J. Zhuang, L. Nie, et al., Nat. Nanotechnol. 2 (2007) 577–583.
doi: 10.1038/nnano.2007.260
X. Liu, D. Huang, C. Lai, et al., Small 15 (2019) e1900133.
doi: 10.1002/smll.201900133
Z. Li, Y. Wang, Y. Ni, S. Kokot, Biosens. Bioelectron. 70 (2015) 246–253.
doi: 10.1016/j.bios.2015.03.035
Y. Yang, T. Li, Y. Qin, L. Zhang, Y. Chen, Front. Chem. 8 (2020) e564968.
doi: 10.3389/fchem.2020.564968
H. Sun, Y. Zhou, J. Ren, X. Qu, Angew. Chem. Int. Ed. Engl. 57 (2018) 9224–9237.
doi: 10.1002/anie.201712469
G. Nie, L. Zhang, J. Lei, et al., J. Mater. Chem. A 2 (2014) 2910–2914.
doi: 10.1039/c3ta15051h
L. Chen, L. Sha, Y. Qiu, et al., Nanoscale 7 (2015) 3300–3308.
doi: 10.1039/C4NR06664B
W. Zhang, X. Niu, S. Meng, et al., Sens. Actuators B: Chem. 273 (2018) 400–407.
doi: 10.1016/j.snb.2018.06.071
A. Liu, M. Li, J. Wang, et al., Chin. Chem. Lett. 31 (2020) 1133–1136.
doi: 10.1016/j.cclet.2019.10.011
S. Tang, T. Qi, Y. Yao, et al., Anal. Chem. 92 (2020) 12290–12296.
doi: 10.1021/acs.analchem.0c01936
S. Tang, Y. Li, A. Zhu, et al., Chem. Commun. 55 (2019) 8386–8389.
doi: 10.1039/c9cc03194d
H. Wei, E.J.A.C. Wang, Anal. Chem. 80 (2008) 2250–2254.
doi: 10.1021/ac702203f
Y. Zhuo, P.X. Yuan, R. Yuan, Y.Q. Chai, C.L. Hong, Biomaterials 30 (2009) 2284–2290.
doi: 10.1016/j.biomaterials.2009.01.002
G. Guan, L. Yang, Q. Mei, et al., Anal. Chem. 84 (2012) 9492–9497.
doi: 10.1021/ac302341b
M. Liang, K. Fan, Y. Pan, et al., Anal. Chem. 85 (2013) 308–312.
doi: 10.1021/ac302781r
Y. Yao, J. Kuang, J. Ju, et al., Sens. Actuators B: Chem. 352 (2022) 131044.
doi: 10.1016/j.snb.2021.131044
D. Duan, K. Fan, D. Zhang, et al., Biosens. Bioelectron. 74 (2015) 134–141.
doi: 10.1016/j.bios.2015.05.025
N. Yu, T. Cai, Y. Sun, et al., Int. J. Pharm. 552 (2018) 277–287.
doi: 10.1016/j.ijpharm.2018.10.002
F. Wei, X. Cui, Z. Wang, et al., Chem. Eng. J. 408 (2021) 127240-127240.
doi: 10.1016/j.cej.2020.127240
S. Gao, H. Lin, H. Zhang, et al., Adv. Sci., 6 (2019) 1801733.
doi: 10.1002/advs.201801733
J. Lu, Y. Hu, P. Wang, et al., Sens. Actuators B: Chem. 311 (2020) 127909.
