Mitochondria-targeted cancer therapy based on functional peptides
-
* Corresponding authors.
E-mail addresses: acuace@163.com (Y. Lu), fanli7062022@163.com (L. Fan).
Citation:
Yuhan Sun, He Zhang, Guangzhao Lu, Huan Wang, Ying Lu, Li Fan. Mitochondria-targeted cancer therapy based on functional peptides[J]. Chinese Chemical Letters,
;2023, 34(5): 107817.
doi:
10.1016/j.cclet.2022.107817
A.J. Roger, S.A. Muñoz-Gómez, R. Kamikawa, Curr. Biol. 27(2017) R1177-R1192.
doi: 10.1016/j.cub.2017.09.015
P. Ning, W. Wang, M. Chen, Y. Feng, X. Meng, Chin. Chem. Lett. 28(2017) 1943–1951.
doi: 10.1016/j.cclet.2017.09.026
M.J. Devine, J.T. Kittler, Nat. Rev. Neurosci. 19(2018) 63–80.
J. Döhla, E. Kuuluvainen, N. Gebert, et al., Nat. Cell Biol. 24(2022) 148–154.
doi: 10.1038/s41556-021-00837-0
G. Siasos, V. Tsigkou, M. Kosmopoulos, et al., Ann. Transl. Med. 6(2018) 256–278.
doi: 10.21037/atm.2018.06.21
S. Fulda, L. Galluzzi, G. Kroemer, Nat. Rev. Drug Discov. 9(2010) 447–464.
doi: 10.1038/nrd3137
T. Hu, Z. Qin, C. Shen, H.L. Gong, Z.Y. He, Front. Bioeng. Biotechnol. 9(2021) 786621.
doi: 10.3389/fbioe.2021.786621
P.J. Burke, Trends Cancer 3(2017) 857–870.
doi: 10.1016/j.trecan.2017.10.006
X.S. Hou, H.S. Wang, B.P. Mugaka, G.J. Yang, Y. Ding, Biomater. Sci. 6(2018) 2786–2797.
doi: 10.1039/C8BM00673C
Y. Huang, T. Wang, Q. Tan, et al., Int. J. Nanomed. 16(2021) 4117–4146.
doi: 10.2147/IJN.S315368
B. Kalyanaraman, G. Cheng, M. Hardy, et al., Redox Biol. 14(2018) 316–327.
doi: 10.1016/j.redox.2017.09.020
K. Klein, K. He, A.I. Younes, et al., Front. Immunol. 11(2020) 573326.
doi: 10.3389/fimmu.2020.573326
S. Missiroli, M. Perrone, I. Genovese, P. Pinton, C. Giorgi, eBioMedicine 59(2020) 102943.
doi: 10.1016/j.ebiom.2020.102943
P.E. Porporato, N. Filigheddu, J.M.B. Pedro, G. Kroemer, L. Galluzzi, Cell Res. 28(2018) 265–280.
doi: 10.1038/cr.2017.155
S. Srinivasan, M. Guha, A. Kashina, N.G. Avadhani, Biochim. Biophys. Acta Bioenerg. 1858(2017) 602–614.
doi: 10.1016/j.bbabio.2017.01.004
W.X. Zong, J.D. Rabinowitz, E. White, Mol. Cell 61(2016) 667–676.
doi: 10.1016/j.molcel.2016.02.011
M.T. Jeena, S. Kim, S. Jin, J.H. Ryu, Cancers 12(2019) 26–46.
doi: 10.3390/cancers12010026
H. Qi, Y. Xu, P. Hu, C. Yao, D. Yang, Chin. Chem. Lett. 33(2022) 1131–1140.
doi: 10.1016/j.cclet.2021.09.026
K.G. Roth, I. Mambetsariev, P. Kulkarni, R. Salgia, Trends Mol. Med. 26(2020) 119–134.
