Mitochondria-targeted cancer therapy based on functional peptides
-
* Corresponding authors.
E-mail addresses: acuace@163.com (Y. Lu), fanli7062022@163.com (L. Fan).
Citation:
Yuhan Sun, He Zhang, Guangzhao Lu, Huan Wang, Ying Lu, Li Fan. Mitochondria-targeted cancer therapy based on functional peptides[J]. Chinese Chemical Letters,
;2023, 34(5): 107817.
doi:
10.1016/j.cclet.2022.107817
A.J. Roger, S.A. Muñoz-Gómez, R. Kamikawa, Curr. Biol. 27(2017) R1177-R1192.
doi: 10.1016/j.cub.2017.09.015
P. Ning, W. Wang, M. Chen, Y. Feng, X. Meng, Chin. Chem. Lett. 28(2017) 1943–1951.
doi: 10.1016/j.cclet.2017.09.026
M.J. Devine, J.T. Kittler, Nat. Rev. Neurosci. 19(2018) 63–80.
J. Döhla, E. Kuuluvainen, N. Gebert, et al., Nat. Cell Biol. 24(2022) 148–154.
doi: 10.1038/s41556-021-00837-0
G. Siasos, V. Tsigkou, M. Kosmopoulos, et al., Ann. Transl. Med. 6(2018) 256–278.
doi: 10.21037/atm.2018.06.21
S. Fulda, L. Galluzzi, G. Kroemer, Nat. Rev. Drug Discov. 9(2010) 447–464.
doi: 10.1038/nrd3137
T. Hu, Z. Qin, C. Shen, H.L. Gong, Z.Y. He, Front. Bioeng. Biotechnol. 9(2021) 786621.
doi: 10.3389/fbioe.2021.786621
P.J. Burke, Trends Cancer 3(2017) 857–870.
doi: 10.1016/j.trecan.2017.10.006
X.S. Hou, H.S. Wang, B.P. Mugaka, G.J. Yang, Y. Ding, Biomater. Sci. 6(2018) 2786–2797.
doi: 10.1039/C8BM00673C
Y. Huang, T. Wang, Q. Tan, et al., Int. J. Nanomed. 16(2021) 4117–4146.
doi: 10.2147/IJN.S315368
B. Kalyanaraman, G. Cheng, M. Hardy, et al., Redox Biol. 14(2018) 316–327.
doi: 10.1016/j.redox.2017.09.020
K. Klein, K. He, A.I. Younes, et al., Front. Immunol. 11(2020) 573326.
doi: 10.3389/fimmu.2020.573326
S. Missiroli, M. Perrone, I. Genovese, P. Pinton, C. Giorgi, eBioMedicine 59(2020) 102943.
doi: 10.1016/j.ebiom.2020.102943
P.E. Porporato, N. Filigheddu, J.M.B. Pedro, G. Kroemer, L. Galluzzi, Cell Res. 28(2018) 265–280.
doi: 10.1038/cr.2017.155
S. Srinivasan, M. Guha, A. Kashina, N.G. Avadhani, Biochim. Biophys. Acta Bioenerg. 1858(2017) 602–614.
doi: 10.1016/j.bbabio.2017.01.004
W.X. Zong, J.D. Rabinowitz, E. White, Mol. Cell 61(2016) 667–676.
doi: 10.1016/j.molcel.2016.02.011
M.T. Jeena, S. Kim, S. Jin, J.H. Ryu, Cancers 12(2019) 26–46.
doi: 10.3390/cancers12010026
H. Qi, Y. Xu, P. Hu, C. Yao, D. Yang, Chin. Chem. Lett. 33(2022) 1131–1140.
doi: 10.1016/j.cclet.2021.09.026
K.G. Roth, I. Mambetsariev, P. Kulkarni, R. Salgia, Trends Mol. Med. 26(2020) 119–134.
