Modification and application of Fe3O4 nanozymes in analytical chemistry: A review
-
* Corresponding authors.
E-mail addresses: kdz1011@just.edu.cn (D. Kong), tangsheng.nju@gmail.com (S. Tang).
Citation:
Jiahe Ju, Yitong Chen, Zhiqiang Liu, Cheng Huang, Yaqi Li, Dezhao Kong, Wei Shen, Sheng Tang. Modification and application of Fe3O4 nanozymes in analytical chemistry: A review[J]. Chinese Chemical Letters,
;2023, 34(5): 107820.
doi:
10.1016/j.cclet.2022.107820
C. Yuan, X. Wang, X. Yang, et al., Chin. Chem. Lett. 32 (2021) 2079–2085.
doi: 10.1016/j.cclet.2020.11.027
X. Chen, J. Mao, C. Liu, et al., Chin. Chem. Lett. 31 (2020) 3205–3208.
doi: 10.1016/j.cclet.2020.07.031
Z. Zhou, L. Yang, J. Gao, X. Chen, Adv. Mater. 31 (2019) e1804567.
doi: 10.1002/adma.201804567
Z. Qi, T.P. Joshi, R. Liu, H. Liu, J. Qu, J. Hazard. Mater. 329 (2017) 193–204.
doi: 10.1016/j.jhazmat.2017.01.007
L. Gao, J. Zhuang, L. Nie, et al., Nat. Nanotechnol. 2 (2007) 577–583.
doi: 10.1038/nnano.2007.260
X. Liu, D. Huang, C. Lai, et al., Small 15 (2019) e1900133.
doi: 10.1002/smll.201900133
Z. Li, Y. Wang, Y. Ni, S. Kokot, Biosens. Bioelectron. 70 (2015) 246–253.
doi: 10.1016/j.bios.2015.03.035
Y. Yang, T. Li, Y. Qin, L. Zhang, Y. Chen, Front. Chem. 8 (2020) e564968.
doi: 10.3389/fchem.2020.564968
H. Sun, Y. Zhou, J. Ren, X. Qu, Angew. Chem. Int. Ed. Engl. 57 (2018) 9224–9237.
doi: 10.1002/anie.201712469
G. Nie, L. Zhang, J. Lei, et al., J. Mater. Chem. A 2 (2014) 2910–2914.
doi: 10.1039/c3ta15051h
L. Chen, L. Sha, Y. Qiu, et al., Nanoscale 7 (2015) 3300–3308.
doi: 10.1039/C4NR06664B
W. Zhang, X. Niu, S. Meng, et al., Sens. Actuators B: Chem. 273 (2018) 400–407.
doi: 10.1016/j.snb.2018.06.071
A. Liu, M. Li, J. Wang, et al., Chin. Chem. Lett. 31 (2020) 1133–1136.
doi: 10.1016/j.cclet.2019.10.011
S. Tang, T. Qi, Y. Yao, et al., Anal. Chem. 92 (2020) 12290–12296.
doi: 10.1021/acs.analchem.0c01936
S. Tang, Y. Li, A. Zhu, et al., Chem. Commun. 55 (2019) 8386–8389.
doi: 10.1039/c9cc03194d
H. Wei, E.J.A.C. Wang, Anal. Chem. 80 (2008) 2250–2254.
doi: 10.1021/ac702203f
Y. Zhuo, P.X. Yuan, R. Yuan, Y.Q. Chai, C.L. Hong, Biomaterials 30 (2009) 2284–2290.
doi: 10.1016/j.biomaterials.2009.01.002
G. Guan, L. Yang, Q. Mei, et al., Anal. Chem. 84 (2012) 9492–9497.
doi: 10.1021/ac302341b
M. Liang, K. Fan, Y. Pan, et al., Anal. Chem. 85 (2013) 308–312.
doi: 10.1021/ac302781r
Y. Yao, J. Kuang, J. Ju, et al., Sens. Actuators B: Chem. 352 (2022) 131044.
doi: 10.1016/j.snb.2021.131044