Y. Sun, A. Zhan, S. Zhou, et al., Chin. Chem. Lett. 30(2019) 1435–1439.
doi: 10.1016/j.cclet.2019.05.001
Y. Gao, H. Tong, J. Li, et al., Front. Bioeng. Biotechnol. 9(2021) 720508.
doi: 10.3389/fbioe.2021.720508
Z. Ma, Y. Zhang, J. Zhang, et al., ACS Appl. Mater. Interfaces 12(2020) 39434–39443.
doi: 10.1021/acsami.0c11469
R.C. Scaduto Jr., L.W. Grotyohann, Biophys. J. 76(1999) 469–477.
doi: 10.1016/S0006-3495(99)77214-0
E.K. Lei, S.O. Kelley, J. Am. Chem. Soc. 139(2017) 9455–9458.
doi: 10.1021/jacs.7b04415
W. Mitchell, E.A. Ng, J.D. Tamucci, et al., J. Biol. Chem. 295(2020) 7452–7469.
doi: 10.1074/jbc.RA119.012094
H.H. Szeto, AAPS J. 8(2006) E277–E283.
doi: 10.1007/BF02854898
M.P. Murphy, R.C. Hartley, Nat. Rev. Drug Discov. 17(2018) 865–886.
doi: 10.1038/nrd.2018.174
J. Zielonka, J. Joseph, A. Sikora, et al., Chem. Rev. 117(2017) 10043–10120.
doi: 10.1021/acs.chemrev.7b00042
Y. Bae, M.K. Jung, S.J. Song, et al., Mitochondrion 37(2017) 27–40.
doi: 10.1016/j.mito.2017.06.005
C. Bailly, Biochem. Pharmacol. 186(2021) 114467.
doi: 10.1016/j.bcp.2021.114467
S. Hong, X. Zhang, R.J. Lake, et al., Chem. Sci. 11(2019) 713–720.
M. Shi, J. Zhang, X. Li, et al., Int. J. Nanomed. 13(2018) 4209–4226.
doi: 10.2147/IJN.S163858
V. Weissig, M. Lozoya, N. Yu, G.G.M. D'Souza, Methods Mol. Biol. 2275(2021) 13–25.
Y. Feng, G. Qin, S. Chang, et al., Int. J. Nanomed. 16(2021) 3073–3089.
doi: 10.2147/IJN.S297716
D.A. Kuznetsova, G.A. Gaynanova, L.A. Vasileva, et al., J. Mater. Chem. B 7(2019) 7351–7362.
doi: 10.1039/C9TB01853K
C. Yue, Y. Yang, J. Song, et al., Nanoscale 9(2017) 11103–11118.
doi: 10.1039/C7NR02193C
P. Ning, L. Huang, Y. Bao, et al., Bioconjug. Chem. 31(2020) 2719–2725.
doi: 10.1021/acs.bioconjchem.0c00518
O. Oladimeji, J. Akinyelu, M. Singh, J. Biomed. Nanotechnol. 16(2020) 853–866.
doi: 10.1166/jbn.2020.2930
W. Wang, J. Liu, W. Feng, et al., Biomater. Sci. 7(2019) 1052–1063.
doi: 10.1039/C8BM01414K
L. Luo, M. Wang, Y. Zhou, et al., Anal. Chem. 93(2021) 6715–6722.
doi: 10.1021/acs.analchem.1c00176
J. Yan, J. Chen, N. Zhang, et al., J. Mater. Chem. B 8(2020) 492–503.
doi: 10.1039/C9TB02266J
L.H. Dian, Y.J. Hu, J.Y. Lin, et al., Int. J. Nanomed. 13(2018) 719–731.