doi: 10.1016/j.snb.2020.127909
F. Wu, Y. Du, J. Yang, et al., ACS Nano 16 (2022) 3647–3663.
doi: 10.1021/acsnano.1c06777
L. Huang, D.W. Sun, H. Pu, Q. Wei, Compr. Rev. Food. Sci. Food Saf. 18 (2019) 1496–1513.
doi: 10.1111/1541-4337.12485
S. Munir, A.A. Shah, H. Rahman, et al., Biotechnol. Lett. 42 (2020) 357–373.
doi: 10.1007/s10529-020-02795-3
J. Wu, X. Wang, Q. Wang, et al., Chem. Soc. Rev. 48 (2019) 1004–1076.
doi: 10.1039/c8cs00457a
W. Song, B. Zhao, C. Wang, Y. Ozaki, X. Lu, J. Mater. Chem. B 7 (2019) 850–875.
doi: 10.1039/c8tb02878h
I. Khan, A. Khalil, F. Khanday, et al., Arab. J. Sci. Eng. 43 (2018) 43–61.
doi: 10.1007/s13369-017-2835-1
N. Ding, N. Yan, C. Ren, X. Chen, Anal. Chem. 82 (2010) 5897–5899.
doi: 10.1021/ac100597s
M. Zhang, T. Bu, Y. Tian, et al., Food Chem. 332 (2020) 127398.
doi: 10.1016/j.foodchem.2020.127398
X. Li, L. Wang, D. Du, et al., TrAC Trends Anal. Chem. 120 (2019) e115653.
doi: 10.1016/j.trac.2019.115653
W. Du, T. Liu, F. Xue, et al., ACS Appl. Mater. Interfaces 12 (2020) 19285–19294.
doi: 10.1021/acsami.0c02465
L. Gao, K. Fan, X. Yan, Theranostics 7 (2017) 3207–3227.
doi: 10.7150/thno.19738
S. Zhao, X. Yu, Y. Qian, W. Chen, J. Shen, Theranostics 10 (2020) 6278–6309.
doi: 10.7150/thno.42564
S. Rajput, C.U. Pittman Jr., D. Mohan, J. Colloid Interface Sci. 468 (2016) 334–346.
doi: 10.1016/j.jcis.2015.12.008
S. Liu, J. Fu, M. Wang, et al., J. Colloid Interface Sci. 469 (2016) 69–77.
doi: 10.1016/j.jcis.2016.02.011
Y. Shi, J. Huang, J. Wang, P. Su, Y. Yang, Talanta 143 (2015) 457–463.
doi: 10.1016/j.talanta.2015.05.025
Y. Shi, P. Su, Y. Wang, Y. Yang, Talanta 130 (2014) 259–264.
doi: 10.1016/j.talanta.2014.06.053
L. Gao, K.M. Giglio, J.L. Nelson, H. Sondermann, A.J. Travis, Nanoscale 6 (2014) 2588–2593.
doi: 10.1039/C3NR05422E
W. Glasgow, B. Fellows, B. Qi, et al., Particuology 26 (2016) 47–53.
doi: 10.1016/j.partic.2015.09.011
H. Deng, X. Li, Q. Peng, et al., Angew. Chem. 117 (2005) 2842–2845.
doi: 10.1002/ange.200462551
J.A. Guivar, E.G. Fernandes, V. Zucolotto, Talanta 141 (2015) 307–314.