D. Duan, K. Fan, D. Zhang, et al., Biosens. Bioelectron. 74 (2015) 134–141.
doi: 10.1016/j.bios.2015.05.025
N. Yu, T. Cai, Y. Sun, et al., Int. J. Pharm. 552 (2018) 277–287.
doi: 10.1016/j.ijpharm.2018.10.002
F. Wei, X. Cui, Z. Wang, et al., Chem. Eng. J. 408 (2021) 127240-127240.
doi: 10.1016/j.cej.2020.127240
S. Gao, H. Lin, H. Zhang, et al., Adv. Sci., 6 (2019) 1801733.
doi: 10.1002/advs.201801733
J. Lu, Y. Hu, P. Wang, et al., Sens. Actuators B: Chem. 311 (2020) 127909.
doi: 10.1016/j.snb.2020.127909
F. Wu, Y. Du, J. Yang, et al., ACS Nano 16 (2022) 3647–3663.
doi: 10.1021/acsnano.1c06777
L. Huang, D.W. Sun, H. Pu, Q. Wei, Compr. Rev. Food. Sci. Food Saf. 18 (2019) 1496–1513.
doi: 10.1111/1541-4337.12485
S. Munir, A.A. Shah, H. Rahman, et al., Biotechnol. Lett. 42 (2020) 357–373.
doi: 10.1007/s10529-020-02795-3
J. Wu, X. Wang, Q. Wang, et al., Chem. Soc. Rev. 48 (2019) 1004–1076.
doi: 10.1039/c8cs00457a
W. Song, B. Zhao, C. Wang, Y. Ozaki, X. Lu, J. Mater. Chem. B 7 (2019) 850–875.
doi: 10.1039/c8tb02878h
I. Khan, A. Khalil, F. Khanday, et al., Arab. J. Sci. Eng. 43 (2018) 43–61.
doi: 10.1007/s13369-017-2835-1
N. Ding, N. Yan, C. Ren, X. Chen, Anal. Chem. 82 (2010) 5897–5899.
doi: 10.1021/ac100597s
M. Zhang, T. Bu, Y. Tian, et al., Food Chem. 332 (2020) 127398.
doi: 10.1016/j.foodchem.2020.127398
X. Li, L. Wang, D. Du, et al., TrAC Trends Anal. Chem. 120 (2019) e115653.
doi: 10.1016/j.trac.2019.115653
W. Du, T. Liu, F. Xue, et al., ACS Appl. Mater. Interfaces 12 (2020) 19285–19294.
doi: 10.1021/acsami.0c02465
L. Gao, K. Fan, X. Yan, Theranostics 7 (2017) 3207–3227.
doi: 10.7150/thno.19738
S. Zhao, X. Yu, Y. Qian, W. Chen, J. Shen, Theranostics 10 (2020) 6278–6309.
doi: 10.7150/thno.42564
S. Rajput, C.U. Pittman Jr., D. Mohan, J. Colloid Interface Sci. 468 (2016) 334–346.
doi: 10.1016/j.jcis.2015.12.008
S. Liu, J. Fu, M. Wang, et al., J. Colloid Interface Sci. 469 (2016) 69–77.
doi: 10.1016/j.jcis.2016.02.011
Y. Shi, J. Huang, J. Wang, P. Su, Y. Yang, Talanta 143 (2015) 457–463.
doi: 10.1016/j.talanta.2015.05.025
Y. Shi, P. Su, Y. Wang, Y. Yang, Talanta 130 (2014) 259–264.
doi: 10.1016/j.talanta.2014.06.053
L. Gao, K.M. Giglio, J.L. Nelson, H. Sondermann, A.J. Travis, Nanoscale 6 (2014) 2588–2593.
doi: 10.1039/C3NR05422E
W. Glasgow, B. Fellows, B. Qi, et al., Particuology 26 (2016) 47–53.
doi: 10.1016/j.partic.2015.09.011
H. Deng, X. Li, Q. Peng, et al., Angew. Chem. 117 (2005) 2842–2845.
doi: 10.1002/ange.200462551
J.A. Guivar, E.G. Fernandes, V. Zucolotto, Talanta 141 (2015) 307–314.