doi: 10.2147/IJN.S150140
Z. Fan, B. Jiang, D. Shi, et al., Int. J. Pharm. 594(2021) 120184.
doi: 10.1016/j.ijpharm.2020.120184
H. Wang, W. Shi, D. Zeng, et al., J. Nanobiotechnol. 19(2021) 152.
doi: 10.1186/s12951-021-00895-4
H. Wang, F. Zhang, H. Wen, et al., J. Nanobiotechnol. 18(2020) 8–27.
doi: 10.1186/s12951-019-0562-3
Y. Zhang, C. Zhang, J. Chen, et al., ACS Appl. Mater. Interfaces 9(2017) 25152–25163.
doi: 10.1021/acsami.7b07219
S. Tang, Z. Davoudi, G. Wang, et al., Chem. Soc. Rev. 50(2021) 12679–12701.
doi: 10.1039/D1CS00029B
J. Xu, W. Du, Y. Zhao, et al., Acta Pharm. Sin. B 12(2022) 2778–2789.
doi: 10.1016/j.apsb.2022.03.001
L. Huang, Z. Sun, Q. Shen, et al., Chin. Chem. Lett. 33(2022) 4146–4156.
doi: 10.1016/j.cclet.2022.02.047
Y. Wang, A.G. Cheetham, G. Angacian, et al., Adv. Drug Deliv. Rev. 110-111(2017) 112–126.
doi: 10.1016/j.addr.2016.06.015
N. Mehrotra, S. Kharbanda, H. Singh, Nanomedicine (Lond) 15(2020) 2201–2217.
doi: 10.2217/nnm-2020-0220
Z. Luo, Y. Gao, Z. Duan, Y. Yi, H. Wang, Front. Bioeng. Biotechnol. 9(2021) 782234.
doi: 10.3389/fbioe.2021.782234
X. Li, W. Zhang, Q. Cao, et al., Cell Death Discov. 6(2020) 80–94.
D. Liu, A. Angelova, J. Liu, et al., J. Mater. Chem. B 7(2019) 4706–4716.
doi: 10.1039/C9TB00629J
R.W. Taylor, D.M. Turnbull, Nat. Rev. Genet. 6(2005) 389–402.
doi: 10.1038/nrg1606
C.S. Burke, A. Byrne, T.E. Keyes, Angew. Chem. Int. Ed. 57(2018) 12420–12424.
doi: 10.1002/anie.201806002
P.F. Chinnery, G. Hudson, Br. Med. Bull. 106(2013) 135–159.
doi: 10.1093/bmb/ldt017
A.W. El-Hattab, W.J. Craigen, F. Scaglia, Biochim. Biophys. Acta Mol. Basis Dis. 1863(2017) 1539–1555.
doi: 10.1016/j.bbadis.2017.02.017
A. Klimpel, I. Neundorf, J. Control. Release 291(2018) 147–156.
doi: 10.1016/j.jconrel.2018.10.029
H. Li, W. Xu, F. Li, et al., Drug Deliv. 29(2022) 192–202.
doi: 10.1080/10717544.2021.2023697
M. Kleih, K. Bopple, M. Dong, et al., Cell Death Dis. 10(2019) 851–863.
doi: 10.1038/s41419-019-2081-4
G. Calmettes, B. Ribalet, S. John, et al., J. Mol. Cell Cardiol. 78(2015) 107–115.
doi: 10.1016/j.yjmcc.2014.09.020
G.S. Krasnov, A.A. Dmitriev, V.A. Lakunina, A.A. Kirpiy, A.V. Kudryavtseva, Expert Opin. Ther. Targets 17(2013) 1221–1233.
doi: 10.1517/14728222.2013.833607
S.P. Mathupala, Y.H. Ko, P.L. Pedersen, Oncogene 25(2006) 4777–4786.
doi: 10.1038/sj.onc.1209603
J.G. Pastorino, J.B. Hoek, Curr. Med. Chem. 10(2003) 1535–1551.
doi: 10.2174/0929867033457269
J.G. Pastorino, J.B. Hoek, J. Bioenerg. Biomembr. 40(2008) 171–182.
doi: 10.1007/s10863-008-9148-8
S. Reina, V. De Pinto, Curr. Med. Chem. 24(2017) 4447–4469.
V. Shoshan-Barmatz, D. Ben-Hail, L. Admoni, Y. Krelin, S.S. Tripathi, Biochim. Biophys. Acta 1848(2015) 2547–2575.
doi: 10.1016/j.bbamem.2014.10.040
R.J. Winquist, V.K. Gribkoff, Biochem. Pharmacol. 177(2020) 113995.
doi: 10.1016/j.bcp.2020.113995
A. Magri, A. Messina, Curr. Med. Chem. 24(2017) 4470–4487.
A.G. Assanhou, W. Li, L. Zhang, et al., Biomaterials 73(2015) 284–295.
doi: 10.1016/j.biomaterials.2015.09.022
Y. Liu, X. Zhang, M. Zhou, et al., ACS Appl. Mater. Interfaces 9(2017) 43498–43507.
doi: 10.1021/acsami.7b14577
S. Zhang, A. Long, A.J. Link, ACS Synth. Biol. 1(2012) 89–98.
doi: 10.1021/sb200002m
T.O. Jose-Luis Diaz, W. Horne, M. McConnell, et al., J. Biol. Chem. 17(1997) 11350–11355.