Y. Sun, A. Zhan, S. Zhou, et al., Chin. Chem. Lett. 30(2019) 1435–1439.
doi: 10.1016/j.cclet.2019.05.001
Y. Gao, H. Tong, J. Li, et al., Front. Bioeng. Biotechnol. 9(2021) 720508.
doi: 10.3389/fbioe.2021.720508
Z. Ma, Y. Zhang, J. Zhang, et al., ACS Appl. Mater. Interfaces 12(2020) 39434–39443.
doi: 10.1021/acsami.0c11469
R.C. Scaduto Jr., L.W. Grotyohann, Biophys. J. 76(1999) 469–477.
doi: 10.1016/S0006-3495(99)77214-0
E.K. Lei, S.O. Kelley, J. Am. Chem. Soc. 139(2017) 9455–9458.
doi: 10.1021/jacs.7b04415
W. Mitchell, E.A. Ng, J.D. Tamucci, et al., J. Biol. Chem. 295(2020) 7452–7469.
doi: 10.1074/jbc.RA119.012094
H.H. Szeto, AAPS J. 8(2006) E277–E283.
doi: 10.1007/BF02854898
M.P. Murphy, R.C. Hartley, Nat. Rev. Drug Discov. 17(2018) 865–886.
doi: 10.1038/nrd.2018.174
J. Zielonka, J. Joseph, A. Sikora, et al., Chem. Rev. 117(2017) 10043–10120.
doi: 10.1021/acs.chemrev.7b00042
Y. Bae, M.K. Jung, S.J. Song, et al., Mitochondrion 37(2017) 27–40.
doi: 10.1016/j.mito.2017.06.005
C. Bailly, Biochem. Pharmacol. 186(2021) 114467.
doi: 10.1016/j.bcp.2021.114467
S. Hong, X. Zhang, R.J. Lake, et al., Chem. Sci. 11(2019) 713–720.
M. Shi, J. Zhang, X. Li, et al., Int. J. Nanomed. 13(2018) 4209–4226.
doi: 10.2147/IJN.S163858
V. Weissig, M. Lozoya, N. Yu, G.G.M. D'Souza, Methods Mol. Biol. 2275(2021) 13–25.
Y. Feng, G. Qin, S. Chang, et al., Int. J. Nanomed. 16(2021) 3073–3089.
doi: 10.2147/IJN.S297716
D.A. Kuznetsova, G.A. Gaynanova, L.A. Vasileva, et al., J. Mater. Chem. B 7(2019) 7351–7362.
doi: 10.1039/C9TB01853K
C. Yue, Y. Yang, J. Song, et al., Nanoscale 9(2017) 11103–11118.
doi: 10.1039/C7NR02193C
P. Ning, L. Huang, Y. Bao, et al., Bioconjug. Chem. 31(2020) 2719–2725.
doi: 10.1021/acs.bioconjchem.0c00518
O. Oladimeji, J. Akinyelu, M. Singh, J. Biomed. Nanotechnol. 16(2020) 853–866.
doi: 10.1166/jbn.2020.2930
W. Wang, J. Liu, W. Feng, et al., Biomater. Sci. 7(2019) 1052–1063.
doi: 10.1039/C8BM01414K
L. Luo, M. Wang, Y. Zhou, et al., Anal. Chem. 93(2021) 6715–6722.
doi: 10.1021/acs.analchem.1c00176
J. Yan, J. Chen, N. Zhang, et al., J. Mater. Chem. B 8(2020) 492–503.
doi: 10.1039/C9TB02266J
L.H. Dian, Y.J. Hu, J.Y. Lin, et al., Int. J. Nanomed. 13(2018) 719–731.