doi: 10.1016/j.talanta.2015.03.017
H. Wang, S. Li, Y. Si, et al., J. Mater. Chem. B 2 (2014) 4442–4448.
doi: 10.1039/C4TB00541D
S. Song, Y. Liu, A. Song, et al., J. Colloid Interface Sci. 506 (2017) 46–57.
doi: 10.1016/j.jcis.2017.07.029
X. Jing, T. Liu, D. Wang, J. Liu, L. Meng, CrystEngComm 19 (2017) 5089–5099.
doi: 10.1039/C7CE01191A
Y. Liu, G. Zhu, C. Bao, A. Yuan, X. Shen, Chin. J. Chem. 32 (2014) 151–156.
doi: 10.1002/cjoc.201300683
X. Huang, C. Xu, J. Ma, F. Chen, Adv. Powder Technol. 29 (2018) 796–803.
doi: 10.1016/j.apt.2017.12.025
H. Liu, L. Zhu, H. Ma, et al., Microchim. Acta 186 (2019) 518.
doi: 10.1007/s00604-019-3599-y
C. Zheng, W. Ke, T. Yin, X. An, RSC Adv. 6 (2016) 35280–35286.
doi: 10.1039/C6RA01917J
W. Shi, H. Fan, S. Ai, L. Zhu, Sens. Actuators B: Chem. 221 (2015) 1515–1522.
doi: 10.1016/j.snb.2015.06.157
X. Xia, J. Zhang, N. Lu, et al., ACS Nano 9 (2015) 9994–10004.
doi: 10.1021/acsnano.5b03525
L. Bai, W. Jiang, M. Sang, et al., J. Mater. Chem. B 7 (2019) 4568–4580.
doi: 10.1039/c9tb00755e
S. Li, H. Li, F. Chen, et al., Dyes Pigm. 125 (2016) 64–71.
doi: 10.1016/j.dyepig.2015.10.009
J. Zhang, J. Ma, X. Fan, et al., Catal. Commun. 89 (2017) 148–151.
doi: 10.1016/j.catcom.2016.08.027
F. Huang, J. Wang, W. Chen, et al., Taiwan Inst. Chem. Eng. 83 (2018) 40–49.
doi: 10.1016/j.jtice.2017.12.011
J. Wang, F. Huang, X. Wang, et al., Process Biochem. 83 (2019) 35–43.
doi: 10.1016/j.procbio.2019.05.014
M. Zhu, G. Diao, Nanoscale 3 (2011) 2748–2767.
doi: 10.1039/c1nr10165j
V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Chem. Rev. 115 (2015) 4744–4822.
doi: 10.1021/cr500304f
N. Lu, M. Zhang, L. Ding, et al., Nanoscale 9 (2017) 4508–4515.
doi: 10.1039/C7NR00819H
A. Nsabimana, S.A. Kitte, F. Wu, et al., Appl. Surf. Sci. 467-468 (2019) 89–97.
doi: 10.1016/j.apsusc.2018.10.119
J. Chen, Q. Chen, J. Chen, H. Qiu, Microchim. Acta 183 (2016) 3191–3199.
doi: 10.1007/s00604-016-1972-7
S. Sahar, A. Zeb, Y. Liu, N. Ullah, A. Xu, Chin. J. Catal. 38 (2017) 2110–2119.
doi: 10.1016/S1872-2067(17)62957-7
B. Liu, J. Liu, Nanoscale 7 (2015) 13831–13835.
doi: 10.1039/C5NR04176G
Y.C. Yang, Y.T. Wang, W.L. Tseng, ACS Appl. Mater. Interfaces 9 (2017) 10069–10077.
doi: 10.1021/acsami.6b15654
W. Yang, J. Li, M. Wang, et al., Colloids Surf. B: Biointerfaces 188 (2020) 110742.
doi: 10.1016/j.colsurfb.2019.110742
F. Yu, Y. Huang, A.J. Cole, V.C. Yang, Biomaterials 30 (2009) 4716–4722.
doi: 10.1016/j.biomaterials.2009.05.005
K. Fan, H. Wang, J. Xi, et al., Chem. Commun. 53 (2016) 424–427.
doi: 10.1039/C6CC08542C
X. Zhang, Q. Yang, Y. Lang, X. Jiang, P. Wu, Anal. Chem. 92 (2020) 12400–12406.
doi: 10.1021/acs.analchem.0c02149
W. Duan, Z. Qiu, S. Cao, et al., Biosens. Bioelectron. 196 (2022) 113724.
doi: 10.1016/j.bios.2021.113724
B. Jiang, D. Duan, L. Gao, et al., Nat. Protoc. 13 (2018) 1506–1520.
doi: 10.1038/s41596-018-0001-1
F.F. Peng, Y. Zhang, N. Gu, Chin. Chem. Lett. 19 (2008) 730–733.
doi: 10.1016/j.cclet.2008.03.021
S. Liu, F. Lu, R. Xing, J.J. Zhu, Chem. Eur. J. 17 (2011) 620–625.
doi: 10.1002/chem.201001789
N.V.S. Vallabani, A.S. Karakoti, S. Singh, Colloids Surf. B: Biointerfaces 153 (2017) 52–60.