doi: 10.1016/j.talanta.2015.03.017
H. Wang, S. Li, Y. Si, et al., J. Mater. Chem. B 2 (2014) 4442–4448.
doi: 10.1039/C4TB00541D
S. Song, Y. Liu, A. Song, et al., J. Colloid Interface Sci. 506 (2017) 46–57.
doi: 10.1016/j.jcis.2017.07.029
X. Jing, T. Liu, D. Wang, J. Liu, L. Meng, CrystEngComm 19 (2017) 5089–5099.
doi: 10.1039/C7CE01191A
Y. Liu, G. Zhu, C. Bao, A. Yuan, X. Shen, Chin. J. Chem. 32 (2014) 151–156.
doi: 10.1002/cjoc.201300683
X. Huang, C. Xu, J. Ma, F. Chen, Adv. Powder Technol. 29 (2018) 796–803.
doi: 10.1016/j.apt.2017.12.025
H. Liu, L. Zhu, H. Ma, et al., Microchim. Acta 186 (2019) 518.
doi: 10.1007/s00604-019-3599-y
C. Zheng, W. Ke, T. Yin, X. An, RSC Adv. 6 (2016) 35280–35286.
doi: 10.1039/C6RA01917J
W. Shi, H. Fan, S. Ai, L. Zhu, Sens. Actuators B: Chem. 221 (2015) 1515–1522.
doi: 10.1016/j.snb.2015.06.157
X. Xia, J. Zhang, N. Lu, et al., ACS Nano 9 (2015) 9994–10004.
doi: 10.1021/acsnano.5b03525
L. Bai, W. Jiang, M. Sang, et al., J. Mater. Chem. B 7 (2019) 4568–4580.
doi: 10.1039/c9tb00755e
S. Li, H. Li, F. Chen, et al., Dyes Pigm. 125 (2016) 64–71.
doi: 10.1016/j.dyepig.2015.10.009
J. Zhang, J. Ma, X. Fan, et al., Catal. Commun. 89 (2017) 148–151.
doi: 10.1016/j.catcom.2016.08.027
F. Huang, J. Wang, W. Chen, et al., Taiwan Inst. Chem. Eng. 83 (2018) 40–49.
doi: 10.1016/j.jtice.2017.12.011
J. Wang, F. Huang, X. Wang, et al., Process Biochem. 83 (2019) 35–43.
doi: 10.1016/j.procbio.2019.05.014
M. Zhu, G. Diao, Nanoscale 3 (2011) 2748–2767.
doi: 10.1039/c1nr10165j
V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Chem. Rev. 115 (2015) 4744–4822.
doi: 10.1021/cr500304f
N. Lu, M. Zhang, L. Ding, et al., Nanoscale 9 (2017) 4508–4515.
doi: 10.1039/C7NR00819H
A. Nsabimana, S.A. Kitte, F. Wu, et al., Appl. Surf. Sci. 467-468 (2019) 89–97.
doi: 10.1016/j.apsusc.2018.10.119
J. Chen, Q. Chen, J. Chen, H. Qiu, Microchim. Acta 183 (2016) 3191–3199.
doi: 10.1007/s00604-016-1972-7
S. Sahar, A. Zeb, Y. Liu, N. Ullah, A. Xu, Chin. J. Catal. 38 (2017) 2110–2119.
doi: 10.1016/S1872-2067(17)62957-7
B. Liu, J. Liu, Nanoscale 7 (2015) 13831–13835.
doi: 10.1039/C5NR04176G
Y.C. Yang, Y.T. Wang, W.L. Tseng, ACS Appl. Mater. Interfaces 9 (2017) 10069–10077.
doi: 10.1021/acsami.6b15654
W. Yang, J. Li, M. Wang, et al., Colloids Surf. B: Biointerfaces 188 (2020) 110742.
doi: 10.1016/j.colsurfb.2019.110742
F. Yu, Y. Huang, A.J. Cole, V.C. Yang, Biomaterials 30 (2009) 4716–4722.
doi: 10.1016/j.biomaterials.2009.05.005
K. Fan, H. Wang, J. Xi, et al., Chem. Commun. 53 (2016) 424–427.
doi: 10.1039/C6CC08542C
X. Zhang, Q. Yang, Y. Lang, X. Jiang, P. Wu, Anal. Chem. 92 (2020) 12400–12406.
doi: 10.1021/acs.analchem.0c02149
W. Duan, Z. Qiu, S. Cao, et al., Biosens. Bioelectron. 196 (2022) 113724.
doi: 10.1016/j.bios.2021.113724
B. Jiang, D. Duan, L. Gao, et al., Nat. Protoc. 13 (2018) 1506–1520.
doi: 10.1038/s41596-018-0001-1
F.F. Peng, Y. Zhang, N. Gu, Chin. Chem. Lett. 19 (2008) 730–733.
doi: 10.1016/j.cclet.2008.03.021
S. Liu, F. Lu, R. Xing, J.J. Zhu, Chem. Eur. J. 17 (2011) 620–625.
doi: 10.1002/chem.201001789
N.V.S. Vallabani, A.S. Karakoti, S. Singh, Colloids Surf. B: Biointerfaces 153 (2017) 52–60.