doi: 10.2147/IJN.S150140
Z. Fan, B. Jiang, D. Shi, et al., Int. J. Pharm. 594(2021) 120184.
doi: 10.1016/j.ijpharm.2020.120184
H. Wang, W. Shi, D. Zeng, et al., J. Nanobiotechnol. 19(2021) 152.
doi: 10.1186/s12951-021-00895-4
H. Wang, F. Zhang, H. Wen, et al., J. Nanobiotechnol. 18(2020) 8–27.
doi: 10.1186/s12951-019-0562-3
Y. Zhang, C. Zhang, J. Chen, et al., ACS Appl. Mater. Interfaces 9(2017) 25152–25163.
doi: 10.1021/acsami.7b07219
S. Tang, Z. Davoudi, G. Wang, et al., Chem. Soc. Rev. 50(2021) 12679–12701.
doi: 10.1039/D1CS00029B
J. Xu, W. Du, Y. Zhao, et al., Acta Pharm. Sin. B 12(2022) 2778–2789.
doi: 10.1016/j.apsb.2022.03.001
L. Huang, Z. Sun, Q. Shen, et al., Chin. Chem. Lett. 33(2022) 4146–4156.
doi: 10.1016/j.cclet.2022.02.047
Y. Wang, A.G. Cheetham, G. Angacian, et al., Adv. Drug Deliv. Rev. 110-111(2017) 112–126.
doi: 10.1016/j.addr.2016.06.015
N. Mehrotra, S. Kharbanda, H. Singh, Nanomedicine (Lond) 15(2020) 2201–2217.
doi: 10.2217/nnm-2020-0220
Z. Luo, Y. Gao, Z. Duan, Y. Yi, H. Wang, Front. Bioeng. Biotechnol. 9(2021) 782234.
doi: 10.3389/fbioe.2021.782234
X. Li, W. Zhang, Q. Cao, et al., Cell Death Discov. 6(2020) 80–94.
D. Liu, A. Angelova, J. Liu, et al., J. Mater. Chem. B 7(2019) 4706–4716.
doi: 10.1039/C9TB00629J
R.W. Taylor, D.M. Turnbull, Nat. Rev. Genet. 6(2005) 389–402.
doi: 10.1038/nrg1606
C.S. Burke, A. Byrne, T.E. Keyes, Angew. Chem. Int. Ed. 57(2018) 12420–12424.
doi: 10.1002/anie.201806002
P.F. Chinnery, G. Hudson, Br. Med. Bull. 106(2013) 135–159.
doi: 10.1093/bmb/ldt017
A.W. El-Hattab, W.J. Craigen, F. Scaglia, Biochim. Biophys. Acta Mol. Basis Dis. 1863(2017) 1539–1555.
doi: 10.1016/j.bbadis.2017.02.017
A. Klimpel, I. Neundorf, J. Control. Release 291(2018) 147–156.
doi: 10.1016/j.jconrel.2018.10.029
H. Li, W. Xu, F. Li, et al., Drug Deliv. 29(2022) 192–202.
doi: 10.1080/10717544.2021.2023697
M. Kleih, K. Bopple, M. Dong, et al., Cell Death Dis. 10(2019) 851–863.
doi: 10.1038/s41419-019-2081-4
G. Calmettes, B. Ribalet, S. John, et al., J. Mol. Cell Cardiol. 78(2015) 107–115.
doi: 10.1016/j.yjmcc.2014.09.020
G.S. Krasnov, A.A. Dmitriev, V.A. Lakunina, A.A. Kirpiy, A.V. Kudryavtseva, Expert Opin. Ther. Targets 17(2013) 1221–1233.
doi: 10.1517/14728222.2013.833607
S.P. Mathupala, Y.H. Ko, P.L. Pedersen, Oncogene 25(2006) 4777–4786.
doi: 10.1038/sj.onc.1209603
J.G. Pastorino, J.B. Hoek, Curr. Med. Chem. 10(2003) 1535–1551.
doi: 10.2174/0929867033457269
J.G. Pastorino, J.B. Hoek, J. Bioenerg. Biomembr. 40(2008) 171–182.
doi: 10.1007/s10863-008-9148-8
S. Reina, V. De Pinto, Curr. Med. Chem. 24(2017) 4447–4469.
V. Shoshan-Barmatz, D. Ben-Hail, L. Admoni, Y. Krelin, S.S. Tripathi, Biochim. Biophys. Acta 1848(2015) 2547–2575.
doi: 10.1016/j.bbamem.2014.10.040
R.J. Winquist, V.K. Gribkoff, Biochem. Pharmacol. 177(2020) 113995.
doi: 10.1016/j.bcp.2020.113995
A. Magri, A. Messina, Curr. Med. Chem. 24(2017) 4470–4487.
A.G. Assanhou, W. Li, L. Zhang, et al., Biomaterials 73(2015) 284–295.
doi: 10.1016/j.biomaterials.2015.09.022
Y. Liu, X. Zhang, M. Zhou, et al., ACS Appl. Mater. Interfaces 9(2017) 43498–43507.
doi: 10.1021/acsami.7b14577
S. Zhang, A. Long, A.J. Link, ACS Synth. Biol. 1(2012) 89–98.
doi: 10.1021/sb200002m
T.O. Jose-Luis Diaz, W. Horne, M. McConnell, et al., J. Biol. Chem. 17(1997) 11350–11355.