F. Llambi, D.R. Green, Curr. Opin. Genet. Dev. 21(2011) 12–20.
doi: 10.1016/j.gde.2010.12.001
A. Shteinfer-Kuzmine, Z. Amsalem, T. Arif, A. Zooravlov, V. Shoshan-Barmatz, Mol. Oncol. 12(2018) 1077–1103.
doi: 10.1002/1878-0261.12313
M. Li, Y. Song, N. Song, et al., Nano. Lett. 21(2021) 5730–5737.
doi: 10.1021/acs.nanolett.1c01469
M.T. Jeena, L. Palanikumar, E.M. Go, et al., Nat. Commun. 8(2017) 26.
doi: 10.1038/s41467-017-00047-z
S. Kim, H.Y. Nam, J. Lee, J. Seo, Biochemistry 59(2020) 270–284.
doi: 10.1021/acs.biochem.9b00857
R. Lin, P. Zhang, A.G. Cheetham, et al., Bioconjug. Chem. 26(2015) 71–77.
doi: 10.1021/bc500408p
A.D. Woldetsadik, M.C. Vogel, W.M. Rabeh, M. Magzoub, FASEB J. 31(2017) 2168–2184.
doi: 10.1096/fj.201601173R
Q. Li, J. Yang, C. Chen, et al., J. Control. Release 325(2020) 38–51.
doi: 10.1016/j.jconrel.2020.06.010
A. Liu, X. Hou, Y. Ding, Y., Acta Pharm. Sin. 52(2017) 879–887.
V. Gogvadze, S. Orrenius, B. Zhivotovsky, Biochim. Biophys. Acta 1757(2006) 639–647.
doi: 10.1016/j.bbabio.2006.03.016
H.Y. Chiu, E.X.Y. Tay, D.S.T. Ong, R. Taneja, Antioxid. Redox Signal. 32(2020) 309–330.
doi: 10.1089/ars.2019.7898
J. Wu, J. Li, H. Wang, C.B. Liu, Expert Opin. Drug Deliv. 15(2018) 951–964.
doi: 10.1080/17425247.2018.1517750
K.L. Horton, K.M. Stewart, S.B. Fonseca, Q. Guo, S.O. Kelley, Chem. Biol. 15(2008) 375–382.
doi: 10.1016/j.chembiol.2008.03.015
T. Zhao, X. Liu, S. Singh, et al., Bioconjug. Chem. 30(2019) 2312–2316.
doi: 10.1021/acs.bioconjchem.9b00465
Y. Deng, F. Jia, X. Chen, Q. Jin, J. Ji, Small 16(2020) e2001747.
doi: 10.1002/smll.202001747
J. Yang, Q. Li, M. Zhou, et al., Int. J. Pharm. 608(2021) 121077.
doi: 10.1016/j.ijpharm.2021.121077
P.P. Czupiel, V. Delplace, M.S. Shoichet, J. Control. Release 305(2019) 210–219.
doi: 10.1016/j.jconrel.2019.04.045
M. Abbas, Q. Zou, S. Li, X. Yan, Adv. Mater. 29(2017) 1605021.
doi: 10.1002/adma.201605021
Z.H. Wang, L. Chen, W. Li, L. Chen, Y.P. Wang, Mitochondrion 65(2022) 80–87.
doi: 10.1016/j.mito.2022.05.002
Z. Zheng, P. Chen, M. Xie, et al., J. Am. Chem. Soc. 138(2016) 11128–11131.
doi: 10.1021/jacs.6b06903
J. Zhou, X. Du, C. Berciu, et al., Chem 1(2016) 246–263.
doi: 10.1016/j.chempr.2016.07.003
J. Zhou, X. Du, N. Yamagata, B. Xu, J. Am. Chem. Soc. 138(2016) 3813–3823.
doi: 10.1021/jacs.5b13541
Q. Yao, Z. Huang, D. Liu, J. Chen, Y. Gao, Adv. Mater. 31(2019) e1804814.
doi: 10.1002/adma.201804814
H. Wang, Z. Feng, Y. Wang, et al., J. Am. Chem. Soc. 138(2016) 16046–16055.
doi: 10.1021/jacs.6b09783
J. Wang, Q. Zhou, X. Li, D. Dutta, Z. Ge, A.C.S. Macro, Lett. 11(2022) 543–548.
P. Zhu, X. Yan, Y. Su, Y. Yang, J. Li, Chemistry (Easton) 16(2010) 3176–3183.
P.C. Saha, T. Bera, T. Chatterjee, et al., Bioconjug. Chem. 32(2021) 833–841.