doi: 10.1016/j.colsurfb.2017.02.004
Z. Chen, J.J. Yin, Y.T. Zhou, et al., ACS Nano 6 (2012) 4001–4012.
doi: 10.1021/nn300291r
M. Raineri, E.L. Winkler, T.E. Torres, et al., Nanoscale 11 (2019) 18393–18406.
doi: 10.1039/c9nr05799d
S. Chen, M. Chi, Z. Yang, et al., Inorg. Chem. Front. 4 (2017) 1621–1627.
doi: 10.1039/C7QI00308K
H. Guan, B. Han, D. Gong, et al., Spectrochim. Acta A 222 (2019) 117277.
doi: 10.1016/j.saa.2019.117277
Y. Li, J. Liu, Y. Fu, Q. Xie, Y. Li, Microchim. Acta 186 (2018) 20.
S. Chen, M. Chi, Y. Zhu, et al., Appl. Surf. Sci. 440 (2018) 237–244.
doi: 10.1016/j.apsusc.2018.01.152
Y. Wang, Y. Sun, H. Dai, et al., Sens. Actuators B: Chem. 236 (2016) 621–626.
doi: 10.15632/jtam-pl.54.2.621
L. Zhang, R. Huang, W. Liu, et al., Biosens. Bioelectron. 86 (2016) 1–7.
doi: 10.1016/j.bios.2016.05.100
S. Mumtaz, L.S. Wang, S.Z. Hussain, et al., Chem. Commun. 53 (2017) 12306–12308.
doi: 10.1039/C7CC07149C
Z. Wei, H. Li, J. Wu, et al., C. Ren, Chin. Chem. Lett. 31 (2020) 177–180.
doi: 10.1016/j.cclet.2019.05.031
N. Bagheri, A. Khataee, J. Hassanzadeh, B. Habibi, Spectrochim. Acta A 209 (2019) 118–125.
doi: 10.1016/j.saa.2018.10.039
P.K. Boruah, M.R. Das, J. Hazard. Mater. 385 (2020) 121516.
doi: 10.1016/j.jhazmat.2019.121516
X. Niu, Y. He, X. Li, et al., Sens. Actuators B: Chem. 281 (2019) 445–452.
doi: 10.1016/j.snb.2018.10.140
X. Li, B. Liu, K. Ye, et al., Sens. Actuators B: Chem. 297 (2019) 126822.
doi: 10.1016/j.snb.2019.126822
N. Qiu, Y. Liu, M. Xiang, et al., Sens. Actuators B: Chem. 266 (2018) 86–94.
doi: 10.1016/j.snb.2018.03.059
S. Wu, D. Guo, X. Xu, J. Pan, X. Niu, Sens. Actuators B: Chem. 303 (2020) 127225.
doi: 10.1016/j.snb.2019.127225
J. Liu, J. Du, Y. Su, H. Zhao, Microchem. J. 149 (2019) 104019.
doi: 10.1016/j.microc.2019.104019
B. Shi, Y. Su, L. Zhang, et al., Nanoscale 8 (2016) 10814–10822.
doi: 10.1039/C6NR02725C
Y. Zhao, D. Huo, J. Bao, et al., Sens. Actuators B: Chem. 244 (2017) 1037–1044.
doi: 10.1016/j.snb.2017.01.029
Y. Zhao, B. Ding, X. Xiao, et al., ACS Appl. Mater. Interfaces 12 (2020) 11320–11328.
doi: 10.1021/acsami.9b20661
H. Wang, K. Wan, X. Shi, Adv. Mater. 31 (2019) 1805368.
doi: 10.1002/adma.201805368
H.J. Cheon, M.D. Adhikari, M. Chung, et al., Adv. Healthc. Mater. 8 (2019) e1801507.
doi: 10.1002/adhm.201801507
Y. Wu, Y. Ma, G. Xu, et al., Sens. Actuators B: Chem. 249 (2017) 195–202.
doi: 10.1016/j.snb.2017.03.145
Y. Huang, G. Liang, T. Lin, et al., Anal. Bioanal. Chem. 411 (2019) 3801–3810.
doi: 10.1007/s00216-019-01841-y
J.X. Wang, Y. Zhuo, Y. Zhou, R. Yuan, Y.Q. Chai, Biosens. Bioelectron. 71 (2015) 407–413.