F. Llambi, D.R. Green, Curr. Opin. Genet. Dev. 21(2011) 12–20.
doi: 10.1016/j.gde.2010.12.001
A. Shteinfer-Kuzmine, Z. Amsalem, T. Arif, A. Zooravlov, V. Shoshan-Barmatz, Mol. Oncol. 12(2018) 1077–1103.
doi: 10.1002/1878-0261.12313
M. Li, Y. Song, N. Song, et al., Nano. Lett. 21(2021) 5730–5737.
doi: 10.1021/acs.nanolett.1c01469
M.T. Jeena, L. Palanikumar, E.M. Go, et al., Nat. Commun. 8(2017) 26.
doi: 10.1038/s41467-017-00047-z
S. Kim, H.Y. Nam, J. Lee, J. Seo, Biochemistry 59(2020) 270–284.
doi: 10.1021/acs.biochem.9b00857
R. Lin, P. Zhang, A.G. Cheetham, et al., Bioconjug. Chem. 26(2015) 71–77.
doi: 10.1021/bc500408p
A.D. Woldetsadik, M.C. Vogel, W.M. Rabeh, M. Magzoub, FASEB J. 31(2017) 2168–2184.
doi: 10.1096/fj.201601173R
Q. Li, J. Yang, C. Chen, et al., J. Control. Release 325(2020) 38–51.
doi: 10.1016/j.jconrel.2020.06.010
A. Liu, X. Hou, Y. Ding, Y., Acta Pharm. Sin. 52(2017) 879–887.
V. Gogvadze, S. Orrenius, B. Zhivotovsky, Biochim. Biophys. Acta 1757(2006) 639–647.
doi: 10.1016/j.bbabio.2006.03.016
H.Y. Chiu, E.X.Y. Tay, D.S.T. Ong, R. Taneja, Antioxid. Redox Signal. 32(2020) 309–330.
doi: 10.1089/ars.2019.7898
J. Wu, J. Li, H. Wang, C.B. Liu, Expert Opin. Drug Deliv. 15(2018) 951–964.
doi: 10.1080/17425247.2018.1517750
K.L. Horton, K.M. Stewart, S.B. Fonseca, Q. Guo, S.O. Kelley, Chem. Biol. 15(2008) 375–382.
doi: 10.1016/j.chembiol.2008.03.015
T. Zhao, X. Liu, S. Singh, et al., Bioconjug. Chem. 30(2019) 2312–2316.
doi: 10.1021/acs.bioconjchem.9b00465
Y. Deng, F. Jia, X. Chen, Q. Jin, J. Ji, Small 16(2020) e2001747.
doi: 10.1002/smll.202001747
J. Yang, Q. Li, M. Zhou, et al., Int. J. Pharm. 608(2021) 121077.
doi: 10.1016/j.ijpharm.2021.121077
P.P. Czupiel, V. Delplace, M.S. Shoichet, J. Control. Release 305(2019) 210–219.
doi: 10.1016/j.jconrel.2019.04.045
M. Abbas, Q. Zou, S. Li, X. Yan, Adv. Mater. 29(2017) 1605021.
doi: 10.1002/adma.201605021
Z.H. Wang, L. Chen, W. Li, L. Chen, Y.P. Wang, Mitochondrion 65(2022) 80–87.
doi: 10.1016/j.mito.2022.05.002
Z. Zheng, P. Chen, M. Xie, et al., J. Am. Chem. Soc. 138(2016) 11128–11131.
doi: 10.1021/jacs.6b06903
J. Zhou, X. Du, C. Berciu, et al., Chem 1(2016) 246–263.
doi: 10.1016/j.chempr.2016.07.003
J. Zhou, X. Du, N. Yamagata, B. Xu, J. Am. Chem. Soc. 138(2016) 3813–3823.
doi: 10.1021/jacs.5b13541
Q. Yao, Z. Huang, D. Liu, J. Chen, Y. Gao, Adv. Mater. 31(2019) e1804814.
doi: 10.1002/adma.201804814
H. Wang, Z. Feng, Y. Wang, et al., J. Am. Chem. Soc. 138(2016) 16046–16055.
doi: 10.1021/jacs.6b09783
J. Wang, Q. Zhou, X. Li, D. Dutta, Z. Ge, A.C.S. Macro, Lett. 11(2022) 543–548.
P. Zhu, X. Yan, Y. Su, Y. Yang, J. Li, Chemistry (Easton) 16(2010) 3176–3183.
P.C. Saha, T. Bera, T. Chatterjee, et al., Bioconjug. Chem. 32(2021) 833–841.
doi: 10.1021/acs.bioconjchem.1c00106
D. Zhang, G.B. Qi, Y.X. Zhao, et al., Adv. Mater. 27(2015) 6125–6130.
doi: 10.1002/adma.201502598
X.H. Zhang, D.B. Cheng, L. Ji, et al., Nano. Lett. 20(2020) 1286–1295.
doi: 10.1021/acs.nanolett.9b04752
D.B. Cheng, X.H. Zhang, Y.J. Gao, et al., J. Am. Chem. Soc. 141(2019) 7235–7239.