doi: 10.1021/acs.bioconjchem.1c00106
D. Zhang, G.B. Qi, Y.X. Zhao, et al., Adv. Mater. 27(2015) 6125–6130.
doi: 10.1002/adma.201502598
X.H. Zhang, D.B. Cheng, L. Ji, et al., Nano. Lett. 20(2020) 1286–1295.
doi: 10.1021/acs.nanolett.9b04752
D.B. Cheng, X.H. Zhang, Y.J. Gao, et al., J. Am. Chem. Soc. 141(2019) 7235–7239.
doi: 10.1021/jacs.8b07727
X. Jin, H. Yang, Z. Mao, B. Wang, J. Colloid Interface Sci. 601(2021) 714–726.
doi: 10.1016/j.jcis.2021.05.135
L. Wu, B. Lin, H. Yang, et al., Acta Biomater. 86(2019) 363–372.
doi: 10.1016/j.actbio.2019.01.026
Z. Feng, H. Wang, F. Wang, et al., Cell Rep. Phys. Sci. 1(2020) 100085.
doi: 10.1016/j.xcrp.2020.100085
PEPAXTO Prescribing Information, U.S. FOOD & DRUG ADMINISTRATION, 2020,
LUTATHERA Prescribing Information, U.S. FOOD & DRUG ADMINISTRATION, 2020,
K. Fosgerau, T. Hoffmann, Drug Discov. Today 20(2015) 122–128.
doi: 10.1016/j.drudis.2014.10.003
Safety, Efficacy & Pharmacokinetics of Elamipretide, clinicaltrials. gov, 2020,
Safety and Efficacy of Elamipretide Primary Mitochondrial Myopathy, clinicaltrials. gov, 2020,
Yong Dai , Bao-Kuo Lv , Xin-Fu Zhang , Yi Xiao . A two-photon mitotracker based on a naphthalimide fl uorophore:Synthesis, photophysical properties and cell imaging. Chinese Chemical Letters, 2014, 25(7): 1001-1005. doi: 10.1016/j.cclet.2014.05.020
Yasuya Kudo , Kazunori Koiwai , Kazuhiro Shimizu , Shota Kusuki , Mina Sakuragi , Naohiko Shimada , Yoichi Takeda , Kazuo Sakurai . Amidine-bearing lipoplex targeting to hepatocyte cells. Chinese Chemical Letters, 2008, 19(9): 1115-1118. doi: 10.1016/j.cclet.2008.06.001
Qing Lin Jiang , Li Hai , Lei Chen , Jiao Lu , Zhi Rong Zhang , Yong Wu . Synthesis of a novel multivalent galactoside with high hepatocyte targeting for gene delivery. Chinese Chemical Letters, 2008, 19(2): 127-129. doi: 10.1016/j.cclet.2007.12.002
Zheng Pan , Liu Yang , Chen Jinjin , Xu Weiguo , Li Gao , Ding Jianxun . Targeted pH-responsive polyion complex micelle for controlled intracellular drug delivery. Chinese Chemical Letters, 2020, 31(5): 1178-1182. doi: 10.1016/j.cclet.2019.12.001
Yang Limin , Gao Peng , Huang Yuanlei , Lu Xiao , Chang Qian , Pan Wei , Li Na , Tang Bo . Boosting the photodynamic therapy efficiency with a mitochondria-targeted nanophotosensitizer. Chinese Chemical Letters, 2019, 30(6): 1293-1296. doi: 10.1016/j.cclet.2019.03.032
Shuang Chen , Yongzhuo Liu , Ri Liang , Gaobo Hong , Jing An , Xiaojun Peng , Wen-Heng Zheng , Fengling Song . Self-assembly of amphiphilic peptides to construct activatable nanophotosensitizers for theranostic photodynamic therapy. Chinese Chemical Letters, 2021, 32(12): 3903-3906. doi: 10.1016/j.cclet.2021.06.041
Dachuan Qi , Lei Xing , Lijun Shen , Wenshuang Sun , Cheng Cai , Chunhua Xue , Xuwei Song , Hua Yu , Hulin Jiang , Chengjun Li , Qingri Jin , Zhiqi Zhang . A GSH-depleted platinum(Ⅳ) prodrug triggers ferroptotic cell death in breast cancer. Chinese Chemical Letters, 2022, 33(10): 4595-4599. doi: 10.1016/j.cclet.2022.03.105