doi: 10.1016/j.colsurfb.2017.02.004
Z. Chen, J.J. Yin, Y.T. Zhou, et al., ACS Nano 6 (2012) 4001–4012.
doi: 10.1021/nn300291r
M. Raineri, E.L. Winkler, T.E. Torres, et al., Nanoscale 11 (2019) 18393–18406.
doi: 10.1039/c9nr05799d
S. Chen, M. Chi, Z. Yang, et al., Inorg. Chem. Front. 4 (2017) 1621–1627.
doi: 10.1039/C7QI00308K
H. Guan, B. Han, D. Gong, et al., Spectrochim. Acta A 222 (2019) 117277.
doi: 10.1016/j.saa.2019.117277
Y. Li, J. Liu, Y. Fu, Q. Xie, Y. Li, Microchim. Acta 186 (2018) 20.
S. Chen, M. Chi, Y. Zhu, et al., Appl. Surf. Sci. 440 (2018) 237–244.
doi: 10.1016/j.apsusc.2018.01.152
Y. Wang, Y. Sun, H. Dai, et al., Sens. Actuators B: Chem. 236 (2016) 621–626.
doi: 10.15632/jtam-pl.54.2.621
L. Zhang, R. Huang, W. Liu, et al., Biosens. Bioelectron. 86 (2016) 1–7.
doi: 10.1016/j.bios.2016.05.100
S. Mumtaz, L.S. Wang, S.Z. Hussain, et al., Chem. Commun. 53 (2017) 12306–12308.
doi: 10.1039/C7CC07149C
Z. Wei, H. Li, J. Wu, et al., C. Ren, Chin. Chem. Lett. 31 (2020) 177–180.
doi: 10.1016/j.cclet.2019.05.031
N. Bagheri, A. Khataee, J. Hassanzadeh, B. Habibi, Spectrochim. Acta A 209 (2019) 118–125.
doi: 10.1016/j.saa.2018.10.039
P.K. Boruah, M.R. Das, J. Hazard. Mater. 385 (2020) 121516.
doi: 10.1016/j.jhazmat.2019.121516
X. Niu, Y. He, X. Li, et al., Sens. Actuators B: Chem. 281 (2019) 445–452.
doi: 10.1016/j.snb.2018.10.140
X. Li, B. Liu, K. Ye, et al., Sens. Actuators B: Chem. 297 (2019) 126822.
doi: 10.1016/j.snb.2019.126822
N. Qiu, Y. Liu, M. Xiang, et al., Sens. Actuators B: Chem. 266 (2018) 86–94.
doi: 10.1016/j.snb.2018.03.059
S. Wu, D. Guo, X. Xu, J. Pan, X. Niu, Sens. Actuators B: Chem. 303 (2020) 127225.
doi: 10.1016/j.snb.2019.127225
J. Liu, J. Du, Y. Su, H. Zhao, Microchem. J. 149 (2019) 104019.
doi: 10.1016/j.microc.2019.104019
B. Shi, Y. Su, L. Zhang, et al., Nanoscale 8 (2016) 10814–10822.
doi: 10.1039/C6NR02725C
Y. Zhao, D. Huo, J. Bao, et al., Sens. Actuators B: Chem. 244 (2017) 1037–1044.
doi: 10.1016/j.snb.2017.01.029
Y. Zhao, B. Ding, X. Xiao, et al., ACS Appl. Mater. Interfaces 12 (2020) 11320–11328.
doi: 10.1021/acsami.9b20661
H. Wang, K. Wan, X. Shi, Adv. Mater. 31 (2019) 1805368.
doi: 10.1002/adma.201805368
H.J. Cheon, M.D. Adhikari, M. Chung, et al., Adv. Healthc. Mater. 8 (2019) e1801507.
doi: 10.1002/adhm.201801507
Y. Wu, Y. Ma, G. Xu, et al., Sens. Actuators B: Chem. 249 (2017) 195–202.
doi: 10.1016/j.snb.2017.03.145
Y. Huang, G. Liang, T. Lin, et al., Anal. Bioanal. Chem. 411 (2019) 3801–3810.
doi: 10.1007/s00216-019-01841-y
J.X. Wang, Y. Zhuo, Y. Zhou, R. Yuan, Y.Q. Chai, Biosens. Bioelectron. 71 (2015) 407–413.