doi: 10.1021/jacs.8b07727
X. Jin, H. Yang, Z. Mao, B. Wang, J. Colloid Interface Sci. 601(2021) 714–726.
doi: 10.1016/j.jcis.2021.05.135
L. Wu, B. Lin, H. Yang, et al., Acta Biomater. 86(2019) 363–372.
doi: 10.1016/j.actbio.2019.01.026
Z. Feng, H. Wang, F. Wang, et al., Cell Rep. Phys. Sci. 1(2020) 100085.
doi: 10.1016/j.xcrp.2020.100085
PEPAXTO Prescribing Information, U.S. FOOD & DRUG ADMINISTRATION, 2020,
LUTATHERA Prescribing Information, U.S. FOOD & DRUG ADMINISTRATION, 2020,
K. Fosgerau, T. Hoffmann, Drug Discov. Today 20(2015) 122–128.
doi: 10.1016/j.drudis.2014.10.003
Safety, Efficacy & Pharmacokinetics of Elamipretide, clinicaltrials. gov, 2020,
Safety and Efficacy of Elamipretide Primary Mitochondrial Myopathy, clinicaltrials. gov, 2020,
Kun-Heng Li , Hong-Yang Zhao , Dan-Dan Wang , Ming-Hui Qi , Zi-Jian Xu , Jia-Mi Li , Zhi-Li Zhang , Shi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882
Junjie Wang , Yan Wang , Zhengdong Li , Changqiang Xie , Musammir Khan , Xingzhou Peng , Fabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934
Yuanyi Zhou , Ke Ma , Jinfeng Liu , Zirun Zheng , Bo Hu , Yu Meng , Zhizhong Li , Mingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056
Fengjie Liu , Fansu Meng , Zhenjiang Yang , Huan Wang , Yuehong Ren , Yu Cai , Xingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335
Ziqin Li , Kai Hao , Longwei Xiang , Huayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943
Panpan Wang , Hongbao Fang , Mengmeng Wang , Guandong Zhang , Na Xu , Yan Su , Hongke Liu , Zhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099
Yanfei Liu , Yaqin Hu , Yifu Tan , Qiwen Chen , Zhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289
Qiang Li , Jiangbo Fan , Hongkai Mu , Lin Chen , Yongzhen Yang , Shiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947
Han Han , Bi-Te Chen , Jia-Rong Ding , Jin-Ming Si , Tian-Jiao Zhou , Yi Wang , Lei Xing , Hu-Lin Jiang . A PDGFRβ-targeting nanodrill system for pancreatic fibrosis therapy. Chinese Chemical Letters, 2024, 35(10): 109583-. doi: 10.1016/j.cclet.2024.109583
Fan Zheng , Runsha Xiao , Shuai Huang , Zhikang Chen , Chen Lai , Anyao Bi , Heying Yao , Xueping Feng , Zihua Chen , Wenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876
Jiaqi Huang , Renjiang Kong , Yanmei Li , Ni Yan , Yeyang Wu , Ziwen Qiu , Zhenming Lu , Xiaona Rao , Shiying Li , Hong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254
Chen Li , Ziyuan Zhao , Shouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128
Huijie An , Chen Yang , Zhihui Jiang , Junjie Yuan , Zhongming Qiu , Longhao Chen , Xin Chen , Mutu Huang , Linlang Huang , Hongju Lin , Biao Cheng , Hongjiang Liu , Zhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134
Mengjuan Sun , Muye Zhou , Yifang Xiao , Hailei Tang , Jinhua Chen , Ruitao Zhang , Chunjiayu Li , Qi Ya , Qian Chen , Jiasheng Tu , Qiyue Wang , Chunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110
Xiaofang Luo , Ye Wu , Xiaokun Zhang , Min Tang , Feiye Ju , Zuodong Qin , Gregory J Duns , Wei-Dong Zhang , Jiang-Jiang Qin , Xin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724
Yang Liu , Yan Liu , Kaiyin Yang , Zhiruo Zhang , Wenbo Zhang , Bingyou Yang , Hua Li , Lixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Jing Chen , Peisi Xie , Pengfei Wu , Yu He , Zian Lin , Zongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895
Yuanzheng Wang , Chen Zhang , Shuyan Han , Xiaoli Kong , Changyun Quan , Jun Wu , Wei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578
Zhi Li , Shuya Pan , Yuan Tian , Shaowei Liu , Weifeng Wei , Jinlin Wang , Tianfeng Chen , Ling Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018