doi: 10.1016/j.bios.2015.04.062
R. Zhang, N. Lu, J. Zhang, et al., Biosens. Bioelectron. 150 (2020) 111881.
doi: 10.1016/j.bios.2019.111881
X. Tan, L. Zhang, Q. Tang, G. Zheng, H. Li, Microchim. Acta 186 (2019) 280.
doi: 10.1007/s00604-019-3375-z
L. Tian, J. Qi, O. Oderinde, et al., Biosens. Bioelectron. 110 (2018) 110–117.
doi: 10.1016/j.bios.2018.03.045
S. Li, X. Zhao, X. Yu, et al., Anal. Chem. 91 (2019) 14737–14742.
doi: 10.1021/acs.analchem.9b04116
Jinyu Hao , Cui Zhang , Chenxi Feng , Qian Wang , Zhong-Yi Liu , Yan Li , Jianshuai Mu , En-Cui Yang , Yan Wang . An ultra-highly active nanozyme of Fe,N co-doped ultrathin hollow carbon framework for antibacterial application. Chinese Chemical Letters, 2023, 34(3): 107650-1-107650-4. doi: 10.1016/j.cclet.2022.06.073
Wenli Zhao , Wenhao Wang , Fancang Meng , Yang Du , Qingmin Ji , Heng-Dao Quan . One-pot synthesis of bimetallic Fe/Co incorporated silica hollow spheres with superior peroxidase-like activity. Chinese Chemical Letters, 2023, 34(7): 107858-1-107858-4. doi: 10.1016/j.cclet.2022.107858
Liu Mengdi , Ma Siyue , She Mengyao , Chen Jiao , Wang Zhaohui , Liu Ping , Zhang Shengyong , Li Jianli . Structural modification of BODIPY: Improve its applicability. Chinese Chemical Letters, 2019, 30(10): 1815-1824. doi: 10.1016/j.cclet.2019.08.028
Chen Zhang , Xin Wen Guo , Ya Nan Wang , Xiang Sheng Wang , Chun Shan Song . Methylation of 2-methylnaphthalene with methanol to 2,6-dimethylnaphthalene over HZSM-5 modified by NH4F and SrO. Chinese Chemical Letters, 2007, 18(10): 1281-1284. doi: 10.1016/j.cclet.2007.07.025
Hui Yu , Tao Gai , Wen Liang Sun , Mei Su Zhang . Radical reduction of Passerini 3CR adducts by SmI2/HMPA. Chinese Chemical Letters, 2011, 22(4): 379-381. doi: 10.1016/j.cclet.2010.11.013
Liu Meng , Li Zhihao , Li Yingxue , Chen Jiajia , Yuan Quan . Self-assembled nanozyme complexes with enhanced cascade activity and high stability for colorimetric detection of glucose. Chinese Chemical Letters, 2019, 30(5): 1009-1012. doi: 10.1016/j.cclet.2018.12.021
Gang Ke . Homogeneous modification of carbon nanotubes with cellulose acetate. Chinese Chemical Letters, 2009, 20(11): 1376-1380. doi: 10.1016/j.cclet.2009.07.021
Gang Ke , Wen Chao Guan , Chang Yu Tang , Zhen Hu , Wen Jie Guan , Dan Lin Zeng , Feng Deng . Covalent modification of multiwalled carbon nanotubes with a low molecular weight chitosan. Chinese Chemical Letters, 2007, 18(3): 361-364. doi: 10.1016/j.cclet.2007.01.010
Zhao Jin , Da Ling Yang , Shou Hai Zhang , Xi Gao Jian . Hydrophobic modification of poly(phthalazinone ether sulfone ketone) hollow fiber membrane for vacuum membrane distillation. Chinese Chemical Letters, 2008, 19(3): 367-370. doi: 10.1016/j.cclet.2007.12.029
Wei Zhenni , Li Huiqing , Wu Jing , Dong Yalei , Zhang Hongyi , Chen Hongli , Ren Cuiling . 3DRGO-NiFe2O4/NiO nanoparticles for fast and simple detection of organophosphorus pesticides. Chinese Chemical Letters, 2020, 31(1): 177-180. doi: 10.1016/j.cclet.2019.05.031
Benjamin Edem Meteku , Jiankun Huang , Jingbin Zeng , Sobia Aslam , Yu Zhang , Xue Zhang , Bingwen Cui , Cong-ying Wen , Zifeng Yan . Magnetic rod-based metal-organic framework metal composite as multifunctional nanostirrer with adsorptive, peroxidase-like and catalytic properties. Chinese Chemical Letters, 2021, 32(10): 3245-3251. doi: 10.1016/j.cclet.2021.03.019
Xi Wang , Yi-Jun Yang , Ying Ma , Jian-Nian Yao . Controlled synthesis of multi-shelled transition metal oxide hollow structure through one-pot solution route. Chinese Chemical Letters, 2013, 24(01): 1-6.