doi: 10.1016/j.bios.2015.04.062
R. Zhang, N. Lu, J. Zhang, et al., Biosens. Bioelectron. 150 (2020) 111881.
doi: 10.1016/j.bios.2019.111881
X. Tan, L. Zhang, Q. Tang, G. Zheng, H. Li, Microchim. Acta 186 (2019) 280.
doi: 10.1007/s00604-019-3375-z
L. Tian, J. Qi, O. Oderinde, et al., Biosens. Bioelectron. 110 (2018) 110–117.
doi: 10.1016/j.bios.2018.03.045
S. Li, X. Zhao, X. Yu, et al., Anal. Chem. 91 (2019) 14737–14742.
doi: 10.1021/acs.analchem.9b04116
Shaobin He , Xiaoyun Guo , Qionghua Zheng , Huanran Shen , Yuan Xu , Fenglin Lin , Jincheng Chen , Haohua Deng , Yiming Zeng , Wei Chen . Engineering nickel-supported osmium bimetallic nanozymes with specifically improved peroxidase-like activity for immunoassay. Chinese Chemical Letters, 2025, 36(4): 110096-. doi: 10.1016/j.cclet.2024.110096
Haojie Song , Laiyu Luo , Siyu Wang , Guo Zhang , Baojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
Ying Wang , Hong Yang , Caixia Zhu , Qing Hong , Xuwen Cao , Kaiyuan Wang , Yuan Xu , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153
Caixia Zhu , Qing Hong , Kaiyuan Wang , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560
Xiaoshuai Wu , Bailei Wang , Yichen Li , Xiaoxuan Guan , Mingjing Yin , Wenquan Lv , Yin Chen , Fei Lu , Tao Qin , Huyang Gao , Weiqian Jin , Yifu Huang , Cuiping Li , Ming Gao , Junyu Lu . NIR driven catalytic enhanced acute lung injury therapy by using polydopamine@Co nanozyme via scavenging ROS. Chinese Chemical Letters, 2025, 36(2): 110211-. doi: 10.1016/j.cclet.2024.110211
Mingyue Luo , Kehui Zhang , Honghong Rao , Jianying Li , Xin Xue , Panpan Sun , Xiaoquan Lu , Zhonghua Xue . A simplified ratiometric fluorescent sensing strategy for enhanced detection of alkaline phosphatase employing Prussian blue nanozymes and commercially available chromogen. Chinese Chemical Letters, 2025, 36(9): 110703-. doi: 10.1016/j.cclet.2024.110703
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Qiao Wang , Ziling Jiang , Chuang Yu , Liping Li , Guangshe Li . Research progress of inorganic sodium ion conductors for solid-state batteries. Chinese Chemical Letters, 2025, 36(6): 110006-. doi: 10.1016/j.cclet.2024.110006
Manoj Kumar Sarangi , L․D Patel , Goutam Rath , Sitansu Sekhar Nanda , Dong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381
Jiaxi Wang , Zhiwei Gao , Hao Liang , Qianyue Liu , Weiqian Jin , Huyang Gao , Bailei Wang , Ruikai Zhu , Jiahao Huang , Xiaowen Li , Xingmou Wu , Weijiu Mo , Yinhan Liao , Ming Gao , Xiaojie Li , Cuiping Li . NIR stimulated epigallocatechin gallate loaded polydopamine with enhanced antibacterial and ROS scavenging abilities for improved infectious wound healing. Chinese Chemical Letters, 2025, 36(7): 110569-. doi: 10.1016/j.cclet.2024.110569
Guanghui Lin , Jieyao Chen , Xiaojia Liu , Yitong Lin , Xudong Zhu , Guotao Yuan , Bowen Yang , Shuanshuan Guo , Yue Pan , Jianhua Zhou . Sustained modulation of tumor microenvironment via sorafenib-loaded mesoporous ferromanganese nanozymes for enhanced apoptosis-ferroptosis cancer therapy. Chinese Chemical Letters, 2025, 36(8): 111018-. doi: 10.1016/j.cclet.2025.111018
Yuwan Lu , Xiaodan Zhang , Yuming Huang . Dual-site Se/NC specific peroxidase-like nanozyme for highly sensitive methimazole detection. Chinese Chemical Letters, 2025, 36(4): 110129-. doi: 10.1016/j.cclet.2024.110129
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
Xun Zhu , Chenchen Zhang , Yingying Li , Yin Lu , Na Huang , Dawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753
Lin Zhang , Jianlong Li , Maoyuan Hu , Yao Xu , Xiaoli Xiong , Zhaoyu Jin . MOF-derived beaded stream-like nitrogen and phosphorus-codoped carbon-coated Fe3O4 nanocomposites via lattice-oxygen-mediated mechanism for efficient water oxidation. Chinese Chemical Letters, 2025, 36(8): 111123-. doi: 10.1016/j.cclet.2025.111123
Simin Wei , Yaqing Yang , Junjie Li , Jialin Wang , Jinlu Tang , Ningning Wang , Zhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114
Huan Yao , Jian Qin , Yan-Fang Wang , Song-Meng Wang , Liu-Huan Yi , Shi-Yao Li , Fangfang Du , Liu-Pan Yang , Li-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154
Yuwei Liu , Yihui Zhu , Weijian Duan , Yizhuo Yang , Haorui Tuo , Chunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347