Jie Jiao , Qiang Wang , Hua Wei Zhu , Hao Fang , Wen Fang Xu . Synthesis and biological evaluation of a new series of histone deacetylases inhibitors. Chinese Chemical Letters, 2008, 19(6): 673-675. doi: 10.1016/j.cclet.2008.04.010
Cui Jingjing , Yao Yuhua , Chen Cong , Huang Rui , Zhang Weibing , Qian Junhong . Mitochondria-targeted ratiometric fluorescent probes for micropolarity and microviscosity and their applications. Chinese Chemical Letters, 2019, 30(5): 1071-1074. doi: 10.1016/j.cclet.2018.12.031
Zhao Jiaoyan , Jiang Xuefeng . The application of sulfur-containing peptides in drug discovery. Chinese Chemical Letters, 2018, 29(7): 1079-1087. doi: 10.1016/j.cclet.2018.05.026
Sun Xiu-Xia , Fan Jun , Hou Yan-Nan , Liang Shuo , Zhang Yu-Ping , Xiao Jian-Xi . Fluorescence characterization of the thermal stability of collagen mimic peptides. Chinese Chemical Letters, 2017, 28(5): 963-967. doi: 10.1016/j.cclet.2016.11.029
Ning Peng , Wang Wenjuan , Chen Man , Feng Yan , Meng Xiangming . Recent advances in mitochondria-and lysosomes-targeted small-molecule two-photon fluorescent probes. Chinese Chemical Letters, 2017, 28(10): 1943-1951. doi: 10.1016/j.cclet.2017.09.026
Hangqi Zhu , Bing Zhang , Nali Zhu , Mingchun Li , Qilin Yu . Mitochondrion targeting peptide-modified magnetic graphene oxide delivering mitoxantrone for impairment of tumor mitochondrial functions. Chinese Chemical Letters, 2021, 32(3): 1220-1223. doi: 10.1016/j.cclet.2020.09.003
Chen Yaqi , Liang Jingjing , Li Tao , Lin Ping , Zhao Yibing , Wu Chuanliu . Interchain doubly-bridged α-helical peptides for the development of protein binders. Chinese Chemical Letters, 2019, 30(4): 924-928. doi: 10.1016/j.cclet.2019.02.013
Yishen Mao , Caifeng Zou , Yongjian Jiang , Deliang Fu . Erythrocyte-derived drug delivery systems in cancer therapy. Chinese Chemical Letters, 2021, 32(3): 990-998. doi: 10.1016/j.cclet.2020.08.048
Hedong Qi , Yuwei Xu , Pin Hu , Chi Yao , Dayong Yang . Construction and applications of DNA-based nanomaterials in cancer therapy. Chinese Chemical Letters, 2022, 33(3): 1131-1140. doi: 10.1016/j.cclet.2021.09.026
Fanwen Sun , Yayun Peng , Yanping Li , Menghan Xu , Ting Cai . Fenton-reaction-triggered metabolism of acetaminophen for enhanced cancer therapy. Chinese Chemical Letters, 2023, 34(2): 107507-1-107507-6. doi: 10.1016/j.cclet.2022.05.021
Tianqi Wang , Yanan Fu , Shengjie Sun , Chenyi Huang , Yunfei Yi , Junqing Wang , Yang Deng , Meiying Wu . Exosome-based drug delivery systems in cancer therapy. Chinese Chemical Letters, 2023, 34(2): 107508-1-107508-8. doi: 10.1016/j.cclet.2022.05.022
Dai Lingzi , Guo Nian , Liu Yaqin , Shen Shanshan , Ge Qiufu , Pan Yuanjiang . Analysis of the binding sites with NL-101 to amino acids and peptides by HPLC/MS/MS. Chinese Chemical Letters, 2019, 30(1): 103-106. doi: 10.1016/j.cclet.2017.12.023
Wang Yuzhen , Song Yujun , Zhu Guixian , Zhang Dechen , Liu Xuewu . Highly biocompatible BSA-MnO2 nanoparticles as an efficient near-infrared photothermal agent for cancer therapy. Chinese Chemical Letters, 2018, 29(11): 1685-1688. doi: 10.1016/j.cclet.2017.12.004