Bo Li , Qiangqiang Xu , Xin Shen , Tiezheng Pan , Jie Shang , Yan Ge , Zhenhui Qi . Atom-economic macrocyclic amphiphile based on guanidinium-functionalized selenacrown ether acting as redox-responsive nanozyme. Chinese Chemical Letters, 2023, 34(4): 108015-1-108015-5. doi: 10.1016/j.cclet.2022.108015
Bao-He Wang , Jin-Shi Dong , Shuang Chen , Li-Li Wang , Jing Zhu . ZnCl2-modified ion exchange resin as an efficient catalyst for the bisphenol-A production. Chinese Chemical Letters, 2014, 25(11): 1423-1427. doi: 10.1016/j.cclet.2014.06.004
Ganyin Yuan , Zheng Xi , Chu Wang , Xiaohuan Sun , Jie Han , Rong Guo . Construction of Supramolecular Chiral Polyaniline-Gold Nanocomposite as Nanozyme for Enantioselective Catalysis. Acta Physico-Chimica Sinica, 2023, 39(7): 2212061-0. doi: 10.3866/PKU.WHXB202212061
Yinghui Xia , Kunming Sun , Ya-Nan Zuo , Shuyun Zhu , Xian-En Zhao . Fluorescent MOF-based nanozymes for discrimination of phenylenediamine isomers and ratiometric sensing of o-phenylenediamine. Chinese Chemical Letters, 2022, 33(4): 2081-2085. doi: 10.1016/j.cclet.2021.08.083
Zi Cheng Li , Lang Zhu Chi , Jin Kun Zhu , Yin Yan Zhang , Qing Jiang Wang , Pin Gang He , Yu Zhi Fang . Simultaneous determination of active ingredients in blueberry wine by CE-AD. Chinese Chemical Letters, 2011, 22(10): 1237-1240. doi: 10.1016/j.cclet.2011.04.011
Ting Hou , Ningning Xu , Xin Song , Limin Yang , Feng Li . Label-free homogeneous photoelectrochemical aptasensing of VEGF165 based on DNA-regulated peroxidase-mimetic activity of metal-organic-frameworks. Chinese Chemical Letters, 2023, 34(6): 107907-1-107907-4. doi: 10.1016/j.cclet.2022.107907
Yan Liu , Rui Lv , Shiyong Sun , Daoyong Tan , Faqin Dong , Yevgeny A. Golubev , Xiaoqin Nie , Olga B. Kotova , Jin Liu , Ke Wang . High-performance cascade nanoreactor based on halloysite nanotubes-integrated enzyme-nanozyme microsystem. Chinese Chemical Letters, 2022, 33(2): 807-811. doi: 10.1016/j.cclet.2021.06.087
Yang Luo , Wei Zhang , Qian Ren , Guo-Rong Chen , Jiang-Lian Ran , Xin Xiao . A multiple-function fluorescent pillar[5]arene: Fe3+/Ag+ detection and light-harvesting system. Chinese Chemical Letters, 2022, 33(12): 5120-5123. doi: 10.1016/j.cclet.2022.04.028